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Abstract We consider the important problem of medium term forest planning with an inte-
grated approach considering both harvesting and road construction decisions in the presence
of uncertainty modeled as a multi-stage problem. We give strengthening methods that enable
the solution of problems with many more scenarios than previously reported in the litera-
ture. Furthermore, we demonstrate that a scenario-based decomposition method (Progressive
Hedging) is competitive with direct solution of the extensive form, even on a serial computer.
Computational results based on a real-world example are presented.

Keywords Forestry - Forest harvest planning - Progressive hedging - Stochastic
programming

1 Introduction

In this paper, we consider the problem of medium term forest planning. A deterministic
version of this problem has been proposed and solved for a real Chilean forest firm (Andalaft
etal. 2003). The main decisions to be made involve which units (lots) to harvest in each period
of the planning horizon and what roads need to be built in order to access the harvest units. This
is a well-known problem, with difficulties for large-scale problems, due to computationally
inefficient MIP formulations. Although current versions of CPLEX can solve the problem
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directly, Andalaft et al. (2003) introduce a solution approach based on Lagrangian relaxation
and a strengthening of the LP formulation, enabling solution of an instance with 17 forests,
which are linked by demand constraints at the firm level. This problem was solved considering
deterministic demand and price conditions for each period. Quinteros et al. (2009) consider
a variant of this problem with market uncertainty, represented through 16 sampled scenarios
with both timber prices and upper and lower bounds on demand in each period. In this work
each scenario represents all uncertain parameters in all periods, from period 1 to the final
time period in the planning horizon. Periods in this problem were defined as semesters,
to account for seasonal effects. Given the increased difficulty of solving stochastic models
relative to their deterministic counterparts, the paper considered only one forest, the largest
of the original 17.

The stochastic model developed by Quinteros et al. (2009) considered the objective of
maximizing expected net present value, subject to the solution being feasible under all sce-
narios. This is a standard treatment of uncertainty in the objective of a stochastic optimization
model. The constraints in this case need to include the well-known non-anticipativity con-
straints (Wets 1975), which state that, given 2 scenarios S; and Sk, if the representation (i.e.,
data) of scenarios S; and Sk are identical up to period t, then the decisions taken in scenarios
S; and Sy must also be identical up to period t.

The non-anticipativity constraints in a stochastic optimization model can be expressed
in two ways, to create a so-called extensive form. In an explicit formulation, the non-
anticipativity constraints relate scenario-specific instances of the decision variables at each
node in the scenario tree. In an implicit formulation, the non-anticipativity constraints are
expressed by introducing shared, common decision variables at each node in the scenario
tree. The implicit formulation is more compact and thus can lead to problems that are easier
to solve (Quinteros et al. 2009). However, it is often difficult to solve stochastic optimization
instances, even with an implicit formulation, given their typically large dimension. In Quin-
teros et al. (2009), the stochastic forest planning problem was solved by incorporating the
non-anticipativity constraints in an implicit manner, by defining one path through the scenario
tree for each scenario, but with variables shared by the all scenarios at a node of the tree. By
branching in a coordinated way along all paths, the non-anticipativity constraints are satisfied
automatically. Alonso-Ayuso et al. (2003) first developed this solution approach. This type
of decomposition enabled more efficient solution of the stochastic optimization model. In
Quinteros et al. (2009), a problem with 16 scenarios was solved considering several sources
of uncertainty. In this paper, we present a different approach to handle the non-anticipativity
constraints, to enable computationally efficient consideration of even larger numbers of sce-
narios.

We use the algorithm Progressive Hedging (PH) (Rockafellar and Wets 1991), which is
based on the separation of the problem by scenarios, thus eliminating the need to explicitly
introduce non-anticipativity constraints. In PH, each scenario is solved independently and
iteratively. Naturally, the solutions obtained under each scenario do not initially satisfy non-
anticipativity, and variables that should be equal by non-anticipativity take different values.
The PH algorithm attempts to equalize the values of these variables by penalizing deviations
from the average value in all scenarios, through augmentation of the objective function.
In an iterative way, convergence to a solution ultimately satisfying the non-anticipativity
constraints (without their representation, either in explicit or implicit form) can be developed.
The advantage of PH lies in the possibility of solving problems with very large numbers of
scenarios, such that an extensive form of the stochastic optimization problem is either too
difficult to solve directly, requires too much memory (e.g., in the course of a branch-and-
cut procedure), or both. PH and a few other methods have been proposed for multi-stage
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stochastic programming with integers in all stages, but applications are relatively scarce.
For alternatives to PH, see, e.g., Caroe and Schultz (1999), Romisch and Schultz (2001),
Guglielmo and Sen (2004), Escudero et al. (2009).

