Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions

Marc Lassonde
Université des Antilles et de la Guyane

Playa Blanca, Tongoy, Chile
Everywhere X is a Banach space. A set-valued operator $T : X \rightrightarrows X^*$, or graph $T \subset X \times X^*$, is **monotone** provided
\[
\langle y^* - x^*, y - x \rangle \geq 0, \quad \forall (x, x^*), (y, y^*) \in T,
\]
and **maximal monotone** provided it is monotone and not properly contained in another monotone operator.

The **subdifferential** $\partial f : X \rightrightarrows X^*$ of a convex $f : X \to]-\infty, +\infty]$ is
\[
\partial f(x) := \left\{ x^* \in X^* : \langle x^*, y - x \rangle + f(x) \leq f(y), \forall y \in X \right\},
\]
and the **duality operator** $J : X \rightrightarrows X^*$ is
\[
J(x) := \left\{ x^* \in X^* : \langle x^*, x \rangle = \|x\|^2 = \|x^*\|^2 \right\}.
\]
It is easily verified that $J(x) = \partial j(x)$ where $j(x) = (1/2)\|x\|^2$.

Theorem (Rockafellar, 1970) Let X be a Banach space. The subdifferential ∂f of a proper convex lower semicontinuous function $f : X \to]-\infty, +\infty]$ is maximal monotone.
PROOF WHEN $X = H$ IS HILBERT (taken from Brezis, 1973)

By Hahn-Banach, $f \geq \ell + \alpha$ for some $\ell \in X^*$ and $\alpha \in \mathbb{R}$, and $j + \ell$ is coercive $(j(x) + \ell(x) = (1/2)\|x\|^2 + \ell(x) \to +\infty$ as $\|x\| \to +\infty)$, so

\[f + j \text{ is coercive.} \]

Hence $f + j$ attains its minimum at some $\bar{x} \in H$, so $0 \in \partial(f + j)(\bar{x})$.

Since $\partial j = \nabla j = I$ (identity on H), we readily get $0 \in (\partial f + I)(\bar{x})$, so $0 \in R(\partial f + I)$. We conclude that

\[X^* = R(\partial f + I). \]

This is easily seen to imply that ∂f is maximal monotone.

(This is the elementary part in Minty’s characterization of maximal monotonicity (1962).)
PROOF IN THE GENERAL BANACH CASE: STEP 1

Claim:

\[0 \in \overline{R(\partial f + J)}. \] \hspace{1cm} (1)

First, \(f \geq \ell + \alpha \) for some \(\ell \in X^* \) and \(\alpha \in \mathbb{R} \), and \(j + \ell \) bounded below, so \(f + j \) is bounded below.

Next, let \(\varepsilon > 0 \) arbitrary and let \(y_\varepsilon \in \text{dom } f \) such that

\[(f + j)(y_\varepsilon) \leq (f + j)(y) + \varepsilon^2, \forall y \in X. \]

By Brøndsted-Rockafellar approximation theorem (1965),

\[\exists x_\varepsilon^* \in X^* \text{ with } \|x_\varepsilon^*\| \leq \varepsilon \text{ and } z_\varepsilon \in X \text{ such that } x_\varepsilon^* \in \partial(f + j)(z_\varepsilon). \]

By Rockafellar’s sum rule (1966), \(x_\varepsilon^* \in \partial f(z_\varepsilon) + J(z_\varepsilon). \)

Conclusion: \(\exists x_\varepsilon^* \in R(\partial f + J) \text{ with } \|x_\varepsilon^*\| \leq \varepsilon, \) proving the claim.
PROOF: STEP 2

Let \((x, x^*) \in X \times X^*\) such that
\[
\langle y^* - x^*, y - x \rangle \geq 0, \quad \forall (y, y^*) \in \partial f. \tag{2}
\]

Applying [1] to \(f(x + .) - x^*\), we get
\[
x^* \in R(\partial f(x + .) + J).
\]

Thus, there are \((x_n^*) \subset X^*\) with \(x_n^* \to x^*\) and \((h_n) \subset X\) such that
\[
x_n^* \in \partial f(x + h_n) + J(h_n).
\]

Thus, there are \((x_n^*) \subset X^*\) with \(x_n^* \to x^*\) and \((h_n) \subset X\) such that
\[
y_n^* \in \partial f(x + h_n) \quad \text{and} \quad x_n^* - y_n^* \in J(h_n).
\]

By definition of \(J\), we have
\[
\langle x_n^* - y_n^*, h_n \rangle = \|x_n^* - y_n^*\|^2 = \|h_n\|^2. \tag{3}
\]

