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a b s t r a c t

Deterministic mine planning models along a time horizon have proved to be very effective in supporting
decisions on sequencing the extraction of material in copper mines. Some of these models have been
developed for, and used successfully by CODELCO, the Chilean state copper company. In this paper, we
wish to consider the uncertainty in a very volatile parameter of the problem, namely, the copper price
along a given time horizon. We represent the uncertainty by a multistage scenario tree. The resulting sto-
chastic model is then converted into a mixed 0–1 Deterministic Equivalent Model using a compact rep-
resentation. We first introduce the stochastic model that maximizes the expected profit along the time
horizon over all scenarios (i.e., as in a risk neutral environment). We then present several approaches
for risk management in a risk averse environment. Specifically, we consider the maximization of the
Value-at-Risk and several variants of the Conditional Value-at-Risk (one of them is new), the maximiza-
tion of the expected profit minus the weighted probability of having an undesirable scenario in the solu-
tion provided by the model, and the maximization of the expected profit subject to stochastic dominance
constraints recourse-integer for a set of profiles given by the pairs of target profits and bounds on either
the probability of failure or the expected profit shortfall. We present an extensive computational experi-
ence on the actual problem, by comparing the risk neutral approach, the tested risk averse strategies and
the performance of the traditional deterministic approach that uses the expected value of the uncertain
parameters. The results clearly show the advantage of using the risk neutral strategy over the traditional
deterministic approach, as well as the advantage of using any risk averse strategy over the risk neutral
one.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The open pit mining production scheduling is a typical mining
problem which has been treated by heuristic approaches to solve
a huge deterministic MIP problem, see e.g., Boland, Dumitrescu,
Froyland, and Gleixser (2009) and references therein. We consider
here a planning problem for a large underground mine, El Teniente
in Chile. The management mine has also used a large scale deter-

ministic MIP, with heuristics, to support long range planning, see
Caro, Epstein, Santibañez, and Weintraub (2007) and Epstein
et al. (2012). The planning involves decisions regarding which
blocks to extract each year, which machinery to use, how to trans-
port the material for grinding and processing into commercial cop-
per, etc. The use of the deterministic model has been very
successful, yielding an improvement in Net Present Value over a
25 year horizon of about 5%, over 100 million US $. In this paper,
we introduce explicitly the issue of uncertainty, which is of con-
cern to the firm. There are two major sources of uncertainty in
the firm’s planning. One is derived from the market. Copper prices
are highly volatile, especially lately, and hard to predict. This
uncertainty is represented in the paper by a multistage scenario
tree, and is treated by a scenario analysis scheme. The other main
source of uncertainty is the grade (% of copper) in different parts of
the mine. Prospecting can improve knowledge about the grade. In
addition, as the extraction of the mine progresses, more informa-
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tion on grades becomes available, so we do not deal with that
uncertainty in this paper. Only uncertainty in prices is considered.

In this work we consider a time horizon of 5 years (so, it is a
medium range planning), which is appropriate for making com-
mercial decisions related to copper sales. The uncertainty is re-
flected through price scenarios, which define a possible price for
each period (typically, a year) throughout the horizon. The deci-
sions to be made concern the quantity of copper to extract in each
period and the blocks from which it will be extracted. To solve the
problem, we need to satisfy the nonanticipativity principle (J-B
Wets, 1974; Rockafellar & Wets, 1991). The satisfaction of the re-
lated constraints is implicit in the Deterministic Equivalent Model
(DEM) presented below in compact form, which is equivalent to
the stochastic model.

The deterministic problem is already very large, as all 30 by 30
by 30 meter blocks in the mine are defined explicitly. The detailed
mixed 0–1 DEM is therefore also very large, even considering only
a 5 year horizon. Since on the one hand, in stochastic modeling the
basic problem needs to be solved repeatedly and, on the other
hand, decision making at this level does not require a high level
of detail, we first reduce the size of the problem through an aggre-
gation procedure, with a low loss in optimality. The uncertainty in
the copper prices will be represented by a set of scenarios in the
aggregated model. We will present a tight mixed 0–1 DEM, such
that a state-of-the-art commercial solver can solve the instances
for a moderate number of scenarios.