In this paper, we solve the same basic stochastic forest planning problem as (Quinteros
et al. 2009). However, in order to render the model more realistic—in particular, to allow
for a wide variety of potential undesirable scenarios—we focus on the need to consider a
substantially larger number of scenarios. The scenarios for our test case additionally include
uncertainty in timber growth and yield.

Forest planning problems have been solved over the past few decades using integer pro-
gramming models, including an integrated approach that considers both harvesting and road
construction decisions (Andalaft et al. 2003; Weintraub et al. 1994, 1995; Kirby et al. 1986,
Weintraub and Navon 1976). Introducing binary decision variables into forest planning prob-
lems has become integral in the course of making these models more realistic over time. There
are two components of these models where discrete decision have been widely leveraged:
(a) Road building and (b) All-or-nothing decisions on harvesting areas (lots). Such discrete
decisions warrant careful consideration, as they induce mixed-integer optimization models,
which can be very difficult to solve in practice. Because our model considers such features,
we now briefly review the literature related to the use of discrete decision variables in forest
planning.

Road building decisions: Between the late 1970’s and 1990’s, the US Forest Service
introduced explicit decision making related to road building (Weintraub and Navon 1976;
Kirby et al. 1986). Originally, harvesting models were modeled as continuous optimization
problems, which were solved independently of road building models. Jones et al. (1986)
provide a thorough analysis showing the significant advantages of integrating the two types
of decisions. Weintraub et al. (1995) describe an application involving several regions of the
US Forest Service, in which planning was carried out using a mixed-integer programming
(MIP) model to integrate road building and harvesting decisions. The primary challenge in
this problem involved the fixed cost network flow portion of the model.

Given the computational power and algorithmic advances available at the time, heuristics
were needed to find approximate solutions. Guignard et al. (1994) discussed model tightening
to better solve these MIP problems. In Andalaft et al. (2003), a similar problem was applied to
Forestal Millalemu, a forest company in Chile, which was used again for integrated planning
of harvesting and road building decisions. In this case, the company managed 17 separate
forests, linked by demand constraints. CPLEX 3.0 was used to solve the problem, and obtained
a solution with a optimality bound of about 20 % in 6 h. Using Lagrangian relaxation and a
strengthening of the formulation, a solution within 1 % of optimal was obtained in one hour.
However, the same problem run years later, with CPLEX 9.0, could be solved to optimality in
minutes. This paper presents a stochastic version of the (Andalaft et al. 2003) model, applied
to one of the 17 forests (the largest) of the Forestal Millalemu problem. MIP models for forest
road building problems have been solved by researchers in Scandinavia, in this case for road
upgrade decisions (Frisk et al. 2006).

Harvesting decisions: Harvesting decisions are naturally modeled using 0-1 variables.
The constraint that a cutting unit be harvested completely or not at all has been partic-
ularly important for environmental reasons, where adjacent units cannot be harvested in
the same period. This constraint is based on what is referred to as the maximum open-
ing size, which states that there is a maximum contiguous area (typically about 40 has).
Contributing factors include wildlife concerns (elks will not feed in a clearing unless they
are relatively near to the protection provided by grown trees), scenic beauty, and erosion
factors. Thus, in the planning process, units are defined to be no larger than this maxi-
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mum opening size area. Further, if one unit k is harvested, the neighboring units cannot
be harvested until trees in unit k have reached a certain height. While in this paper we do
not impose these adjacency constraints, it is important to have this option, which is now
being applied in a deterministic problem. Second, for production and logistical reasons,
given the size of the units, it makes economic sense that once a unit is intervened, it should
be completely harvested. These concepts have proved critical, and have been used in for-
est planning for over 20 years. Additional conditions are often imposed, such as needing
also to maintain large contiguous areas of mature trees for wildlife protection. In many
cases, heuristics have been used to solve these problems (Murray and Church 1995). Exact
algorithms have also been proposed for this problem class. However, for larger adjacency
problems, even the latest version of CPLEX cannot solve these problems. More complex
algorithms, including column generation, have performed better (Goycoolea et al. 2005;
Richards and Gunn 2000; Constantino et al. 2008). Goycoolea et al. (2009) present a
comparison of these methods. Another approach is presented by McNaughton and Ryan
(2008).

