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The Apportionment Problem

US constitution 14th Amendment:

Representatives shall be apportioned among the several States according to their
respective numbers, counting the whole number of persons in each State,

▶ Decide the number of representatives for each state according to their
populations.

▶ Decide the number of representatives of each party in an election according to
their votes.
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The Apportionment Problem

Apportionment Problem. We have positive values p1, . . . , pn and a
number of seats H. The goal is to find non-negative integer values
x1, . . . , xn such that

∑n
i=1 xi = H.

▶ The values p1, . . . , pn can represent the population of n states. Typically, after
every census, the apportionment problem is solved to decide the number of
representatives for each state.

▶ The values p1, . . . , pn can represent the votes of n political parties in an election.
Then, the apportionment problem is solved to find the number of elected
candidates from each party.
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Proportional Apportionment

Allocate H seats across the states proportionally to their populations. Each state i has
a population pi .

For example, suppose there are H = 10 seats to allocate and three states with popula-
tions p1 = 4300, p2 = 3400, and p3 = 2300. The total population is 10000. Assign to
each state the proportion of seats corresponding to its population:

p =

4300
3400
2300

 λ=0.001−−−−−→ q =

4.3
3.4
2.3


Proportional? Yes!

Feasible? No!

For a vector (p1, p2, . . . , pn) and a number of seats H, the quota of i is equal to

qi =
pi∑n
j=1 pj

H,

that is the fractional number of seats proportionally assigned to i.

4 / 36



Jefferson’s Approach

In 1792, Thomas Jefferson, the Secretary of State by then, proposed a solution to solve
this problem. We have a divisor (multiplier) that scales the populations, and we increase
or decrease its value until the following is satisfied: If we round down the scaled popu-
lations, the total summation is equal to 10.

V =

4300
3400
2300

 λ=0.00117−−−−−−−→ λV =

5.03
3.98
2.69

 −→ x =

5
3
2


The value λ = 0.00117 satisfies the condition, but it is not the unique value doing the
work. This way of finding the solution is known as the Jefferson/D’Hondt Method, which
is widely used nowadays!
The Belgian Victor D’Hondt rediscovered this method many years later, in 1878.
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Jefferson’s approach

There is an alternative way of describing Jefferson’s method, which is obtained by as-
signing the seats one by one:

Jefferson’s Method. Allocate seats one by one. Next seat goes to the
state maximizing the ratio pi/(si + 1), where si is the current number of
seats of i .

1
100

p =

43
34
23

 ÷−→

21.5
34
23

 ÷−→

21.5
17
23

 ÷−→

21.5
17

11.5

 ÷−→

14.3
17

11.5

 −→ . . .

x =

1
0
0

 −−−→
1

1
0

 −−−→
1

1
1

 −−−→
2

1
1

 −−−→
2

2
1

 −→ . . . −→

5
3
2


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Other Methods

Historically, several methods have been proposed by politicians and mathematicians, all
with different characteristics. For example, we have the following two:

Hamilton (or Largest Remainders). Give ⌊qi⌋ many seats to every
state i , and then allocate the remaining seats one by one according to
non-increasing order of the fractional parts qi − ⌊qi⌋.

Huntington-Hill. Allocate seats one by one. Next set goes the the state
i maximizing the ratio pi/

√
si (si + 1), where xi is the current number of

seats of i .

US House of Representatives
▶ 1792-1840: Jefferson’s Method (H = 105)
▶ 1852-1941: Hamilton’s Method (H = 435)

with some usage of Webster’s method
▶ 1942-Present: Huntington-Hill’s Method (H = 435)
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Paradoxes

Three methods have been presented, all of them reasonable. Then, which one should
we use? One way to evaluate a method is by analyzing the outcome when the population
or the number of seats is changed.

Increasing the number of seats: After the 1880 census, C. W. Seaton from the Census
Bureau realized that under Hamilton’s method of apportionment, Alabama would receive
8 seats with a house of 299, but only 7 seats with a house of 300. That is, increasing
the number of seats could reduce the allocation for some states. This is known as the
Alabama Paradox.

