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Introduction

Motivation

Most debated and studied learning procedure in game theory :
Fictitious play [Brown51]

R S P
R 0 1 -1
S -1 0 1
P 1 -1 0

Consider an N-player normal form game which is repeated in discrete time.
At each time, players compute a best response to the opponent’s empirical
average play.
The idea is to study the asymptotic behavior of the empirical frequency of
play of player i , v i

n.
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Introduction

Motivation

Large body of literature devoted to the question of identifying classes of
games where the empirical frequencies of play converge to the set of
Nash equilibria of the underlying game.

Zero-sum games [Robinson 51]

General (non-degenerate) 2⇥ 2 [Miyasawa 61]

Potential games [Monderer and Shapley 96]
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Introduction

Motivation

Recall that

A game G = (N, (S i )i2N , (G
i )i2N) is a potential game if it exists a function

� : ⇧N
k=1S

k ! R such that

G i (s i , s�i )� G i (r i , s�i ) = �(s i , s�i )� �(r i , s�i ),

for all s i , r i 2 S i and s�i 2 S�i .
Primary example : Congestion games [Rosenthal 73]

Large body of literature devoted to the question of identifying classes of
games where the empirical frequencies of play converge to the set of
Nash equilibria of the underlying game.

Zero-sum games [Robinson 51]

General (non-degenerate) 2⇥ 2 [Miyasawa 61]

Potential games [Monderer and Shapley 96]
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Introduction

Motivation

2-player games where one of the players has only two actions [Berger 05]

New proofs and generalizations using stochastic approximation techniques
[Benaim et al 05, Hofbauer and Sorin 06]

Several variations and applications in multiple domains (transportation,
telecomunications, etc)

Large body of literature devoted to the question of identifying classes of
games where the empirical frequencies of play converge to the set of
Nash equilibria of the underlying game.

Zero-sum games [Robinson 51]

General (non-degenerate) 2⇥ 2 [Miyasawa 61]

Potential games [Monderer and Shapley 96]
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Introduction

Problem

Players need a lot of information !

Three main assumptions are made here :

(i) Each player knows the structure of the game, i.e. she knows her own
payo↵ function, so she can compute a best response.

(ii) Each player is informed of the action selected by her opponents at each
stage ; thus she can compute the empirical frequencies

(iii) Each player is allowed to choose any action at each time, so that she can
actually play a best response.
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Introduction

Dropping (i) and (ii)

Most work in this direction proceeds as follows :

a) construct a sequence of mixed strategies which are updated taking into
account the payo↵ they receive (which is the only information agents have
access to)

b) Study the convergence (or non-convergence) of this sequence.

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
Roth 98]
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Introduction

Dropping (i) and (ii)

A B C D E
R ? ? ? 1 ?
S ? ? ? ? ?
P ? ? ? ? ?

Actions played : R
Payo↵ received :1

Actions played : D
Payo↵ received :-1

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
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Introduction

Dropping (i) and (ii)

A B C D E
R ? ? ? 1 ?
S ? ? -1 ? ?
P ? ? ? ? ?

Actions played : R, S
Payo↵ received :1, -1

Actions played : D, C
Payo↵ received :-1, 1

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
Roth 98]
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Introduction

Dropping (i) and (ii)

A B C D E
R ? ? ? 1 ?
S ? 2 -1 ? ?
P ? ? ? ? ?

Actions played : R, S, S
Payo↵ received :1, -1, 2

Actions played : D, C, B
Payo↵ received :-1, 1, -2

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
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Introduction

Dropping (i) and (ii)

A B C D E
R ? ? ? 1 ?
S ? 2 -1 ? ?
P ? ? -10 ? ?

Actions played : R, S, S, P
Payo↵ received :1, -1, 2, -10

Actions played : D, C, B, C
Payo↵ received :-1, 1, -2, 10

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
Roth 98]
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Introduction

Dropping (i) and (ii)

How do players use the available information ?