The remainder of this paper is organized as follows. Section 2 presents the determinis-
tic medium term forest planning model to be solved. Section 3 describes the uncertainties
involved in our stochastic optimization model. Section 4 details the stochastic optimization
model. In Sect. 5, we describe the PH algorithm and our specific implementation. Section 6
introduces and discusses the computational results. We conclude in Sect. 7 with a summary
of our contributions.

2 The forest planning optimization model

We consider a tactical (medium-term) planning model first developed for a Chilean forest firm,
Millalemu. The original problem considered the planning of 17 forests, spatially separated.
The planning process horizon was 3 years, divided into summer and winter periods, to account
for seasonal effects. The planning decisions involved which units to harvest in each period,
and what roads to build to access the harvesting units not already connected to main public
roads.

Additionally, stocking areas were used to store timber from summer to winter, and tim-
ber flows defined the movement of logs from origins in the forest to destinations. This
problem was introduced by Andalaft et al. (2003), and was solved by using Lagrangian
relaxation to decouple the forests—which are linked by global demand constraints. The
addition of strengthening and lifting constraints to the initial formulation yielded significant
improvements in the computational efficiency of the mixed-integer optimization solves. Such
enhancements resulted in reductions of the optimality gap for the most difficult data set tested
from 162 to 1.6 %, and for all data sets to 2.6 % or less.

In this paper, we work with a simplified version of the original deterministic optimization
model. The additional complexities would only add to the computational burden, and are
not needed to analyze the complexities of the stochastic optimization model and solution
procedure. The specific simplifications we consider are as follows:

(a) We only consider one type of timber, eliminating the possibility of downgrading (cutting)
timber from higher diameters to lower diameters.

(b) We do not consider stocking yards, eliminating the storing of timber from summer
periods to winter periods.

(c) We only define one type of road, thus eliminating the upgrading of roads.
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Fig. 1 Diagram of the Los Copihues forest

Figure 1 shows a description of the forest we will analyze, consisting of 25 units to be
harvested. Existing roads are depicted as blue arrows, potential roads are depicted as red
arrows, and the access to each unit is depicted by green arrows. Finally, the point S represents
the exit node of the forest, which links with a public road.

For the sake of brevity, we do not present the simplified deterministic optimization model
here. Rather, we introduce the full stochastic optimization model in Sect. 4, with a scenario-
based formulation, driven by parameter uncertainty as described next in Sect. 3.

3 Uncertainties in forest planning

Typical uncertainties occurring in forestry planning are documented by Martell et al. (1998),
and summarized as follows:

(a)

(b)

Market uncertainties: These uncertainties are expressed mainly through prices for the
different timber products, and in some cases also through bounds on demand. Lower
demand bounds can reflect minimum amounts a firm needs to sell to keep a market,
while upper demand bounds can reflect the maximum amount possible to sell in a
market. These properties are a natural result of varying global market conditions as well
as local realities in countries where the firm exports. Chile exports almost 90 % of its
Iumber and pulp products, so its forest firms are heavily dependent on global economic
conditions.

Natural variations in future growth and yields: These uncertainties address the cubic
volume (m?) per hectare that will be harvested in the future from each unit. Regression
and simulation models allow reasonable point predictions of the values of future volumes
that will be harvested, but there is a variability that can be modeled though approximate
probability functions, with estimates of the averages and standard deviations. One of
the approaches that has been proposed is to incorporate this type of variability is chance
constraint programming (Hof and Pickens 1991; Weintraub and Vera 1991), in the con-
text of long range planning LP models. Note that if integer variables are incorporated,
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as is the case in our model, which includes road building, this approach is no longer a
computationally practical alternative.

(c) The effect of fires or pests. These uncertainties model the impact of fires and/or pests
on the harvesting of particular units in each period, as described in Martell (2007).

