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What is the problem ?

We considere 2 closed convex sets C1 and C2. We want to known what is the limit
of the sequence (PC1PC2)

nx when n goes to infinite.
The origine of this problem comes from the Schwarz alternating method (1870)
for the PDE.
The strong convergence was proved by Von Neuman in 1935 for the case where
C1 ∩ C2 6= ∅ . The limit in this case is the projection of x on C1 ∩ C2.

JB Baillon (UP1) No variational characterization 14-16 octobre 2013 2 / 1



What happen when C1 ∩ C2 = ∅ and C1 is bounded for example.

(PC1PC2)
nx → ȳ1 ∈ C1 et PC2(PC1PC2)

nx → ȳ2 ∈ C2.
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y1 and y2 solve the following minimization problem :

min{||y1 − y2||, y1 ∈ C1 et y2 ∈ C2}
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We may ask the question :

What happen for 3 or more convex sets ?
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Can we have a variational formulation for the limit points ?
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Is there an universal Φ functions such that the cycles (x̄1, x̄2, ..., x̄m) is a solution
of the following variational problem

min
y1∈C1,...,ym∈Cm

Φ(y1, . . . , ym)

Open problem since ... 1965-1967
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Proof Idea

Theorem

dim H ≥ 2, let ϕ : H → R be such that its infimum on every nonempty closed
convex set C ⊂ H is attained at PC 0. Then
(i) ϕ is radially increasing :

||x || < ||y || ⇒ ϕ(x) ≤ ϕ(y)

(ii) Suppose that, for every nonempty closed convex set C , PC 0 is the unique
minimizer , then ϕ(x) is strictly radially increasing.

||x || < ||y || ⇒ ϕ(x) < ϕ(y)

(iii) Except for at most countably many values of ρ, ϕ is constant on the sphere
S(0; ρ).
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What should be this Φ ?

Φ = ||y1 − y2||+ ||y2 − y3||+ ||y3 − y1||+ . . .

or
Φ = ||y1 − y2||

2 + ||y2 − y3||
2 + ||y3 − y1||

2 + . . .

or...
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Theorem (jbb,P.L. Combettes,R. Cominetti-jfa2012)

dim H ≥ 2, m ≥ 3, there exists no function Φ(y1, . . . , ym) such that the limit
cycles (x̄1, x̄2, ..., x̄m) are solutions of the variational problem :

min
y1∈C1,...,ym∈Cm

Φ(y1, . . . , ym)
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m = 3 for simplification
and we suppose the existence of Φ.
We are going to play with the convex sets Cj

First, we choose :

C1 = {z}, C2 = {0} and C3 = C .

The limit cycle is (x̄1 = z, x̄2 = 0, x̄3 = PC 0).
Therefore :

min
y∈C

Φ(z, 0, y) = Φ(z, 0,PC 0)

The function y 7→ Φ(z, 0, y) depends only of the parameter ||y || = ρ when z is
fixed.

Next, we choose

C1 = [−z, z], C2 = {0} et C3 = {ρz} avec ρ > 1

The limit cycle is (x̄1 = z, x̄2 = 0, x̄3 = ρz).

Φ(z, 0, ρz) > Φ(−z, 0, ρz)

Φ(z, 0,−ρz) < Φ(−z, 0,−ρz)
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Open Problem :

Variational formulation ? ? ? ?
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