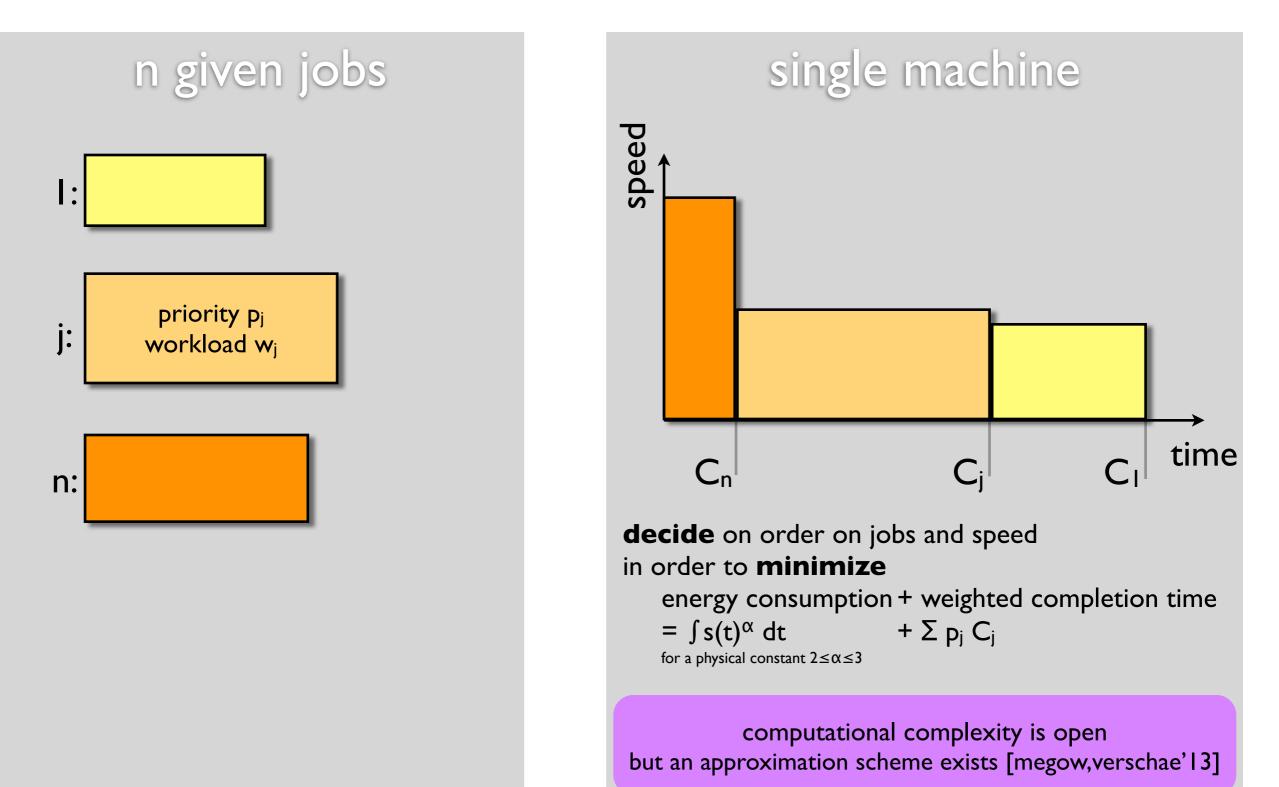
Mecanism design for speed scaling scheduling

Christoph Dürr Lukasz Jez Oscar C.Vasquez

Speed scaling scheduling



Define a strategic game

deadline game players decide on the deadline of their job (=strategies) dn d di

- compute minimum energy schedule=easy
- need to charge consumed energy to players

penalty game

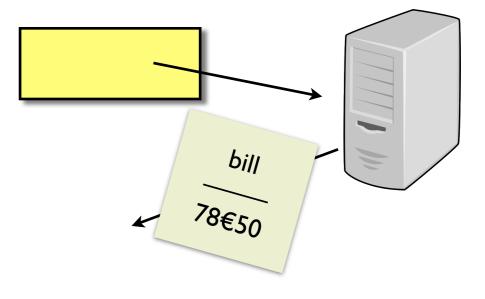
players announce a deadline penalty \tilde{p}_j (=strategies)

- strategy proof is needed (dominant strategy should be p
 _j=p_j)
- compute minimum energy schedule

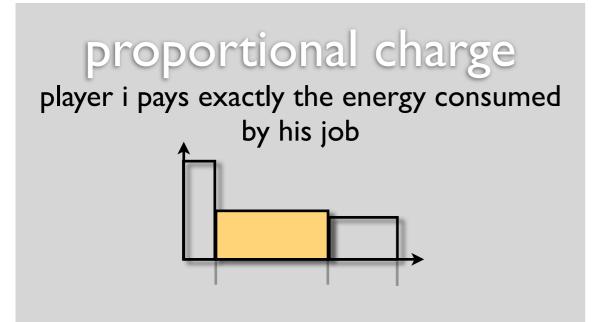
 = hard because we have to decide on the job order
- need to charge consumed energy to players

What do we want from a charging scheme ?