We consider the first two types of uncertainties, expressed as scenarios that specify value for
the uncertain parameters in each period through the planning horizon. This is a well known
form for expressing uncertainty, in the form of a (sampled) scenario tree.

Asdiscussed in Sect. 2, for the purpose of developing the stochastic model we will consider
only one forest, the largest one of the 17 in the original problem, as was done by Quinteros
et al. (2009). Details of the scenario generation process are provided in Sect. 6.

4 The stochastic optimization model

We present now our stochastic optimization model, where the deterministic optimization
model is adapted for each scenario, and the scenarios are coupled by non-anticipativity
constraints.

Sets

: Time periodsinthe planning horizon, {t}
2 Originnodes of harvests, {o}.

: Road intersection nodes, {j}

: Timber exit nodes, {e}

: Harvest units, {h}

H, : Units adjacent toorigin node {o}
Oy, : Originnodes adjacent tounit {h}
RE . Existing roads, arcs {k, [}

RP : Potential roads, arcs {k, 1}

R = REUR? : Allroads.arcs {k,1}

S : Scenarios {s}

T m~QOMN

Deterministic parameters

Ayp : Area of unit h(ha)

Uli,l : flow capacity onroad (k1) in period t (m?)

P,i : Cost of harvesting one ha of unit hin periodt (USD/Ha)
Q! : Cost of producing one m> at originoin periodt (USD/m?3)
C,’C,l :Costof building road (k,l)in periodt (USD)

Dltc,l : Cost of hauling onem> on road (k, 1) in period t (USD/m?)
Pr(s) : Probability of the occurence of scenarios

d' : Discount factor for periodt

Scenario-dependent parameters

R’ : Sale pricein periodt under scenarios (USD/m?)
Z'5, 7" . Lower and upper bounds on demand under scenarios in period t (m3)
a;l’s : Productivity of unit hin period t under scenario s(m3 /ha)
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Decision variables

1 if unit his harvested in period t under scenarios

t,s .
8y €10, 1}: [0 otherwise

1ifroad (k,1) isbuiltin periodtunder scenarios

1, .
Vi € (0,1} [0 otherwise

sz,; > 0: Flow of timber transported onarc (k,1) in period t underscenario s(m?)

22* > 0: Timber sold in periodtat exit eunder scenarios (m3)

Constraints

1. Balance of flow at network nodes
(a) At harvest origin nodes

a;* Aps) + Z feo— Z for=0VYoe0,1eT, se
he Hy (k,0)e K (0,k)e K
(b) At road intersection nodes
D RS = D fii=0 VieT, seS, jel
(k. j)e K (J.k)e K
(c) At exit nodes
&= D> fit= D fil VeeE.teT.seS
(k,e)e K (e,k)e K

(d) Nostocks are held between periods

a,* Apsy”* — Z ¥ =0 VteT,seS

he H ee E
2. Bounds for timber production
Zr,s < Zzé,s < Zt,s
ee £
3. Building of potencial roads
(a) Flowup tocapacityif road (k,1)is built
fktf < U,i; y,:f'l’s Y (k,]) eRF,teT, seS
' l<m<t

(b) Roads are built at most once

D i1 Yk eR" seS

teT

4. Capacity of existing roads
(a) Respect the capacity of eachroad

[ <UL Y (kD) eRF 1eT, seS
(b) Upper bound of flow capacity for all roads

F =D D atansy Vk.DeK.teT, seS
we 0 he Hy
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5. Each cell is harvested at most once
> 8, <1 YheH, seS
teT
Objective function
max » _Pr(s) (T'S* — HC® — PC* — RC* — TC¥)
seS
where:

TS =D > d'RI°Z°  VseS

eeEteT

HC' = )" >"d'Py°As,"  VseS
heHteT

PC=>">"d'0, [ > a," Ans}* VseS

0eOteT he H,

RC*= > >d'Ciyy) VseS

(k,)eRPteT

TC = > > d'Dif] Vses

(k,)eKteT

The objective function specifies maximization of the net revenue, which is composed of the
income from timber sales (7'S) and four types of expenses: the harvesting cost (HC), the
cost of the production at the origin nodes (P C), the road construction cost (RC), and the
transportation costs (7 C).