From [2] and \(y_n^* \in \partial f(x + h_n)\), we get \(\langle x^* - y_n^*, x + h_n - x \rangle \leq 0\), so
\[
\|h_n\|^2 = \langle x_n^* - x^*, h_n \rangle + \langle x^* - y_n^*, x + h_n - x \rangle \leq \langle x_n^* - x^*, h_n \rangle \leq \|x_n^* - x^*\|\|h_n\|.
\]

Hence, \(h_n \to 0\), so, by [3], \(\|x_n^* - y_n^*\| \to 0\), therefore \(y_n^* \to x^*\). Since \(\partial f\) has closed graph and \(y_n^* \in \partial f(x + h_n)\), we conclude that \(x^* \in \partial f(x)\).
OTHER PROOFS OF MAXIMALITY OF ∂f FOR CONVEX f

1/ f everywhere finite and continuous:
- Minty (1964), Phelps (1989), using mean value theorem and link between subderivative and subdifferential

2/ f lsc, X Hilbert:
- Moreau (1965), via prox functions and duality theory,
- Brezis (1973), showing directly that $\partial f + I$ is onto

3/ f lsc, X Banach: all proofs use a variational principle and another tool
- Rockafellar (1970): continuity of $(f + j)^*$ in X^* and link between $(\partial f)^{-1}$ and ∂f^* in $X^{**} \times X^*$,
- Taylor (1973) and Borwein (1982): subderivative mean value inequality and link between subderivative and subdifferential,
- Zagrodny (1988?), Simons (1991), Luc (1993), etc: subdifferential mean value inequality,
- Thibault (1999): limiting convex subdifferential calculus,
BEYOND THE CONVEX CASE: MAIN TOOLS

Let be given a 'subdifferential' \(\partial \) that associates a subset \(\partial f(x) \subset X^* \) to each \(x \in X \) and each function \(f \) on \(X \) so that \(\partial f(x) \) coincides with the convex subdifferential when \(f \) is convex.

The two main tools in the convex situation were:

- \textit{Brøndsted-Rockafellar's approximation theorem} (1965)
- \textit{Rockafellar's subdifferential sum rule} (1966).

They will be respectively replaced by:

\begin{center}
\textbf{Ekeland Variational Principle} (1974). For any lsc function \(f \) on \(X \), \(\bar{x} \in \text{dom } f \) and \(\varepsilon > 0 \) such that \(f(\bar{x}) \leq \inf f(X) + \varepsilon \), and for any \(\lambda > 0 \), there is \(x_\lambda \in X \) s.t. \(\|x_\lambda - \bar{x}\| \leq \lambda \), \(f(x_\lambda) \leq f(\bar{x}) \), and
 \[x \mapsto f(x) + (\varepsilon/\lambda)\|x - x_\lambda\| \] has a minimum at \(x_\lambda \).
\end{center}

\begin{center}
\textbf{Subdifferential Separation Principle}. For any lsc functions \(f, \varphi \) on \(X \) with \(\varphi \) convex Lipschitz near \(\bar{x} \in \text{dom } f \cap \text{dom } \varphi \),
 \[f + \varphi \] has a local minimum at \(\bar{x} \implies 0 \in \partial f(\bar{x}) + \partial \varphi(\bar{x}) \).
\end{center}
SUBDIFFERENTIALS SATISFYING THE SEPARATION PRINCIPLE

The main examples of pairs \((X, \partial)\) for which the Subdifferential Separation Principle holds are:

- the Clarke subdifferential \(\partial_C\) in arbitrary Banach spaces,
- the limiting Fréchet subdifferential \(\hat{\partial}_F\) in Asplund spaces,
- the limiting Hadamard subdifferential \(\hat{\partial}_H\) in separable spaces,
- the limiting proximal subdifferential \(\hat{\partial}_P\) in Hilbert spaces.

For more details, see, e.g., Jules-Lassonde (2013, 2013b).
COMBINING THE TOOLS

Set \(\text{dom } f^* = \{ x^* \in X^* : \inf(f - x^*)(X) > -\infty \} \).

Proposition Let \(X \) Banach, \(f : X \to]-\infty, +\infty[\) proper lsc, \(\varphi : X \to \mathbb{R} \) convex loc. Lispchitz. Then, \(\text{dom } (f + \varphi)^* \subset \text{cl } (R(\partial f + \partial \varphi)) \).