We first introduce the stochastic model by maximizing the ex-
pected profit along the time horizon over all scenarios (i.e., as in a
risk neutral environment), subject to the satisfaction of all the
problem constraints in all defined scenarios. We are able to solve
very large tight DEMs (up to 800,000+ constraints, 274,000 0–1
variables and 1900+ continuous variables) using a state-of-the-
art MIP solver for cases with 77-scenarios in a reasonable amount
of elapsed time; see Section 5. The expected profit is maximized
but the DEM does not consider the risk of scenarios with bad con-
sequences. Thus, in addition, we present several approaches for
risk management in a risk averse environment, namely, (1) the
maximization of the well known Value-at-Risk (VaR), (2) the max-
imization of several variants of the Conditional Value-at-Risk
(CVaR), (3) the maximization of the mean-risk, i.e., the expected
profit minus the weighted probability of a ‘‘bad’’ scenario occurring
for the given solution provided by the model, (4) the maximization
of the expected profit subject to first-order stochastic dominance
constraints recourse-integer (sdc) for a set of profiles given by
the pairs of target profits and bounds on the probability of failure,
and (5) the maximization of the expected profit subject to
second-order sdc whose set of profiles are given by the pairs of tar-
get profits and bounds on the expected shortfall. An extensive
computational experience on a realistic problem is presented by
comparing the risk neutral approach, the above risk averse strate-
gies and the performance of the traditional deterministic approach
by considering the expected value of the uncertain parameters.

There is a vast literature on production planning under uncer-
tainty, where it is represented by a set of scenarios. See hierarchi-
cal approaches in Gfrerer and Zapfel (1995) and Lasserre and Merce
(1990). For recent state-of-the-art surveys, see Alonso-Ayuso,
Escudero, and Ortuño (2007), M- Choi and Chiu (2012), and Graves
(2008). Most of the approaches only consider two-stage environ-
ments, but we are interested in multistage production planning
problems as the subject of our work, where the uncertainty presen-
tations and decision variables are structured in scenario trees as
the works in Ahmed, King, and Parija (2003), Alonso-Ayuso et al.
(2007), Baricelli, Lucas, and Mitra (1996), Brandimarte (2006), Cris-
tobal, Escudero, and Monge (2009), Eppen, Martin, and Schrage
(1989), Escudero, Galindo, Gómez, García, and Sabau (1999),
Graves (2008), Huang (2005), Leung, Tsang, Ng, and Wu (2007),

Lucas, Mirhassani, Mitra, and Poojari (2001), Lulli and Sen (2002),
Romeijn (2002), Santoso, Ahmed, Goetschalckx, and Shapiro
(2005), Tomasgard and Høeg (2005), among others. Most of these
works consider only the uncertainty in the demand along the time
horizon but, while this is an important parameter, there are some
other parameters that have also uncertainties, as the frequent vol-
atile prices of the products in our case. Additionally, most of the
previously cited works only consider the risk neutral strategy
(i.e., the optimization of the objective function expected value
(i.e., cost) over the scenarios, without considering the variability
of the objective function values for specific scenarios and, then,
without minimizing (or reducing, at least) the impact of the bad
scenarios. Risk averse strategies have been recently considered in
the literature, by using a mean-risk approach. One of the first ap-
proaches in the so named excess probability strategy introduced
in Schultz and Tiedemann (2003), where the aim is to minimize
a combination of 1. expected cost and 2. weighted probability of
scenarios whose cost is over a given threshold. Another interesting
work that uses a risk averse strategy is presented in Eppen et al.
(1989), where the aim is to minimize the expected cost surplus
over the scenarios.

The other risk averse strategies that are used in our mining
problem such as Value-and-Risk (Charpentier & Oulidi, 2008;
Gaivoronski & Pflug, 1999; Gaivoronski & Plug, 2005), different
variants of the Conditional Value-at-Risk (CVaR) (Ahmed, 2006;
Beraldi, Consigli, de Simone, Iaquinta, & Violi, 2011; Colvin & Mar-
avelias, 2011; Ehrenmann & Smeers, 2011; Ogryczak & Sliwirski,
2011; Rockafellar & Uryasev, 2000; Schultz & Tiedemann, 2006;
Shapiro, Dencheva, & Ruszczynski, 2009), Stochastic Dominance
Constraints (SDC) strategies, see Dentcheva and Ruszczynski
(2003), Dentcheva and Martinez (2012), Gollmer, Neise, and
Schultz (2008), and Gollmer, Gotzes, and Schultz (2011) and the
references therein, among others, are more frequently used in
the electric sector. See in Conejo, Carrion, and Morales (2010) a
set of applications of decision making under uncertainty in the
electricity market with risk aversion by using some of the above ci-
ted strategies for a two-stage setting. See also Aranburu, Escudero,
Garín, and Pérez (2012, chap. 8), Drapkin, Gollmer, Gotzes, Neise,
and Schultz (2009), Drapkin et al. (2011), Fabian, Mitra, and Roman
(2013), Fabian et al. (2008), Fabian et al. (2011), and Lizyayev
(2012) for applications of the two-stage SDC strategies, specifically,
in energy and finance, among others, particularly for second-order
SDC by using Lagrangean and cutting plane approaches. See Artz-
ner, Delbaen, Eber, and Health (1999), Ruszczynski and Shapiro
(2006) for the axioms for coherent measures in two-stage settings
and Artzner, Delbaen, Eber, Health, and Ku (2007) for its extension
to the multistage setting.