Additional constraints

1. Direct strengthenings
We additionally include several strengthening constraints to improve mixed-integer solve
times, first introduced by Andalaft et al. (2003). The following notation is used to express
these constraints:

SC = {(i, ))eR" /1, )V (. i)e REAj € OIVI(j, WV (-, j) e RE Nie Ol}
Nk, D) ={G,j)eR Ji=k1\ j=1k)}

The specific constraints employed are given as follows:
(a) Donotbuildisolated roads

i<, D v VieT, (kD) eR\SC, seS
q=t (i,j)e N(k,l)

(b) Donot harvest units unless a connecting road has been built

82’3 < Z Z yiqj’.s VteT, seS, hnot connected toan existing road
4=t (i,j)e N(h)

where N (h) = {(i, j)ERT|ie Oy ViJje Oh}. We observe that h not connected to an
existingroad < {(i, j)e RE|ie Oy \/ je Oy} = 0.
2. Liftings
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(a) Lifting onroad capacities, where flows in the LHS on all periods up to t are added
up, considering that timber can be harvested at most once

S =y vt Yk DeR" 1eT, ses
g=t I<m=<t

DA sUr) Yk DeRF teT, seS

8§=t

(b) Lifting onnot buildingisolated roads
DD DL v YV DeRP\SC, 1€T, seS

8=t 8=t (i,j)e N(k,I)

(c) Lifting onthe constraints of not harvesting unconnected units

8,s g,
< o7
ngt 8h - ngt Z qu]
(i,j)€ N (h)
VteT, seS, hnot connectedtoan existing road

3. New Strengthenings
(a) Flow balanceinthenetwork

t,s t,s ts _
ay* Apsy’ = 2 =0 VteT, seS
heH ecE

(b) Road flow capacity

fa=D Ay Yk ) ER, teT s
heH

The new strengthening provided significant improvement in the efficiency of the runs.

5 The progressive hedging algorithm

Consider a stochastic optimization problem such as that presented in Sect. 4, where scenarios
have been pre-defined. Figure 2 presents an example problem with 4 time periods and 5
scenarios. Figure 2a shows the scenario tree in a standard form, while Fig. 2b shows the 5
scenarios in a disaggregated form, in which the non-anticipativity constraints on decision
variables are represented by the circling of nodes. In period 1, all scenarios share identical
decisions, as no knowledge of future uncertainty has been acquired yet. In contrast, we see
in period 2 that node 2 represents scenarios 1, 2 and 3, while node 3 shares scenarios 4 and
5.

As the uncertainties can take only a finite number of values when a scenario tree is provided
as input, the stochastic optimization problem can be stated as follows:

min ZPr(s)f (x,s)
ses
stxs €Cy VseS

xeN

The model seeks to minimize the expected cost across all scenarios, weighted by their prob-
abilities Pr(s). Solutions must satisty feasibility for all scenarios when taken independently,
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Sed '

=0 a1 P 13 -0 re1 ez =3

Fig. 2 Example of a scenario tree in standard (left figure) and disaggregated (right figure) forms

and must satisfy the non-anticipativity constraints at each node in the scenario tree when taken
together. We use Cy to represent the constraints for each scenario. We use A to represent the
set of non-anticipative solution vectors, i.e., those for which scenarios that share a node in
the scenario tree have the same value for all those decision vector elements associated with
that node..

The basic idea of the PH algorithm is to relax the non-anticipativity constraints and solve
the scenario sub-problems independently. Solving these problems separately is naturally
much easier than solving the extensive form directly. However, the non-anticipativity con-
straints will be satisfied only in very rare cases. That is, the values of the variables which
should be equal to satisfy non-anticipativity are not equal. The PH algorithm then iteratively
solves the scenario sub-problems, gradually enforcing equality. Note that if all variables
are equal, they are also equal to their average. The PH algorithm incrementally enforces
non-anticipativity by penalizing deviations from the average values of decision variables.