Proof. Let \(x^* \in \text{dom } (f + \varphi)^* \) and let \(\varepsilon > 0 \). There is \(\bar{x} \in X \) s.t.

\[
(f + \varphi - x^*)(\bar{x}) \leq \inf(f + \varphi - x^*)(X) + \varepsilon^2,
\]

so, by Ekeland’s variational principle, there is \(x_{\varepsilon} \in X \) such that

\[
x \mapsto f(x) + \varphi(x) + \langle -x^*, x \rangle + \varepsilon \| x - x_{\varepsilon} \| \text{ attains its minimum at } x_{\varepsilon}.
\]

Now, applying the Separation Principle with the convex locally Lipschitz \(\psi : x \mapsto \varphi(x) + \langle -x^*, x \rangle + \varepsilon \| x - x_{\varepsilon} \| \) we obtain \(x_{\varepsilon}^* \in \partial f(x_{\varepsilon}) \) such that

\[-x_{\varepsilon}^* \in \partial \psi(x_{\varepsilon}) = \partial \varphi(x_{\varepsilon}) - x^* + \varepsilon B_{X^*}.
\]

So, there is \(y_{\varepsilon}^* \in \partial \varphi(x_{\varepsilon}) \) such that

\[\| x^* - y_{\varepsilon}^* - x_{\varepsilon}^* \| \leq \varepsilon.\]

Thus, for every \(\varepsilon > 0 \) the ball \(B(x^*, \varepsilon) \) contains \(x_{\varepsilon}^* + y_{\varepsilon}^* \in \partial f(x_{\varepsilon}) + \partial \varphi(x_{\varepsilon}) \subset R(\partial f + \partial \varphi) \). This means that

\(x^* \in \text{cl } (R(\partial f + \partial \varphi)) \).

The case \(\varphi = 0 \) and \(f = \delta_C \) with \(C \) nonempty closed convex set says that the set \(R(\partial \delta_C) \) of functionals in \(X^* \) that attain their supremum on \(C \) is dense in the set \(\text{dom } \delta_{\varepsilon}^* \) of all those functionals which are bounded above on \(C \) (Bishop-Phelps).
PROX-BOUNDED FUNCTIONS

A function f is called *prox-bounded* if there exists $\lambda > 0$ such that the function $f + \lambda j$ is bounded below; the infimum λ_f of the set of all such λ is called the *threshold* of prox-boundedness for f:

$$\lambda_f := \inf\{\lambda > 0 : \inf(f + \lambda j) > -\infty\}.$$

Any convex lsc function g is prox-bounded with threshold $\lambda_g = 0$, the sum $f + g$ of a prox-bounded f and of a convex lsc g is prox-bounded with $\lambda_{f+g} \leq \lambda_f$, for every $x^* \in X^*$, $\lambda_{f+x^*} = \lambda_f$, and for every $x \in X$, $f(x + .) + \lambda j$ is bounded below for any $\lambda > \lambda_f$ (see Rockafellar-Wets book (1998)).

Consequence: if f is prox-bounded, then for every $\lambda > \lambda_f$,

$$\forall x \in X, \ \text{dom}(f(x + .) + \lambda j)^* = X^*.$$

From this and the previous result we get:

Proposition Let X Banach and let $f : X \to]-\infty, +\infty]$ be lsc and prox-bounded with threshold λ_f. Then, for every $\lambda > \lambda_f$,

$$\forall x \in X, \ \text{cl}(R(\partial f(x + .) + \lambda J)) = X^*.$$
GOING FURTHER: MONOTONE ABSORPTION

Given $T : X \ni X^*$, or $T \subset X \times X^*$, and $\varepsilon \geq 0$, we let

$$T^\varepsilon := \{(x, x^*) \in X \times X^* : \langle y^* - x^*, y - x \rangle \geq -\varepsilon, \ \forall (y, y^*) \in T\}$$

be the set of pairs (x, x^*) ε-monotonically related to T.

An operator T is monotone provided $T \subset T^0$ and monotone maximal provided $T = T^0$.

A non necessarily monotone operator T is declared to be monotone absorbing provided $T^0 \subset \overline{T}$ (norm-closure).