The main contributions of the paper are as follows:

1. We Present a tight MIP model for solving difficult medium-
range deterministic copper extraction planning problem.
We also extend the deterministic model for allowing to
consider copper price uncertainty in the model by scenario
analysis, given its high volatility. As a result, we can par-
tially reduce profit impact of the solution in non-desirable
scenarios by maximizing the expected profit over the sce-
narios (i.e., the so named risk neutral strategy is used) sub-
ject to the satisfaction of the constraint system for all
scenarios in the multistage scenario tree used for repre-
senting the uncertainty. The resulting DEM has huge
dimensions.

2. We introduce a variant of CVAR strategy in which a combi-
nation of the VaR and the weighted Conditional expectation
above VaR is maximized in contrast to the traditional CVaR
strategy. The results are very good at the cost of requiring a
higher computational effort.
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3. We present a non-trivial extension to the multistage envi-
ronment of well known two-stage risk averse strategies
(some of them very recently introduced in the literature,
and one of the CVaR strategies is new) and performing for
the first time, to our knowledge, a computational compari-
son of the advantage of risk reduction by each strategy at
the cost of reducing (sometimes only slightly) the expected
profit obtained by the risk neutral approach. It is not the
first time that risk averse measures have be been used for
risk management of multistage stochastic mixed 0–1 prob-
lems, see Colvin and Maravelias (2011), Conejo et al. (2010),
Gaivoronski, Sechi, and Zuddas (2012), and Pflug and
Römisch (2007), for instance, a good up-to-date survey on
risk averse strategies in multistage problems has been pre-
sented in Pflug and Römisch (2007), computational studies
of VaR variations and CVAR multistage strategies have been
presented in Beraldi et al. (2013), Colvin and Maravelias
(2011), and Philpott and de Matos (2012) for capital budget-
ing, pipeline planning and dynamic scheduling in general,
respectively, and a study for water resource management
in a multistage environment has been presented in Gaivo-
ronski et al. (2012) by iteratively reoptimizing (1) the bal-
ance between the water level target delivery and the level
risk to meet, measured the latter one by the semi-deviation
of the scenario levels versus the estimated one, and (2)
studying the worst case scenario by barycentering the level
of user demand, among others. As far as we know, however,
no multistage extension of the other risk averse measure
but minmax, VaR, CVaR and semi-deviation bounding has
yet been performed. No computational comparison of mul-
tistage risk measures has been performed either.

4. Computationally we recognize that a plain use of even
state-of-the-art MIP solvers cannot solve large-scale multi-
stage stochastic MIP problems where risk reduction is to be
performed by cross scenario risk averse strategies. Instead
of using MIP solvers, it is strongly suggested to use some
decomposition algorithm, as outlined in Section 6.

The remainder of the paper is organized as follows. In Section 2
we describe the mining problem, including the aggregation pro-
cess; also, a tight mixed 0–1 optimization model is presented for
the deterministic version of the problem, in which all parameters
are assumed to be known in advance. In Section 3, the copper price
uncertainties are presented, the scenario analysis methodology
that is used to deal with the uncertainty is also presented and
the model for the risk neutral environment is given. Section 4 pre-
sents the risk averse strategies of our choice, namely, VaR, several
variants of CVaR, mean-risk and the sdc strategies. Section 5 re-
ports on the computational experiment using a state-of-the-art
MIP solver, with three illustrative large-scale 27-, 45- and 75-sce-
narios cases. It also reports the computational comparison be-
tween the risk neutral strategy and the traditional deterministic
strategy where the uncertain parameters have been replaced by
the expected ones. Section 6 concludes, outlining our future work
that, basically, will consist of using decomposition algorithms for
the splitting variable representation of the problem. In this way,
the solution of larger instances can be obtained with reasonable
computational effort, something that cannot be done using a MIP
solver, even when using the compact representation of the model.

2. The mining problem

2.1. Problem description

We consider an underground mine that has to be mined along a
time horizon. Mining is carried out in several sectors of the mine.

In each sector, there are a number of vertical columns, composed
of blocks of 30 meters by 30 meters by 30 meters. Each column
has a height of hundreds of meters. Thus, a column may consist
of up to 50 vertical blocks. The columns are adjacent to each other,
and are extracted in sequence.

The extraction method used is called block caving: At each
drawpoint of a column, a void is created so that the rock breaks
and falls due to gravity (see Fig. 1). The danger of block caving is
that it removes much of the supporting rock from underneath
the surface rock, often leading to subsidence, the gradual settling
or sinking of the surface. Thus, the following specific rules must
be respected in the mining process:

� The columns enter production in a specified sequence,
given by their spacial location.