PH starts solving each scenario independently, as follows:

min f (x, s)

s.t.x € Cy

PH then computes a solution average and a convergence value to determine if solutions are
sufficiently non-anticipative. The convergence value quantifies the deviation of solutions from
the “mean” solution. If the convergence value is sufficiently small, PH terminates because
the non-anticipativity constraints are (approximately) satisfied. If not, then PH computes a
penalization terms, w, for each decision variable, proportional to both the deviation from
the average and a penalty factor p. Given these penalization terms that tend to force non-
anticipativity, the scenario sub-problems are re-solved. The algorithm iterates until the non-
anticipativity constraints are “practically” satisfied.
The following pseudo-code describes the PH algorithm:

1. Solve each scenario without penalizations
k=0, wy=0

2. Computetheaverage for eachvariable

= ZPr(s)xs
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3.

4.

5.

6.

If solutions are sufficiently converged, thenexit; elsek =k + 1
gi=lx—xl<e
Update penalizationterms
w=px—Xx)+w
Solve scenarios with penalization terms
i G i= s (x5) + wrg + 5 g — 5P

Gotostep?

If all decision variables are continuous, the PH algorithm provably converges to an optimal
solution (Rockafellar and Wets 1991). In the problem we consider, with integer variables,
no such convergence proof exists. However, several enhancements to the basic PH algo-
rithm have been introduced to ensure and accelerate convergence in the mixed-integer case
(Watson and Woodruff 2010). Specifically, the following issues were carefully addressed in
our implementation of PH:

L.

The quadratic term complicates the solution procedure: In particular, quadratic
mixed-integer programs are much more difficult to solve than linear mixed-integer pro-
grams. To address this issue, we linearized all quadratic penalty (proximal) terms. In the
case of linear decision variables, the number of pieces used in the linearization must be
determined. In the case of binary decision variables, the quadratic penalty terms simply
reduce to linear penalty terms, because they only take on 01 values.

The value given to the parameter p (Steps 4 and 5 in the PH pseudo-code): Com-
putational experience has shown that the value given to p has a major impact on the
convergence of the PH algorithm, and the quality of the resulting solution.

. Mipgap tolerance: When considering each scenario subproblem, there is no need to

solve each problem to optimality, particularly in early PH iterations. Allowing the solves
for each subproblem to terminate when the solution obtained is within a small optimality
gap allows to solve these problems in a much faster way, without significant loss in the
quality of final solution.

Hot starts: A well-known acceleration technique for PH is to use hot starts when re-
solving scenario subproblems. Specifically, the solution obtained for sub-problem r in
iteration k is used as a starting solution for sub-problem r in iteration k + 1. Feasibility
is guaranteed, as only the optimization objective is modified.

Strengthening of the formulation. Several such strengthenings were implemented, as
discussed above in Sect. 4. These strengthenings lead to significantly faster solution times
for scenario subproblems.

Variable fixing. As noted, the PH algorithm is used as a heuristic for our problem due
to the presence of 0—1 variables. To obtain solutions more quickly, our implementation
fixes individual discrete variables when they have satisfied non-anticipativity for anumber
of iterations. Fixing variables in such a manner may lead to sub-optimal solutions, but
computational experience supports the overall effectiveness of this strategy. Experiments
were carried out to determine how many iterations should be considered with common
values in the variables before fixing them.

Early termination of PH. There is no guarantee of convergence for the class of non-
convex problems we consider, which include discrete decision variables. Furthermore,
convergence of the last few variables often requires more computational effort than it is
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worth. Computational experience has shown it is valuable, after a number of PH iterations,
to switch the solution algorithm to a regular branch and cut scheme. Specifically, a
commercial code is used to solve the full extensive form of the stochastic optimization
problem, subject to fixing variables whose values have converged. The solution time for
the branch-and-cut approach applied to the extensive form is now considerably faster
since a significant number of the 01 variables are already fixed.

The combination of these factors has enabled implementation of a PH algorithm that is
efficient, with relatively good quality of solutions. The primary potential advantage of PH
over direct solution of either the explicit or implicit extensive form lies in scalability, when
very large numbers of scenarios are considered. In this case, the extensive form is often
computationally intractable for commercial deterministic solvers, in terms of memory, run-
time, or both.