A non necessarily monotone operator T is declared to be widely monotone absorbing with threshold $\lambda_T \geq 0$ provided for every $\lambda > \lambda_T$ one has

$$\forall \varepsilon \geq 0, \ T^\varepsilon \subset \left(T + \sqrt{\lambda^{-1}\varepsilon} B_X \times \sqrt{\lambda \varepsilon} B_{X^*} \right).$$

Equivalently: $\forall \varepsilon \geq 0$, $(x, x^*) \in T^\varepsilon \Rightarrow$

$$\exists (x_n, x_n^*) \subset T : \lim_n \|x - x_n\| \leq \sqrt{\lambda^{-1}\varepsilon} \text{ and } \lim_n \|x^* - x_n^*\| \leq \sqrt{\lambda \varepsilon}.$$
SUFFICIENT CONDITION FOR WIDE MONOTONE ABSORPTION

Proposition Let \(T : X \to X^* \) and \(\lambda > 0 \). Assume that

\[
\forall x \in X, \ \text{cl} (R(T(x + .) + \lambda J)) = X^*. \tag{4}
\]

Then:

\[
\forall \varepsilon \geq 0, \ T^\varepsilon \subset \text{cl} \left(T + \sqrt{\lambda^{-1}} \varepsilon B_X \times \sqrt{\lambda} \varepsilon B_{X^*} \right). \tag{5}
\]

Proof. Let \(\varepsilon \geq 0 \) and let \((x, x^*) \in T^\varepsilon \). Since \(T(x + .) + \lambda J \) has a dense range, we can find \((x_n^*) \subset X^* \) with \(x_n^* \to x^* \) and \((y_n) \subset X \) such that \(x_n^* \in T(x + y_n) + \lambda J y_n \). Let \((y_n^*) \subset X^* \) such that

\[
y_n^* \in T(x + y_n) \quad \text{and} \quad x_n^* - y_n^* \in \lambda J y_n.
\]

By definition of \(J \), we have

\[
\lambda^{-1} \langle x_n^* - y_n^*, y_n \rangle = \| \lambda^{-1} (x_n^* - y_n^*) \|^2 = \| y_n \|^2. \tag{6}
\]

But \((x_n^*) \subset T^\varepsilon x \) and \((y_n^*) \subset T(x + y_n) \), so \(\langle x^* - y_n^*, y_n \rangle \leq \varepsilon \), hence

\[
\lambda \| y_n \|^2 = \langle x_n^* - x^*, y_n \rangle + \langle x^* - y_n^*, y_n \rangle \leq \langle x_n^* - x^*, y_n \rangle + \varepsilon \leq \| x_n^* - x^* \| \| y_n \| \varepsilon.
\]
Therefore, $\lambda \| y_n \|^2 - \| x_n^* - x^* \| \| y_n \| - \varepsilon \leq 0$, so we must have

$$\| y_n \| \leq \left(\| x_n^* - x^* \| + \sqrt{\| x_n^* - x^* \|^2 + 4\varepsilon \lambda} \right) / 2\lambda. \quad (7)$$

From (7) we derive that $\limsup_n \| y_n \| \leq \sqrt{\lambda^{-1} \varepsilon}$, so, by (6),

$$\limsup_n \| x_n^* - y_n^* \| = \limsup_n \lambda \| y_n \| \leq \sqrt{\lambda \varepsilon}.$$

In conclusion we have $(x + y_n, y_n^*) \in T$ with

$$\limsup_n \| x - (x + y_n) \| \leq \sqrt{\lambda^{-1} \varepsilon}, \quad \limsup_n \| x_n^* - y_n^* \| \leq \sqrt{\lambda \varepsilon},$$

and without loss of generality we can replace \limsup_n by \lim_n. \hfill \blacksquare

Open problem: We don’t know whether the converse (5) \Rightarrow (4) is true.
Combining the last two propositions gives:

Theorem Let X Banach and $f : X \to]-\infty, +\infty]$ lsc, prox-bounded with threshold $\lambda_f \geq 0$. Then:

$$\forall \lambda > \lambda_f, \forall \varepsilon \geq 0, \quad (\partial f)\varepsilon \subset \text{cl} \left(\partial f + \sqrt{\lambda^{-1}\varepsilon}B_X \times \sqrt{\lambda\varepsilon}B_{X^*} \right).$$

Equivalently: for all $\lambda > \lambda_f$ and $\varepsilon \geq 0$, $(x^*, x) \in (\partial f)\varepsilon \Rightarrow
\exists (x_n^*, x_n) \subset \partial f : \lim_n \|x - x_n\| \leq \sqrt{\lambda^{-1}\varepsilon} \& \lim_n \|x^* - x_n^*\| \leq \sqrt{\lambda\varepsilon}.

In case $\lambda_f = 0$ (in particular for a convex f), the wide monotone absorption property is equivalent to the so-called *maximal monotonicity of Brøndsted-Rockafellar type* studied in Simons (1999, 2008) and others, hence the above theorem extends known results for convex functions to the class of prox-bounded non necessarily convex functions, with a more direct proof.
REFERENCES