Changing the populations: Under Hamilton’s method, when the population changes,
a state could lose a seat against another one, even when the population change favored
the first state. This is known as the Population Paradox or the Virginia Paradox.
In 1900 Virginia’s population grew faster than Main’s but a seat would have been trans-
ferred from Virginia to Main.
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Axiomatic Approach

One can approach the apportionment problem from an axiomatic point of view to avoid
undesirable outcomes such as Alabama or Population Paradoxes. In what follows, given
two vectors p and p′ and two number of seats H and H′, we denote by x the apportion-
ment solution for p and H, and x ′ the apportionment solution for p′ and H′.

Population Monotonicity Property. For every pair of states i and j ,

if p′
i /pi ≥ p′

j /pj , then x ′
i ≥ xi or x ′

j ≤ xj .

That is, if the population change favors state i over j , then i can not lose a seat against
j (i.e., the method avoids the Population Paradox).

House Monotonicity Property. When p′ = p and H′ = H +1, for every
state i we have x ′

i ≥ xi .

That is, increasing the house size does not make any state lose a seat (i.e., the method
avoids the Alabama Paradox).
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Axiomatic Approach

A third natural property is the following:

Quota Property. For every p and every H, the apportionment method
computes a solution x such that ⌊qi⌋ ≤ xi ≤ ⌈qi⌉ for every i .

Hamilton’s method violates population monotonicity (and house monotonicity) but satis-
fies quota. Then, a natural question is the following: Is there any method that satisfies
population monotonicity and quota? The answer is no.

Balinski-Young Impossibility Result:
There is no apportionment method that satisfies population monotonicity
and quota.
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House Monotonicity and Quota
Cembrano, Correa, Schmidt-Kraepelin, Tsigonias-Dimitriadis, Verdugo (2023)

Fortunately, house monotonicity and quota are compatible. In fact we can characterize
all of them. We consider an approach inspired by network flows.
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House Monotonicity and Quota
Cembrano, Correa, Schmidt-Kraepelin, Tsigonias-Dimitriadis, Verdugo (2023)

Projection (x(i, ℓ) represents whether state i gets the ℓ-th seat)

n∑
i=1

x(i, t) = 1 for every t ∈ [L], (1)

t∑
ℓ=1

x(i, ℓ) ≥ ⌊tpi/P⌋ for every i ∈ [n] and every t ∈ [L], (2)

t∑
ℓ=1

x(i, ℓ) ≤ ⌈tpi/P⌉ for every i ∈ [n] and every t ∈ [L] (3)

x(i, t) ≥ 0 for every i ∈ [n] and every t ∈ [L]. (4)

▶ LP is integral and extreme points allocates the first L seats respecting quota.
▶ How large should L be to obtain every possible allocation of H seats that can be

obtained by a house monotone and quota-compliant method?.
▶ We derive tight bounds for this quantity.
▶ But in any case considering L =

∑n
j=1 pj we recover every possible

apportionment method that is house monotone and quota-compliant.

Alternative characterizations by Balinski, Young (1985); Golz, Peters, Procaccia (2022).
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Randomized Apportionment
Cembrano, Correa, Schmidt-Kraepelin, Tsigonias-Dimitriadis, Verdugo (2023)

Ex-ante Proportionality. For every p and every H, the randomized
apportionment method computes x such that E(xi ) = qi for every i .

Theorem:[Golz, Peters, Procaccia (2022)] There is a method that satisfies house mono-
tonicity, quota and ex-ante proportionality. −→We escape B-Y impossibility

Our characterization provides a simple proof:
▶ Set Q(i, ℓ) = pi/

∑n
j=1 pj for every ℓ, we have that

H∑
ℓ=1

Q(i, ℓ) =
pi∑n
j=1

H = qi ,

▶ Q is feasible for the LP with L =
∑n

j=1 pj .
▶ Q is a convex combination of extreme points (say form set S):∑

x∈S

λx · x = Q,
∑
x∈S

λx = 1 and λ ≥ 0,

▶ Randomized method: Sample x w.p. λx .
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Back to population monotonicity

There are three basic properties that, in general, an apportionment method M is
expected to satisfy:

▶ Homogeneity. For every α > 0, we have M(p,H) = M(αp,H).
▶ Exactness. If H =

∑n
j=1 pj , then M(p,H) = p.