6 The test case

The case we are dealing with is the Los Copihues forest, shown in Fig. 1. It has 25 stands, with
atotal area of 300 hectares, 150,000 m> of timber, 15 existing and 11 potential roads, 9 origins
where timber is extracted, 3 road intersections, and one exit to a public road. A discount factor
of 10 % was used because it is consistent with commonly used values in the Chilean forestry
industry to capture the risk free rate and adjustments for risk. The experiments were done
under Linux using a computer with Intel(R) Core(TM) 2 Quad CPU Q8200 @ 2.33GHz and
four gigabytes of main memory.

To generate the scenarios we first consider market uncertainties. We represent the market
uncertainty exactly as in Quinteros et al. (2009), with two random variables: prices and
quantity demanded. First, price is simulated as a random walk, and second, the quantity
demanded is assumed to have a positive correlation with the price considering the bounds
on demand. Then, we also develop scenarios considering uncertainty in timber growth. To
generate the timber growth component of the scenarios we considered an average of yearly
growth of 3 % with a standard deviation of 0.15 %, which correspond to typical observed
values in timber growth in this region of Chile based on conversations with foresters.

In general there are markets for timber products, and Chile has a small share of the world
market, so it could be argued that uncertainty should only be expressed in terms of prices.
However, for Chilean forest firms, the market is not completely fluid. There are contracts,
existing and future ones that may be signed for given quantities. There are markets that
need to be supplied with a minimum quantity to be retained, and others where the firm has
saturated its ability to supply. In addition, future competitor producers may appear, like Russia
increasing significantly its production, which might make some markets unavailable, due to
shipping costs. These conditions influenced us to include also uncertainty in future demand.
We modeled minimum quantities for retention of a customer and maximum quantities to
avoid saturation by putting upper and lower bounds on production. A more complex scheme
would be to have multiple prices and various demand breakpoints, but we lacked the data to
set these values and this is beyond the scope of the present work.

For our problem, we added uncertainty in growth and yield, that is, the m> per hectare
obtained when harvesting. Variability is assumed completely correlated between stands,
(the case of less correlation does not alter the solution approach), and variation in timber
production is assumed to be uniformly distributed over plus and minus 10% of average
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Table 1 Problem sizes for the implicit and explicit extensive forms (EF)

Scenarios 1 18 64 144 162 216 324
Implicit EF
Binary cols 156 1,209 3,315 7,410 9, 867 10, 920 16, 185
Linear cols 84 651 1,785 3,990 5,313 5, 880 8,715
All columns 240 1, 860 5, 100 11, 400 15, 180 16, 800 24,900
Rows 179 2,812 9,746 21,916 25,048 32,824 49, 186
Non-zeros 1, 860 10, 844 38, 052 85,592 97,076 128,288 192,332
Explicit EF
Binary cols 156 2,808 9,984 22,464 25,272 33,696 50, 544
Linear cols 84 1,512 5,376 12,096 13, 608 18, 144 27,216
All columns 240 4,320 15, 360 34, 560 38, 880 51, 840 71,760
Rows 179 5,682 21,716 48,936 52,698 73,704 110, 856
Non-zeros 1, 860 16, 584 61,992 139, 632 152,376 210, 048 315,672

value. Then, we combine the 16 market scenarios with production variability, creating up to
324 scenarios, which a significantly larger number than previously reported.

For example, a case with 144 scenarios in 4 periods, was created combining market and tree
growth scenarios. The scenarios have a tree form, as shown in Fig. 2, with branches emerging
from a root node that corresponds to the present period and then from continuing nodes in the
tree. One example has (1,3,3,2) branchings for market price, and (1,2,2,2) branching for tree
growth. In this case the total number of scenarios becomes 1 x3x3x2x 1 x2x2x2 =144
scenarios. In general the number of branches is chosen with a larger number of possibilities
in the early periods.

As the number of scenarios grows, so does the dimension of the model. Table 1 shows the
dimension for both the explicit and implicit formulations.

7 Results

Several options were considered in the problems runs.

(a) Use of hot starts

(b) Linearization of quadratic penalization

(c) Strengthening of the formulation

(d) Use of gaps for early termination of MIP problems
(e) Value assigned to parameters p and € for termination
(f) Fixing variables

The effect of strengthenings depends on the instance, the solver, other options, and other
strengthenings used. When combined with the best set of options for our experiments, the
best set of strengthenings we found to be Flow Balance in the Network, Lifting on Road
Capacities, Road Flow Capacity.