� For mechanical structural reasons, the height of columns
cannot be arbitrary. When considering neighboring col-
umns, their height cannot be too different. In this form, if
a column r reaches a height H, the columns neighboring r
need to be extracted with height close to H. This condition
is called neighborhood smoothness.

� At each drawpoint there is a maximum extraction rate to
prevent the roof from collapsing and a minimum number
of blocks to be extracted from each column to ensure a
proper structure of the remaining mine.

Additionally, there is a cost associated with increasing or
decreasing production in a sector from one period to the
next one.

Fig. 2 depicts a typical flow process. In the block caving
process, the broken rock is removed from the bottom of the
columns and hauled using specialized machinery to a dumping
point. There, through gravity rock is driven through a draining
process and then the ore reaches a crusher where a rock
reduction process is carried out. Finally, the crushed rock
reaches a lower level, where it is sent via train to downstream
processes. There are two processing streams in the plants,
called B and C.

Decisions need to be made on when to cave in each column,
when to move to the next column, and how far up in the column
to extract. The rate of copper content tends to drop as we go up
the column, so, depending on copper prices, it may be preferable

Fig. 1. Block Caving Diagram. http://technology.infomine.com/reviews/Blockca-
ving/welcome.asp.
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at some point to drop the present column and move to the next
one. At any rate, once a column is dropped from production, it can-
not be re-entered due to mechanical and stability issues. Another
important decision consists of selecting which of the available sec-
tors should be worked on. Then, downstream operations need to be
integrated, including transportation, rock reductions, operations at
mills and concentration plants until commercial copper is pro-
duced. The mine process can be represented in a network form,
where the nodes represent specific activities and the arcs represent
transportation, as shown in Fig. 3.

An aggregation procedure was presented in Weintraub,
Pereira, and Schultz (2007) to reduce the size of the determin-
istic version of the problem. The aggregation was based on a
cluster analysis (Zipkin, 1980), where the blocks of the original
problem were aggregated based on spatial neighborhoods and
similarities on the grade contents in copper and molibdenum,
i.e., tons produced and extraction speed. The aggregation
process involves defining components which are of significance
to obtain an aggregate value. In this form, weights are assigned
to each component according to their significance for the final
value. In the mining problem, the most important component
was speed of extraction. The clustering method was a modifica-
tion of the approach proposed in Hartigan (1975). This aggrega-
tion process insures feasibility when the solution is again
disaggregated. Fig. 4 shows an example with 50 blocks
disposed in 10 columns. The figure depicts an example of
how the blocks have been aggregated into 20 clusters. Note
that a cluster can include blocks from different columns; for
instance, cluster 12 consists of 4 blocks that form an L. It is
worth pointing out that, due to the extraction method, precedence
relations do exist. For example, clusters 20 and 16 need to be
extracted before cluster 15, since extraction is performed by
gravity. In special cases, clusters are linked so that they have
to be extracted simultaneously. In the aggregated form, the
smoothness of extracted columns is not preserved directly.
When disaggregating, the cluster solution smoothness is imposed
again. We use the aggregated model in the stochastic version
of the problem presented in this paper.

2.2. Deterministic model

We now present a tight deterministic MIP model for the aggre-
gated version of the problem, where some blocks have been aggre-
gated into clusters. The notation to be used through the paper is as
follows:

2.2.1. Sets

� T , set of periods in the time horizon.
� S, set of sectors.
� Ks, set of clusters in sector s, for s 2 S.
� T k, set of periods when cluster k can be reached in the

extraction process, for k 2 Ks; s 2 S.
� Ps, set of subsets of clusters in sector s, such that each ele-

ment Pi in Ps is a set of clusters that must be extracted
simultaneously, for s 2 S. Note 1: T k ¼ T k0 , for
k; k0 2 Pi;Pi 2 Ps; s 2 S. Note 2: Ps defines a partition of
Ks, for s 2 S.

� Predk, set of predecessor clusters of cluster k, such that all
clusters in Predk must be extracted by the time cluster k
is extracted, for k 2 Ks; s 2 S. Note 1: Predk � Ks, for
k 2 Ks; s 2 S. Note 2: T k should be defined taking into
account the precedence relationships defined by set Predk.

2.2.2. Parameters

� percentcu
k and percentmo

k , percentage of copper and molybde-
num in cluster k, respectively, for k 2 Ks; s 2 S.

� areak, maximum area (in m2) that can be mined in cluster k,
for k 2 Ks; s 2 S.

� TONk, number of tons of rock that can be processed in clus-
ter k at any period (i.e., a year), for k 2 Ks; s 2 S.