Tipically, it is supposed that players are given a rule of behavior (a choice rule)
which depends on a state variable constructed by means of the aggregate
information they gather.

One approach (among many others) is to assume that the agents
observe only their realized payo↵ at each stage.

Payo↵ function are unkown

This is the minimal information framework of the so-called
reinforcement learning procedures [Borgers and Sarin 97, Erev and
Roth 98]
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Introduction

Dropping (iii)

Players have restrictions on their action set, due to limited computational
capacity or even to physical restrictions.

Some hypotheses are needed regarding payers’ ability to explore their
action set.

For example :
R S P

R 0 1 -1
S -1 0 1
P 1 -1 0

R S P

This kind of restrictions were introduced recently by [Benaim and Raimond 10]
in the fictitious play information framework.
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Introduction

Our contribution

In this work

We drop all the three assumptions.
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The Model

Setting

Let G = (N, (S i )i2N , (G
i )i2N) be a given finite normal form game

S =
Q

i S
i is the set of action profiles.

�(S i ) is the mixed action set for player i , i.e

�(S i ) =

8
<

:�i 2 R|Si | :
X

si2Si

�i (s i ) = 1, �i (s i ) � 0, 8s i 2 S i

9
=

; ,

and � =
Q

i �(S i ).

As usual, we use the notation �i to exclude player i , namely S�i denotes
the set

Q
j 6=i S

j and ��i the set
Q

j 6=i �(S i ).
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The Model

Reinforcement learning

A reinforcement learning procedure can be defined in the following manner.
Let us assume that, at the end of stage n 2 N, player i has constructed a state
variable X i

n. Then

(a) at stage n + 1, player i selects a mixed strategy �i
n according to a decision

rule, which can depend on state variable X i
n the time n.

(b) Player i ’s action s in+1 at time n + 1 is randomly drawn according to �i
n.

(c) She only observes g i
n+1 = G i (s1n+1, . . . , s

N
n+1), as a consequence of the

realized action profile (s1n+1, . . . , s
N
n+1).

(d) Finally, this observation allows her to update her state variable to X i
n+1

through an updating rule, which can depend on observation g i
n+1, state

variable X i
n, and time n.

An interesting example when such a framework naturally arises : Congestion
games
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The Model

Restrictions on the action set

When an agent i plays a pure strategy s 2 S i at stage n 2 N, her available
actions at stage n + 1 are reduced to a subset of S i .

Each player has a exploration matrix M i
0 2 R|Si | : if at stage n player i

plays s 2 S i , she can switch to action r 6= s at stage n + 1 if and only if
M i

0(s, r) > 0.

The matrix M i
0 is assumed to be irreducible and reversible with respect to

its unique invariant measure ⇡i
0, i.e.

⇡i
0(s)M

i
0(s, r) = ⇡i

0(r)M
i
0(r , s),

for every s, r 2 S i .
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The Model

Restrictions on the action set : Examples

M1
0 =

0

@
1/2 1/2 0
1/3 1/3 1/3
0 1/2 1/2

1

A

⇡1
0 =

�
2/7 3/7 2/7

�

R S P

M2
0 =

0

BBBB@

1/2 0 1/2 0 0
0 1/2 1/2 0 0

1/5 1/5 1/5 1/5 1/5
0 0 1/2 1/2 0
0 0 1/2 0 1/2

1

CCCCA

⇡2
0 =

�
2/13 2/13 5/13 2/13 2/13

�

C

A B

D E
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The Model

Comments on the literature

Most of the decision rules considered in the literature are stationary in the
sense that they are defined through a time-independent function of the
state variable.

2⇥ 2 games [Posch 97]

2-players games with positive payo↵ [Borgers and Sarin 97, Beggs 05,
Hopkins 02, Hopkins and Posch 05]

Convergence to perturbed equilibria in 2-player games [Leslie and Collins 03]
or multiplayer games [Cominetti, Melo and Sorin 10], [Bravo 12].