Hot-starts provided 11 % faster solutions. After testing, a gap of 2 % was found to be the
best compromise between computational effort and solution quality. The best results were
found in linearizing the quadratic penalization term into just two segments, in V form. For
binary variables, the quadratic term is simply approximated linearly. Fixing variables, setting
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Fig. 3 Example of a convergence of PH; a 144 scenario example

Table 2 Computational results obtained by varying the number of scenarios

Scenarios Cplex EF  Cplex EF  PH+ value PH+ gap PH+runtime PH+ versus Total fixed

value (1h) gap (1h) (%) Cplex variables
(%) value (%)
18 $4,928,180 0.31 $4,920,078 0.47 4min22s —0.16 2
64 $5,357,780 1.29 $5,386,971 0.74 13min1s 0.54 1719
144 $5,266,830 2.12 $5,287,935 1.68 21 min42s 0.40 5051
162 $5,187,040 3.10 $5,242,032 1.98 22 min 54 s 1.05 823
216 $5,332,550 3.92 $5,437,714 1.87 37min 11s 1.93 1828
324 $5,545,260 2.91 $5,536,196 2.99 71min39s —0.16 740

p as in Watson et al. (2012), and early termination proved to increase efficiency in solving
the problems. We fixed € = 0.01 and k4, = 10, based on preliminary experiments. Figure
3 shows the convergence graph for 144 scenario case. Convergence is not always monotonic,
but the graph gives the reader a sense of typical convergence behavior.

The results for diverse instances are shown in Table 2, where a comparison between solving
the extensive form in CPLEX 10.2 with default setting and solving the problem using PH with
the same CPLEX as the subproblem solver. We see that for 18 scenarios EF alone obtains
slightly better solutions in more time and for this particular set of 324 scenarios where PH+
is slightly dominated by the EF. For all other scenario sets, PH+ dominates the EF alone.

Parallelization of PH shows promise for extremely large numbers of scenarios. Descrip-
tions of parallel implementation and experimentation are beyond the scope of this paper.
However, to give the reader a sense of the impact of parallel PH, we conducted an experi-
ment on the 64-scenario case and obtained an objective function value of 5,347,334.56. For
this experiment, we parallelized by forming bundles of 4 scenarios each, which we treated
as “super-scenarios”. If these super-scenarios are solved in parallel, then only a couple of
minutes of wall clock time is required for solution. A full study of parallelization on larger
instances remains as future work.
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8 Conclusions

Solutions for optimization models for medium-term forest management that combine road
and harvest planning can be obtained for realistic sized problem instances, even in the face
of uncertainty. In this paper we have described strengthening methods that enable solution
of problems with many more scenarios previously reported in the literature. Without these
strengthenings, solution of the extensive form was limited to very small instances. Further-
more, we have demonstrated that Progressive Hedging is competitive even on a modest serial
computer (in our case, a standard laptop). This is important because PH can be parallelized
to solve instances with even more scenarios where the attempts to solve the Extensive Form
directly will run out of memory. Note that by fixing large numbers of integer variables, the
PH algorithm produces a modified extensive form that is smaller and that can be solved
with fewer branch and bound nodes. For a particular instance in practice, there is a tradeoff
between using more scenarios to get better representations of the uncertainty and the need for
more processors and more time for PH to reduce the number of variables so that the resulting
modified EF can be solved.

The comparisons we made were done using the best version of CPLEX available at the
time. Naturally, CPEX is constantly improving, so the number of scenarios that can be solved
using the extensive form is increasing and so is the number of scenarios that can be solved
using PH, which employs CPLEX as a sub-problem solver. In the meantime we have also
been improving our code. In particular we are starting to test a parallel version, which has
the very significant advantage in that the scenario problems can be run in parallel, rather
than serially, which is the present case. All indications are that a parallel implementation will
be far superior, in particular for a large number of scenarios. As parallel computers become
ubiquitous, the ability of PH to immediately use large numbers of processors will be its chief
advantage for practical applications in forestry.

An important avenue of ongoing research concerns improving the scenarios for price
(Weintraub and Wets 2013). When generated rigorously, there can be a very large number
of scenarios needed to capture a multi-stage progression of wood prices. This increases the
importance of the work reported here.
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