� TONini
s , number of tons of rock that have been processed in

sector s at the pre-initial period (i.e., period 0), for s 2 S.
� TON, maximum number of tons of rock that can be pro-

cessed per period.
� TONst, minimum number of tons of rock that can be pro-

cessed, if any, in sector s at period t, for s 2 S; t 2 T .
� TONþst and TON�st , maximum increase and decrease of tons of

rock processed in sector s from period t-1 to period t,
respectively, for s 2 S; t 2 T .

� areas and areas, maximum and minimum area that can be
processed (in m2) in sector s, respectively, for s 2 S.

� TONB
t , maximum number of tons of rock that can be pro-

cessed at stream B at period t, for t 2 T .
� discountt, discount factor in period t for prices and costs, for

t 2 T .
� pricecu

t and pricemo
t , copper price and molybdenum price per

ton at period t, respectively, for t 2 T .
� costm

st , cost per ton unit of mining in sector s at period t, for
s 2 S; t 2 T .

� costa
st , cost per ton unit of area in sector s at period t, for

s 2 S; t 2 T .
� costþst and cost�st , cost per ton unit of production increase and

decrease from period t � 1 to period t, respectively, for
s 2 S; t 2 T .

� costB
t and costC

t , cost per ton unit of processing at streams B
and C at period t, respectively, for t 2 T .

2.2.3. 0–1 Variables

� zkt takes the value 1 if cluster k is extracted in period t and 0
otherwise, for t 2 T k; k 2 Ks; s 2 S.

� xs takes the value 1 if sector s is extracted and 0 otherwise,
for s 2 S.

2.2.4. Continuous variables

� tonst, number of tons of rock extracted in sector s at period
t, for s 2 S; t 2 T .

� tonþst and ton�st , increase and decrease in the number of tons
extracted in sector s at period t, for s 2 S; t 2 T .

� tonB
t and tonC

t , number of tons sent to process in period t in
processing streams B and C, respectively, for t 2 T .
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Fig. 2. Underground mine with processing streams B and C in the Plants.
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2.2.5. Objective function

max
X
t2T

discountt

X
s2S

X
k2Ks

TONk pricecu
t percentcu

k þpricemo
t percentmo

k

� �
zkt

"

�
X
s2S

costm
st tonstþ costa

st

X
k2Ks

areakzktþ costþsttonþstþ cost�stton�st

 !

�costB
t tonB

t � costC
t tonC

t

#
: ð1Þ

Function (1) maximizes the net present value of the total profit
along the time horizon. The profit for each period includes the in-
come from selling the extracted copper and molibdenum, reduced
by the mining and sector costs, the cost of production increase
and decrease from one period to the next one, and processing costs.