▶ Symmetric. For every permutation σ over [n], M(σp,H) = σM(p,H).

Theorem. [Balinki, Young 1985] An homogeneous, exact and symmetric
method is population monotone if and only if it is a divisor method.

Jefferson’s method belongs to the class of divisor methods.
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Divisor Methods

Jefferson’s method achieves integrality in the solution by rounding down the numbers.
However, why not use another rounding rule?

0 1 2 3 4 5 6

s(0) s(1) s(2) s(3) s(4) s(5) s(6)

Divisor Method:
Given an apportionment instance with H seats and population p, and rounding
rule s, the solution x with the divisor method with rounding rule J·Ks is defined as
follows:

▶ There exists λ > 0 such that s(xi ) ≤ λpi ≤ s(xi + 1) for each i ,
(i.e., xi = JλpiKs)

▶
∑n

i=1 xi = H.
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Divisor Methods

Jefferson/D’Hondt method is the divisor method with downwards rounding rule.
Webster/Sainte-Laguë method is the divisor method with nearest-integer rounding rule.
Adams method is the divisor method with upwards rounding rule.

The choice of the rounding rule has a crucial impact on the characteristics of the so-
lution. Consider an instance with H = 10 seats and three states with populations
p1 = 129, p2 = 102, and p3 = 69. We compute the solutions using the Jefferson
method and the Webster method.

p =

129
102
69

 λ=0.039−−−−−→ λp =

5.03
3.98
2.69

 ⌊·⌋−−→ x =

5
3
2

 ,

p =

129
102
69

 λ=0.0347−−−−−−→ λp =

4.48
3.54
2.39

 [·]−→ x =

4
4
2

 .

Using different rounding rules, we obtain different solutions! and one more seat in the
parliament can be extremely valuable ...
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Divisor Methods
Lower and upper quota

▶ Balinski-Young’s impossibility imply that no divisor method can satisfy quota.

However:
▶ Jefferson is unique divisor method satisfying lower quota.
▶ Adams is the unique divisor method satisfying upper quota.

A method satisfies lower quota if, for every state i , it gives at least ⌊qi⌋, and it satisfies
upper quota if it gives at most ⌈qi⌉.

Proposition:[Cembrano, Correa, Schmidt-Kraepelin, Tsigonias-Dimitriadis,
Verdugo (2023)]
For every instance (p,H) there exists a value δ ∈ [0, 1] such that the divisor method
induced by the δ threshold rounding satisfies quota.

0 1 2 3 4 5 6

0 δ 1 + δ 2 + δ 3 + δ 4 + δ 5 + δ

Current efforts. Understanding randomization over divisor methods.
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Beyond Single Dimension

Typically, the electoral systems have a political dimension (parties in an election) and a
geographical dimension (elections per district or state).
In general, these methods can be grouped into four families:

▶ Majoritarian (FPP), USA, Brazil, Canada
▶ Proportional, Chile, Finland, Israel, Spain
▶ Mixed (MMPR), Germany, New Zealand, Bolivia
▶ Biproportional, Switzerland (≈ Bulgaria, Italy)

Indirect Majoritarian Mixed Proportional
Indirect - 12 1 5
Majoritarian 2 - 13 27
Mixed 0 1 - 8
Proportional 0 7 6 -

Table: Trends in system changes (Colomer, 2004)
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Two-Dimensional Apportionment

So far, we have only considered the apportionment problem across the elements of
a single dimension: Political parties (political dimension) or districts (geographic and
population dimension). What if we disaggregate the votes obtained by each list across
two electoral districts? For instance, suppose the aggregated votes by list

V =

43
34
23


Comes from votes in two states or districts:

V =

28 15 ℓ1
23 11 ℓ2
14 9 ℓ3
d1 d2



We look for a new (fractional) matrix that is proportional (in some sense) to V and such
that the prescribed marginals are satisfied (say d1 = d2 = 5 and ℓ1 = 5, ℓ2 = 3, ℓ3 = 2).
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Two-Dimensional Apportionment

Solution: Find row and column multipliers (λi and µj ) such that (Vijλiµj ) satisfies the
marginals.