- I. compute optimal schedule (or approximate)
- 2. charge every user i a value b_i
- 3. player i wants to minimize $p_iC_i + b_i$
- pure Nash equilibria should exist
- ... and be computable in polynomial time
- total amount charged should cover energy consumption and not exceed it by more than a constant factor (O(I)-budget balanced)
- social cost of equilibria should be close to social optimum (price of anarchy)



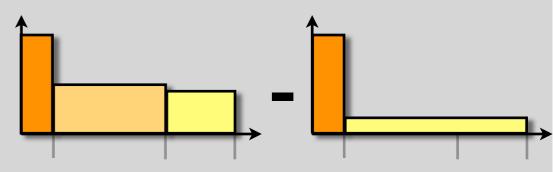
deadline game



- is clearly budget balanced
- does not garanty pure Nash equilibria

marginal charge

player i pays the difference of the optimal schedule with and without him



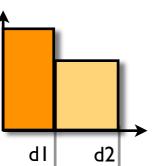
- every player pays at least the energy consumed by his job and at most α times that value
- is a potential game
 - → pure Nash equilibria exist, and can be found by best response dynamics,

time of convergence has not been analyzed yet

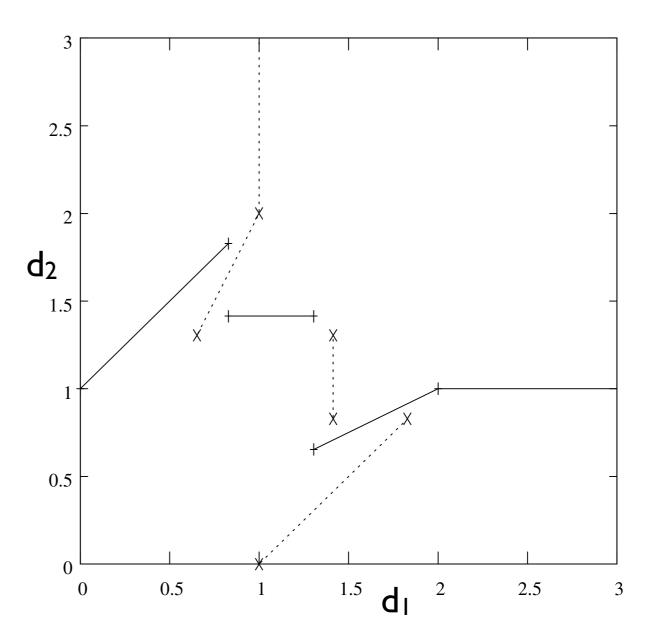
 price of anarchy has not been analyzed yet

deadline game proportional cost sharing

- example with 2 identical jobs
- but any schedule creates an asymetry between jobs

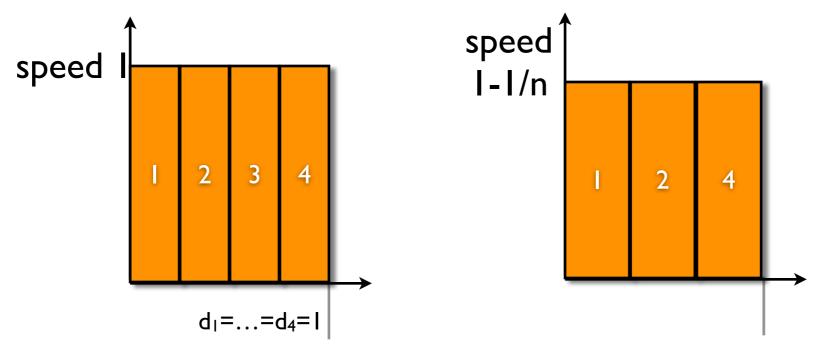


- every strategy profile (d_1, d_2) is a point in $R^+ \times R^+$
- best response functions have no fix point
- there is no pure Nash equilibrium already for this simple game



deadline game, marginal cost share

- every player pays at least the energy consumed by his job and at most
 α times that value
- tight example: n jobs with deadline 1, workload 1/n.



- every player is charged $I (I I/n)^{\alpha}$
- which is $\lim_{n\to\infty} 1 (1 1/n)^{\alpha} = \alpha/n$

deadline game, marginal cost share

- OPT(d) = optimal energy consumption of a schedule for all players
- OPT(d_{-i}) = ... all players but i
- cost share for player $i = OPT(d) OPT(d_{-i})$
- her total penalty is $p_i d_i + OPT(d) OPT(d_{-i})$
- but social cost is $\Sigma p_i d_i + OPT(d)$
- so if a player changes strategy and improves by Δ so does the social cost
- this is a **potential game** \rightarrow pure Nash equilibria exist

penalty game work in progress

- we need to fix an order on the jobs (arbitrary or random)
- then computing energy optimal schedule is easy
- cost share for player i = $\alpha(OPT(\tilde{p})-OPT(\tilde{p}_{-i})) \tilde{p}_iC_i$
- her total penalty is $(p_i \tilde{p}_i)C_i + \alpha OPT(\tilde{p}) \alpha OPT(\tilde{p}_{-i})$
- dominant strategy is $\tilde{p}_i = p_i$ (strategy proof)
- cost share is at least energy consumption of her jobs and at most α+l times that value

?