2.2.6. Constraints

X
t2T k

zkt 6 xs; 8k 2 Ks; s 2 S ð2Þ

X
t02T k :t06t

zkt0 6
X

t02T j :t06t

zjt0 8j 2 Predk; t 2 T k; k 2 Ks; s 2 S ð3Þ

zkt ¼ zk0t 8t 2 T k; k; k0 2 Pi; Pi 2 Ps; s 2 S ð4Þ

tonst ¼
X

k2Ks :t2T k

TONkzkt 8s 2 S; t 2 T ð5Þ

tonB
t þ tonC

t ¼
X
s2S

tonst 8t 2 T ð6Þ

tonþst � ton�st ¼
tonst � TONini

s ; if t ¼ 1
tonst � tons;t�1; if t > 1

(
8s 2 S; t 2 T ð7Þ

areasxs 6
X
k2Ks

areak

X
t2T k

zkt 6 areasxs 8s 2 S ð8Þ

X
s2S

tonst 6 TON 8t 2 T ð9Þ

TONstxs 6 tonst 8s 2 S; t 2 T ð10Þ

0 6 tonB
t 6 TONB

t 8t 2 T ð11Þ

0 6 tonþst 6 TONþstxs 8s 2 S; t 2 T ð12Þ

0 6 ton�st 6 TON�stxs 8s 2 S; t 2 T � f1g ð13Þ

0 6 tonC
t 8t 2 T ð14Þ

zkt 2 f0;1g 8t 2 T k; k 2 Ks; s 2 S ð15Þ

xs 2 f0;1g 8s 2 S: ð16Þ

Constraints (2) guarantee that no cluster is processed in an unse-
lected sector and, additionally, they ensure that each cluster is pro-
cessed at most once. There are different alternatives for modeling
precedence relationships. However, constraints (3), that guarantee
that if a cluster is processed at a given period then all predecessor
clusters are also processed by that period, have given very good re-
sults in other contexts since it results in a stronger model (see Agus-
tín, Alonso-Ayuso, Escudero, & Pizarro, 2012; Bertsimas & Stock,
1998, among others). Our results confirm those other results. Notice
that this type of constraints does not force a cluster to be processed
if any of its predecessors is processed. Additionally, if a predecessor
cluster has not been processed, then the given cluster cannot be
processed yet. Constraints (4) force the clusters in set Pi to be ex-
tracted simultaneously in each sector. Constraints (5) evaluate the
number of tons processed in each sector at each period. Constraints
(6) are the flow conservation constraints for the processing stream.
Constraint (7) calculates the increase and decrease in the number of
tons processed in each period, respectively. Constraints (8) impose
upper and lower bounds for the total area processed in each sector.
Constraints (9) and (10) impose bounds on the number of tons pro-
cessed in each period. Constraints (11) impose an upper bound due
to the capacity of processing stream B. Stream C is not a bottleneck.
The volumes (tons) processed are well below the capacity of stream
C, so its capacity is never an active constraint. Constraints (12) and

Fig. 3. Network flow representation of the mining process.

Block

Cluster

Fig. 4. Clustering process.
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(13) bound the maximum increase and decrease of tons in each sec-
tor in each period.

As stated above we consider the underground mine El Teniente
(Chile) as our pilot case. It is exploited by CODELCO, one of the
leading copper extracting companies in the world. The time hori-
zon is 5 years (from 2006 to 2010). The overall number of sectors
is 18, but given our horizon, only 3 of them are considered as ac-
tive, S ¼ fES; FW ;NNg. The extraction can only be carried out either
on the two smaller sectors (FW and NN) or on the larger one (ES).
Then, the following constraints must be added to the model:

xES þ xFW 6 1
xES þ xNN 6 1

Those sectors have jKESj ¼ 2100; jKFW j ¼ 664 and jKNN j ¼ 2640 clus-
ters. The column numbers go from 70 to 2500, each with a basal
area between 250 m2 and 400 m2 and a height between 549 m
and 959 m. Thus, a column may consist of between 18 and 32 ver-
tical blocks.

CODELCO sells about 10% of the copper production that is
traded in the world. That means it is not a marginal price taker.
However, it cannot sell in the market any amount of copper. If
the amount put into the market is too large, it will drive down
prices. So, CODELCO plans the yearly production considering also
in some form its effect on prices, though not in a rigorous way.
In this form, it assigns limits of production to each mine, and sec-
tors. Constraints (9) and (10) limit from above and below the total
production in each period, which considers the limits of production
vis a vis markets. Once these limits on production are imposed, the
problem that we are addressing consists mainly of deciding how to
deal with the uncertainty resulting from the high volatility in
world copper prices (see Section 3). At any rate, whether TON is
bounded or not does not affect the tightness approach used in
the model design, nor the methodology for risk management pro-
posed in what follow.

3. Uncertainty in the (future) prices of copper

The deterministic model assumes that prices are known in ad-
vance of the planning decision. However, as we can see in Fig. 5,
copper prices can vary along the planning horizon. Notice the vol-
atility of the uncertain parameters which are therefore very diffi-
cult to predict.

For representing the uncertainty in copper prices, we use a sce-
nario tree approach in which uncertainty is modeled in terms of a
set of scenarios. See e.g., Alonso-Ayuso, Escudero, and Ortuño
(2003) for symmetric scenario trees, among many others, and
Escudero, Garín, Merino, and Pérez (2012) for nonsymmetric ones.
For this purpose we need the following definitions. A stage of a
time horizon is a set of one or more periods (in our case, years)
in which the random parameters are realized; a scenario is the real-
ization of uncertain parameters during the stages of the time hori-
zon; and each node at a given stage represent the group of
scenarios with the same uncertain parameter realizations up to
that stage. (That is, a node defines a group of partial scenarios.)

To illustrate the multistage scenario tree concept, let Fig. 6 de-
pict a symmetric scenario tree in which each node represents a
stage, where a decision can be taken. Once a decision has been ta-
ken, various possible situations may occur. In our example there
are two situations in stage t = 2. This information is generally pre-
sented in the form of a tree in which each path from the root to a
leaf represents a scenario and corresponds to the realization of the
entire set of uncertain parameters. For example, path {1,3,6,12}
represents one scenario, and it is customary to call it scenario 12.
In what follows, we do not distinguish between a scenario (or a
group) and the corresponding node on the tree (with the same

number). Each node in the tree must be associated with a group
of scenarios in such a manner that any two scenarios belong to
the same group (i.e., having the same partial scenario) in a given
stage if they include the same occurrences of uncertain parameters
up to that stage. In this case, the well known non-anticipativity
principle applies. It was stated in J-B Wets (1974) and restated in
Rockafellar and Wets (1991); see also Birge and Louveaux (2011),
among others. This principle ensures that the solution at each t
does not depend on information that is yet unavailable and re-
quires that the decisions pertaining to scenarios in the same node
(i.e., partial scenarios with the same value in the parameters) be
the same. For example, for stage 3, scenarios 12 and 13 belong to
the same node associated with path {1,3,6}, i.e., with node g = 6.
Notice the difference between a scenario (a path from the root
node to a leaf node) and a partial scenario (a path from the root
to an intermediate node).