▶ Always exists
▶ Can be found efficiently
▶ Related to the problem of matrix scaling (Allen-Zhu, Li, Mendes de Oliveira,

Wigderson [2017])
▶ Extends to multiple dimensions (not just two).

Moreover, we can show this is the unique method satisfying three natural axioms:
▶ Exactness: If there is a single scaling factor such that the resulting matrix

satisfies the marginals then this should be the output.
▶ Consistency: Any part of a proportional solution must itself be proportional
▶ Homogeneity: Invariant to scaling of the vote matrix as long as the marginals

remain the same

What about integrality?
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Two-dimensional Proportionality (1989)

Biproportionality (Balinski and Demange 1989)

For each list ℓ and district d , we allocate xℓd seats, such that:

▶ Each list ℓ receives mℓ seats:
∑

d∈D xℓd = mℓ.

▶ Each district d is assigned sd seats:
∑

ℓ∈L xℓd = sd .

▶ There exists λℓ > 0 for each ℓ and µd > 0 for each d
such that

xℓd ∈ ⌊λℓµdVℓd⌋ for every (ℓ, d) ∈ L× D.

✓
Guaranteed

to exist
(under mild
conditions)

V =


λ

28 15 0.21
23 11 0.18
14 9 0.2

µ 0.5 1

 −→

2.94 3.15
2.07 1.98
1.4 1.8

 −→ x =

2 3
2 1
1 1


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Two-dimensional Proportionality (1989) - LP Approach
Inspired by the work of Rote and Zachariasen [2007] for matrix scaling, Gaffke and
Pukelsheim [2008] proposed the following integer LP to characterize biproportional
apportionments.

minimize
∑

(ℓ,d)∈L×D;
Vℓd >0

H∑
t=1

y t
ℓd log

(
t

Vℓd

)

subject to
H∑

t=1

y t
ℓd = xℓd for every (ℓ, d) ∈ L × D with Vℓd > 0,

∑
d∈D:Vℓd >0

xℓd = mℓ for every ℓ ∈ L,

∑
ℓ∈L:Vℓd >0

xℓd = sd for every d ∈ D,

y t
ℓd ∈ {0, 1} for every (ℓ, d) ∈ L × D with Vℓd > 0

and every t ∈ {1, . . . , H}.

Specifically, they proved that given x ∈ NL×D :

x is a biproportional apportionment⇐⇒
There exists y such that (x , y) is an optimal

solution for the linear relaxation of this problem

Existence of biproportional apportionments then follow by total unimodularity.
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Beyond Two Dimensions

Historically, two dimensions have been considered when allocating seats of a house of
representatives: political (lists, parties) and geographical (electoral districts).

However, representation of dimensions beyond these two is increasingly demanded:
New Zealand’s Parliament, Parliament of the Federation of Bosnia and Herzegovina,
Chilean Constitutional Convention.
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Three-dimensional Proportionality
Cembrano, Correa, and Verdugo (PNAS 2022)

What if now we want to incorporate gender balance through an additional dimension?

Three-proportional apportionment (Cembrano, Correa, Verdugo, PNAS’22)

For each list ℓ, district d and gender g, we allocate xℓdg seats, such that:

▶ Each list ℓ receives mℓ seats:
∑

d∈D
∑

g∈G xℓdg = mℓ.

▶ Each district d is assigned sd seats:
∑

ℓ∈L
∑

g∈G xℓdg = sd .

▶ Each gender g receives half of the seats:
∑

ℓ∈L
∑

d∈D xℓdg = H
2 .

▶ There exists λℓ > 0 for each ℓ, µd > 0 for each d and γg > 0 for each g
such that
λℓµdγgVℓdg ≤ xℓdg ≤ λℓµdγgVℓdg + 1 for every (ℓ, d , g) ∈ L× D × G.