Examples of non-homogeneous (time-dependent) choice rule
Convergence of mixed actions is shown for zero-sum games and multiplayer
potential games [Leslie and Collins 06]

Based on consistent procedures, [Hart and Mas-Colell 01], construct a
procedure where, for any game, the joint empirical frequency of play
converges to the set of correlated equilibria. (The choice rule is Markovian).

However, in all the examples described above, players can use any action
at any time.
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The Model

Intuition on the discrete dynamics (zero-sum game)

A B C D E
R ? ? ? ? ?
S ? ? ? ? ?
P ? ? ? ? ?

Actions played :
Payo↵ received :

R S P

Actions played
Payo↵ received :

C

A B

D E

We are interested in the asymptotic behavior of the empirical frequencies
of play, i.e. the limit set of the occupation measures on the graphs.
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The Model

Payo↵-based Markovian procedure

Q : How to define precise rules for the players in order to achieve
convergence to the set of Nash equilibria of the underlying game ?

We need some notation :

For � > 0 and a vector R 2 R|Si |, we define the stochastic matrix M i [�,R]
as

M i [�,R](s, r) =

8
<

:
M i

0(s, r) exp(��|R(s)� R(r)|+) s 6= r

1�
P
s0 6=s

M i [�,R](s, s 0) s = r ,

The matrix M i [�,R] is irreducible and its invariant measure of the matrix
is given explicitly by

⇡i [�,R](s) =
⇡i
0(s) exp(�R(s))P

r2Si

⇡i
0(r) exp(�R(r))

,

for any � > 0, R 2 R|Si |, and s 2 S i .
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The Model

Choice rule of player i

At the end of the stage n, player i has a state variable R i
n 2 R|Si |

Let M i
n = M i [�n,R

i
n] and ⇡i

n = ⇡i [� i
n,R

i
n], where (� i

n)n is a strictly positive
sequence

Choice rule

The choice rule of player i is

�i
n(s) = P(s in+1 = s | Fn)

= M i
n(s

i
n, s),

=

8
<

:
M i

0(s
i
n, s) exp(�� i

n|R i
n(s

i
n)� R i

n(s)|+) s 6= s in

1�
P
s0 6=s

M i
n(s

i
n, s

0) s = s in.

(CR)
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The Model

Updating rule of player i

After observing the realized payo↵ g i
n+1 = G 1(sn+1i , s

�i
n+1), player updates

the state variable R i
n as

Updating Rule

R i
n+1(s) = R i

n(s) + � i
n+1(s)

⇣
g i
n+1 � R i

n(s)
⌘
1{s1n+1=s}, (UR)

where,

� i
n+1(s) = min

⇢
1 ,

1

(n + 1)⇡i
n(s)

�
,

and 1E is the indicator of the event E .
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The Model

Payo↵-based Markovian procedure

PBMP

We call Payo↵-based Markovian procedure the adaptive process where, for any
i 2 N, agent i plays according to the choice rule (CR), and updates R i

n through
the updating rule (UR).



Reinforcement learning with restrictions on the action set

Main Result

Outline

1 Introduction

2 The Model

3 Main Result

4 Examples

5 Sketch of the Proof



Reinforcement learning with restrictions on the action set

Main Result

Assumptions

In the case of a 2-player game, we introduce our major assumption on the
positive sequence (� i

n)n.

Assumption

Let us assume that, for i 2 {1, 2},

(i) � i
n �! +1,

(ii) � i
n  Ai

n ln(n), where Ai
n �! 0.

(H)

Let us denote by v i
n and g i

n the empirical frequency of play and the
average payo↵ obtained by player i up to time n, i.e., respectively

v i
n =

1
n

nX

m=1

�sim and g i
n =

1
n

nX

m=1

G i (s1m, s
2
m).

For a sequence (zn)n, we call L((zn)n) its limit set , i.e.

L((zn)n) =
�
z : there exists a subsequence (znk )k such that limk!+1 znk = z

 
.