The notation for the scenario tree to be used in the paper is as
follows:

T , set of stages in the time horizon 1, 2, . . . , T.
T �, set of all stages except the last one.
X, set of scenarios.
G, set of nodes.
Gt , set of nodes in stage t ðGt #GÞ, for t 2 T .
Xg, set of scenarios in node g (Xg # X), for g 2 G.

r(g), immediate ancestor node of node g, for g 2 G. Notice that
Xg = {x} for g 2 GT , where x is the related scenario x from
X in node g.

N g , set of ancestor nodes to node g, including itself..

Let us consider the following deterministic problem

max axþ cy

s:t: Axþ By ¼ b

x 2 f0;1gn
; y P 0;

ð17Þ

where m, n and nc are the number of constraints, and 0–1 and con-
tinuous variables, respectively, a and c are n- and nc-dimensional
objective function coefficient vectors, respectively; b is the m-
dimensional right-hand-side (rhs) of the constraint system; A and
B are m � n and m � nc constraint matrices, respectively; and x
and y are the n-vector of 0–1 variables and the nc-vector of contin-
uous variables along the set T of periods, respectively. If the param-
eters of vector c (i.e., copper prices) in this problem are random
parameters with a set of discrete occurrences, say, cx over the set
X of scenarios x 2X, we will model our problem for maximizing
the expected profit over the scenarios as follows:

max
X
x2X

wxðaxx þ cxyxÞ

s:t: Axx þ Byx ¼ b 8x 2 X

ðx; yÞ 2 N
xx 2 f0;1gn

; yx P 0 8x 2 X;

ð18Þ

where wx is a positive weight/probability assigned to scenario x
(with

P
x2Xwx ¼ 1); xx and yx represent the x and y variables for

scenario x, respectively. N , the non-anticipativity set, is defined by

N ¼ vjvx
t ¼ vx0

t ; 8x; x0 2 Xg ; g 2 Gt ; t 2 T �
� �

; ð19Þ

where v = (x,y) and vx
t is such that vx ¼ vx

t ;8t 2 T
� �

. Upon incor-
porating the set (19) in model (18), we can obtain the related mul-
tistage Deterministic Equivalent Model (DEM). The non-
anticipativity set can be represented implicitly, through the variable
definition (compact formulation) or explicitly, including new con-
straints in the model (splitting variable representation), see (Escu-
dero et al., 2012), among others. For the purpose of the paper, we
will only consider the compact representation since it is to be
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solved by a commercial MIP solver, and the splitting variable repre-
sentation is more focused on decomposition methods, Section 6.

Variables in model (1)–(16) have nonzero coefficients only in
the constraints related to two consecutive stages (in our case,
yearly periods) and the objective function is to maximize the ex-
pected value (i.e., mean) of the expected profit (risk neutral) of
all scenarios. The model can be represented as follows:

QE ¼max
X
g2G

wgðagxg þ cgygÞ

s:t: A0xrðgÞ þ Axg þ B0yrðgÞ þ Byg ¼ b 8g 2 G
xg 2 f0;1gnt ; yg P 0 8g 2 G;

ð20Þ

where wg ¼
P

x2Xg wx gives the weight assigned with node g, nt is
the number of x and y variables at stage t, and ag and cg are the
counterparts of parameters a and cx related to node g, for g 2 G,
such that the values of the parameters for each scenario in the node
are identical. Additionally, xg and yg represent the x and y variables
for node g, respectively, and A0 and B0 are the constraint matrices in
node g for the x and y variables related to the immediate ancestor of
node g. Notice that in our case, the values of the vectors ag are the
same for the nodes {g} that belong to the same stage t, i.e., the
groups in Gt .