✗ Three-proportional apportionments are not guaranteed to exist. (Integer LP
characterization)

✗ Deciding whether a given instance admits a three-proportional apportionment is
NP-complete. (Reduction from perfect matching in 3-partite hypergraphs)
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Main Result in 3D
Cembrano, Correa, and Verdugo (PNAS 2022)

Existence of approximate three-proportional apportionments

If we consider integer values u1, u2, u3 such that

1
u1 + 2

+
1

u2 + 2
+

1
u3 + 2

≤ 1,

then (under mild conditions) there exists an apportionment x verifying:

▶ Each list ℓ receives mℓ ± u1 seats.

▶ Each district d is assigned sd ± u2 seats.

▶ Each gender g receives H/2± u3 seats.

▶ There exists λℓ > 0 for each ℓ, µd > 0 for each d and γg > 0 for
each g such that

λℓµdγgVℓdg ≤ xℓdg ≤ λℓµdγgVℓdg+1 for every (ℓ, d , g) ∈ L×D×G.

Some possible values for (u1, u2, u3): (1, 1, 1), (0, 1, 4), (0, 2, 2).
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Main Result in General
Cembrano, Correa, and Verdugo (PNAS 2022)

▶ We actually study and prove our results in a more general setting:

✓ Arbitrary rounding rule instead of downwards rounding.

✓ Soft bounds instead of hard marginals.

✓ Arbitrary dimension. In dimension d , the sufficient condition over u ∈ Nd in
the main theorem turns into

d∑
i=1

1
ui + 2

≤ 1.

When d = 2 we recover the existence result of Balinski and Demange.

▶ Tightness: further improvements may be possible, but for instance
u1 = u2 = 0, u3 = K is not possible.
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Proof Idea: LP relaxation
Cembrano, Correa, and Verdugo (PNAS 2022)

minimize
∑

(ℓ,d,g)∈L×D×G;
Vℓdg>0

H∑
t=1

y t
ℓdg log

(
t

Vℓdg

)

subject to
H∑

t=1

y t
ℓdg = xℓdg for every (ℓ, d, g) ∈ L × D × G with Vℓdg > 0,

∑
(d,g)∈D×G:

Vℓdg>0

xℓdg = mℓ for every ℓ ∈ L,

∑
(ℓ,g)∈L×G:
Vℓdg>0

xℓdg = sd for every d ∈ D,

∑
(ℓ,d)∈L×D:
Vℓdg>0

xℓdg =
H

2
for every g ∈ G,

1 ≥ y t
ℓdg ≥ 0

for every (ℓ, d, g) ∈ L × D × G with Vℓdg > 0
and every t ∈ {1, . . . , H}.

For an optimal solution (x , y) of the LP, any x̄ with x̄ℓdg ∈ {⌊xℓdg⌋, ⌈xℓdg⌉}
for every (ℓ, d , g) with Vℓdg > 0 verifies the proportionality condition.
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Proof Idea: Iterative Rounding Algorithm
Cembrano, Correa, and Verdugo (PNAS 2022)

1. Solve the linear relaxation. If its optimal solution x is integer, return it.

2. Otherwise, define z ←− ⌊x⌋, y0 ←− x − ⌊x⌋ and initialize a set F ⊆ L× D × G
containing the fractional entries of y0, a set FL ⊆ L containing the lists with ≥ u1 + 2
fractional entries of y0, and sets FD ⊆ D, FG ⊆ G defined analogously. Let t ←− 0.

3. While some of the sets FL,FD ,FG is nonempty, consider the following LP with
variables {yℓdg}(ℓ,d,g)∈F :

∑
(d,g)∈D×G:
(ℓ,d,g)∈F

yℓdg =
∑

(d,g)∈D×G:
(ℓ,d,g)∈F

y t
ℓdg for every ℓ ∈ FL,

∑
(ℓ,g)∈L×G:
(ℓ,d,g)∈F

yℓdg =
∑

(ℓ,g)∈L×G:
(ℓ,d,g)∈F

y t
ℓdg for every d ∈ FD ,

∑
(ℓ,d)∈L×D:
(ℓ,d,g)∈F

yℓdg =
∑

(ℓ,d)∈L×D:
(ℓ,d,g)∈F

y t
ℓdg for every g ∈ FG,

yℓdg ∈ [0, 1] for every (ℓ, d, g) ∈ F

Let y t+1 be any extreme point of the feasible region. Update zℓdg ←− zℓdg + y t+1
ℓdg for

each (ℓ, d , g) such that y t+1
ℓdg is integer. Update t ←− t + 1 and the sets F , FL, FD , FG.