We say that the sequence (zn)n converges to a set A if L((zn)n) ✓ A.
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Main result

Theorem

Under assumption (H), the Payo↵-based Markovian procedure enjoys the
following properties :

(a) In a zero-sum game, (v 1
n , v

2
n )n converges almost surely to the set of Nash

equilibria and the average payo↵ (g 1
n)n converges almost surely to the

value of the game.

(b) In a potential game with potential �, (v 1
n , v

2
n )n converges almost surely to

a connected subset of the set of Nash equilibria on which � is constant,
and 1

n

Pn
m=1 �(s

1
m, s

2
m) converges to this constant.

In the particular case G 1 = G 2, then (v 1
n , v

2
n )n converges almost surely to a

connected subset of the set of Nash equilibria on which G 1 is constant ;
moreover (g 1

n)n converges almost surely to this constant.

(c) If either |S1| = 2 or |S2| = 2, then (v 1
n , v

2
n )n converges almost surely to the

set of Nash equilibria.
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Examples

Blind-restricted RSP

R S P
R 0 1 -1
S -1 0 1
P 1 -1 0

R S P

Optimal strategies are given by ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)) 2 � and the
value of the game is 0.
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Examples

A 3⇥3 Potential game

G =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 1,2 8,0 2,2

and � =

a b c
A 4 3 3
B 3 0 2
C 4 2 4

Here we see that the set of Nash equilibria is connected and equal to

NE = {((x , 0, 1� x), a), x 2 [0, 1]} [ {(C , (y , 0, 1� y)), y 2 [0, 1]} .
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Examples

A 3⇥3 Potential game

G 0 =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 0,1 9,0 2,2

and �0 =

a b c
A 4 3 3
B 3 0 2
C 3 2 4

(G)

There is a mixed Nash equilibrium, and two strict Nash equilibria (A, a) and
(C , c), with same potential value (equal to 4). However,

P [L((vn)n) = {(A, a), (C , c)}] = 0.
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Definition

The Best-Response correspondence for player i 2 {1, 2}, BRi : ��i ◆ �(S i ), is
defined as

BRi (��i ) = argmax�i2�(Si ) G
i (�i ,��i ).

for any ��i 2 ��i . The Best-Response correspondence BR : � ◆ � is given by

BR(�) =
Y

i2{1,2}

BRi (��i ),

for all � 2 �.

In fact we show a more general result

Theorem

Under hypothesis (H), assume that players follow the Payo↵-based adaptive
Markovian procedure. Assume that the Best-Response dynamics

v̇ 2 BR(v)� v

has an attractor A. Then L((vn)n) ✓ A.

Then we will use known results on the Best-Response dynamics



Reinforcement learning with restrictions on the action set

Sketch of the Proof

Definition

The Best-Response correspondence for player i 2 {1, 2}, BRi : ��i ◆ �(S i ), is
defined as

BRi (��i ) = argmax�i2�(Si ) G
i (�i ,��i ).

for any ��i 2 ��i . The Best-Response correspondence BR : � ◆ � is given by

BR(�) =
Y

i2{1,2}

BRi (��i ),

for all � 2 �.

In fact we show a more general result

Theorem

Under hypothesis (H), assume that players follow the Payo↵-based adaptive
Markovian procedure. Assume that the Best-Response dynamics

v̇ 2 BR(v)� v

has an attractor A. Then L((vn)n) ✓ A.

Then we will use known results on the Best-Response dynamics



Reinforcement learning with restrictions on the action set

Sketch of the Proof

Evolution on v i
n

v i
n+1 � v i

n =
1

n + 1

⇣
�sin+1

� v i
n

⌘
,

=
1

n + 1

⇣
⇡i
n � v i

n +W 1
n+1

⌘

where
W i

n+1 = �sin+1
� ⇡i

n.
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Evolution on v i
n. It would be very nice that...

v i
n+1 � v i

n =
1

n + 1

⇣
�sin+1

� v i
n

⌘
,

2 1
n + 1

⇣
BRi (v�i

n )� v i
n +W i

n+1

⌘

where
W i

n+1 = �s1n+1
� ⇡i

n.
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Evolution on v i
n. It would be very nice that...

v i
n+1 � v i

n =
1

n + 1

⇣
�sin+1

� v i
n

⌘
,

2 1
n + 1

⇣
BRi (v�i

n )� v i
n +W i

n+1

⌘

where
W i

n+1 = �sin+1
� ⇡i

n.

Major problem : ⇡i
n depends on R i

n and also is a function of the time n !.

We would like to replace ⇡1
n by ⇡i [�1

n ,G
1(·, v 2

n )] when n is large.
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Property

For any almost sure limit point (v 1, v 2,⇡1,⇡2) 2 (�(S1)⇥�(S2))2 of the
random process (v 1

n , v
2
n ,⇡

1
n,⇡

2
n)n we have that, for i 2 {1, 2}

⇡i 2 BRi (v�i )

The di�cult part

Proposition 1

For any i 2 {1, 2}, we have that R i
n � G i (·, v�i

n ) ! 0 goes to zero almost
surely as n goes to infinity.

Then we can show
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Evolution on v i
n.

v i
n+1 � v i

n =
1

n + 1

⇣
�sin+1

� v i
n

⌘
,

2 1
n + 1

⇣
[BRi ]✏(v�i

n )� v i
n +W i

n+1

⌘

for any " > 0.

The di�cult part

Proposition 1

For any i 2 {1, 2}, we have that R i
n � G i (·, v�i

n ) ! 0 goes to zero almost
surely as n goes to infinity.

Then we can show
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To conclude, we use some recent results on stochastic approximaxion theory for
di↵erential inclusions [Benaim and Raimond 10], [Benaim, Hofbauer and Sorin
05]).
If, in adition,

For i 2 {1, 2}, ✏
�

1
n+1

W i
n+1,T

�
goes to zero almost surely for all T > 0,

where

✏(un,T ) = sup

8
<

:

������

l�1X

j=n

uj+1

������
; l 2 {n + 1, . . . ,m(⌧n + T )}

9
=

; ,

for a sequence (un)n

Therefore, if the Best-Response dynamics

v̇ 2 BR(v)� v

has an attractor A.
Then

L((vn)n) ✓ A

.
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Proof of Proposition 1

R i
n+1(s)� R i

n(s) =
1

(n + 1)⇡i
n(s)

h
1{sin+1=s}G

i (s, s�i
n+1)� 1{sin+1=s}R

i
n(s)

i
,

=
1

(n + 1)⇡i
n(s)

h
⇡i
n(s)

⇣
G i (s,⇡�i

n )� R i
n(s)

⌘
+

+
�
1{sin+1=s}G

i (s, s�i
n+1)� ⇡i

n(s)G
i (s,⇡�i

n )
�
+

+R i
n(s)

⇣
⇡i
n(s)� 1{sin+1=s}

⌘i
,

=
1

n + 1

h
G i (s,⇡�i

n )� R i
n(s) +W

i
n+1(s)

i

If U i
n = G i (·, v�i

n ). Then

U i
n+1 � U i

n =
1

n + 1

⇣
G i (·,⇡�i

n )� U i
n + W̃ i

n+1

⌘
.

We define ⇣ in = R i
n � G i (·, v�i

n ) = R i
n � U i

n.
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Therefore

⇣ in+1 � ⇣ in =
1

n + 1

⇥
� ⇣ in +W i

n+1

⇤
,

Log-Sobolev estimation via the spectral gap for Markov chains are needed to
show that ✏( 1

n+1
W i

n+1,T ) goes to zero almost surely for any T > 0. This is the
really hard part !

Finally, using the standard stochastic approximation theory and the fact that
the ODE ⇣̇ = �⇣ has the set {0} as a attractor we can conclude.
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Thanks for your attention

If you want to get into more details, the paper is available at
http://arxiv.org/abs/1306.2918

http://arxiv.org/abs/1306.2918
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