4. When the cycle ends, return z.
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Proof Idea: Analyzing the Algorithm
Cembrano, Correa, and Verdugo (PNAS 2022)

▶ The LP we solve in each iteration has more variables than equality constraints:

# Eq. Constraints = |FL|+ |FD |+ |FG| ≤
3∑

i=1

⌊
|F|

ui + 2

⌋

≤
3∑

i=1

|F|
ui + 2

≤ |F| = # Variables

=⇒ In each iteration we fix at least one fractional variable to an integer value.

▶ As long as a list has u1 + 2 or more fractional entries, the sum over its entries
remain unchanged. When the cycle ends, we have at most u1 + 1 fractional
entries for each list. Since the sums are integer values, after rounding we obtain
a deviation of at most u1 as claimed (analogously for each district and gender).

▶ Since we are rounding each entry of the optimal solution, proportionality is
guaranteed.
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The Chilean Constitutional Convention
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Applying Our Method to the Constitutional Convention Election
Cembrano, Correa, Diaz & Verdugo (EEAMO 2021)

More than 1300 candidates!

Constitutional Convention Method (CCM): It operates one district at a time. In a first
step, it assigns the seats of the district according to the D’Hondt method across the
political lists. While gender balance is not achieved in the district, it replaces the least-
voted candidate of the over-represented gender by the top-voted candidate of the under-
represented gender and the same list.

Our methods (TPM): We look for a three-proportional apportionment such that:
▶ The seats (138) are apportioned across the lists through the (one-dimensional)

D’Hondt method. (mℓ)
▶ Each district is assigned a number of seats predefined by law. (sd )
▶ Each gender obtains 69 seats.
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Variants of TPM
Cembrano, Correa, Diaz & Verdugo (EEAMO 2021)

We evaluate several variants of TPM and a local BPM.

▶ Biproportional method (BPM): Creates a local apportionment of list-gender
(with parity) in every district

▶ Three-proportional method (TPM): Creates a global (national-level)
apportionment of list-district-gender (with parity)

▶ Three-proportional with threshold (TPM3): Equivalent to TPM, but in this
method only lists with 3% of national votes or more can obtain representation.

▶ Three-proportional with plurality (TPP): Creates a global (national-level)
apportionment of list-district-gender (with parity), and also includes the condition
that enforces that the most voted candidate in each district gets chosen.

▶ Three-proportional with plurality and threshold (TPP3): Equivalent to TPP,
but with 3% threshold for representation.
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Some Relevant Metrics
Cembrano, Correa, Diaz & Verdugo (EEAMO 2021)

MALAPPORTIONMENT

CCM BPM TPM TPM3 TPP TPP3
Av. Votes 14,126 14,103 14,048 13,848 14,406 14,198

Global Mal. 4.6 4.6 1.8 3.8 1.3 2.9
Local Mal. 13.7 13.7 18.5 19.0 18.2 18.5

VOTING POWER

▶ With current districting, local methods (CCM, BPM, y MMP) distortion the voting
power.

▶ A vote in Aysen is around six times a vote in Santiago!
▶ Global methods (TPM, TPP, TPM3, TPP3) do not suffer from this weakness.
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Robustness: Seats Transfers
Cembrano, Correa, Diaz & Verdugo EEAMO 2021
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Conclusions

▶ Combinatorial optimization tools can be valuable for designing electoral methods.

▶ These methods can be useful in order to find an answer to conciliate natural
axioms desirable in electoral methods.

▶ Randomization can also be helpful to (ex-ante) fulfill desirable properties. Are we
ready for randomized electoral systems?

▶ Multidimensional apportionment seems like a promising direction to deal with the
complex representation demands of modern societies.

▶ Electoral methods induce strategic behavior in the political parties and voters
and we need to be careful about this!
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