It is beyond the scope of this work to present a methodology for
multistage scenario tree generation and reduction; see e.g., Beraldi
and Bruni (submitted for publication), Dupacova, Consigli, and
Wallace (2000), Heitsch and Römisch (2009), Hoyland, Kaut, and
Wallace (2003) for different alternative ways for performing it. A
rigorous development of scenario trees for future copper prices is
extremely complex. To our knowledge it is still an open research
problem. However, as an illustrative instance, Fig. 7 depicts an ad

hoc generated multistage 27-scenario tree for the copper prices
during the years 2006 to 2010. The procedure basically consists
of considering a base price for copper in 2006 ($2567 per ton).
From each node in the tree, three sons are created: the first one
has a price 35% greater than his father, the second one has the
same price that the father and the third one has a price 35% lower
than the father. We assume that the modeler gives more likelihood
to the increase of the copper prices, and, then, the weights for each
of the three sons are 3

6 ;
2
6 ;

1
6

� �
, respectively. All scenarios clearly

have the same price, 2576 US$/ton for stage 1 (i.e., year 2006), then
prices go up or down. For stage 5 (i.e., year 2010) the range is from
705 to 6316 US$/ ton, see the statistical historical information in
COCHILCO (1996–2011). Results of the computational experience
for cases with 27-, 45- and 75-scenario trees are reported in
Section 5.

4. Risk aversion management

The only goal of the model that we considered in the previous
section was to maximize only the expected value of the objective
function and, thus a so called risk neutral strategy was considered.
The main criticism that can be made about this very popular mean
strategy is that it ignores the variance in objective function value
over the scenarios and, in particular, the ‘‘left’’ tail of the undesir-
able scenarios. There are, however, some other approaches that,
additionally, deal with risk management in a risk-averse approach
by considering, e.g., scenario immunization, see Dembo (1991),
and its treatment in Escudero (1995), semi-deviations (Ogryczak
& Ruszczynski, 1999), value-and-risk and conditional value-at-risk
(Rockafellar & Uryasev, 2000; Schultz & Tiedemann, 2006), excess
probabilities (Schultz & Tiedemann, 2003), and first- and second-
order stochastic dominance constraint recourse-integer strategies
(Gollmer et al., 2008; Gollmer et al., 2011) and references
therein, among others. In this section we present a modification
of model (20) that allows us to consider the risk aversion
environment.

Let us consider R(X,X) a risk measure such that their larger val-
ues correspond to the larger values of risk. We consider the follow-
ing risk averse measures, which take into account the bad tail of
the profit distribution over the scenarios:

� R(X,X) = �VaRb(X,X): Well known theoretical research
suggests that the measures based on quantiles are good
functions for risk management. Among them, the Value-
at-Risk (VaR) has turned into a reference to many applica-
tions in the financial, transportation and productions plan-
ning sectors, among others. That approach is very attractive
since it is easy to interpret. By definition, the VaRb(X,X) of a
solution X to the problem is the highest value, say a, such
that the sum of weights of the scenarios in X with a profit
lower than a is no greater than b (where b 2 (0,1) is pro-
vided by the modeler).

Fig. 5. Historical data for copper prices (USD cents/LB).

Fig. 6. A multistage scenario tree.
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� R(X,X) = �CVaRb(X,X). The advantage of the VaR strategy
over the traditional maxmin strategy is obvious, since it
specifies a bound b on the probability of the occurrence
of a scenario whose profit is below a. However, it does
not consider how bad the scenarios with a profit below
VaR can be. The b-Conditional Value-at-Risk (b-CVaR),
defined as conditional expectation of profit below a, takes
into account the profit of these undesirable scenarios. See
Rockafellar and Uryasev (2000) and Schultz and Tiedemann
(2006).

� R(X,X) = DP/(X,X). As an alternative to the VaR and CVaR
strategies, this risk measure so called Deficit Probability
(see Schultz & Tiedemann, 2003) is defined as the sum of
the weights of the scenarios in X with an associated profit
below a given threshold, say /, that is provided by the
modeler.

� Stochastic dominance constraint recourse-integer strate-
gies (sdc): The previous risk measures can be integrated
in a mean-risk model, in which the maximization of profit
is combined with the minimization of risk. As an alterna-
tive to the previous strategies, let us consider the recent
approaches based on the classic concept of first- and sec-
ond-order sdc, see Gollmer et al. (2008) and Gollmer
et al. (2011), respectively. This concept aims at identifying
acceptable feasible solutions so that the strategy optimizes
over them. ‘‘A random variable X is said to be stochastically
greater in first order, respectively second order, than a ran-
dom variable Y, i.e., X � 1Y, respectively X � 2Y, iff Eh(X) P
Eh(Y) for all nondecreasing, respectively nondecreasing
convex, functions h for which both expectations exist’’ see
Gollmer et al. (2008), respectively Gollmer et al. (2011).

The concepts and notation to be used in our approach are as
follows:
– First order stochastic dominance. The modeler gives a

set of profiles P ¼ fð/p; bpÞ; p ¼ 1; . . . ; Pg, where /p is
the threshold profit to be satisfied by any scenario x
in X and bp is the bound of the probability of failure,
such that the sum of the weights of the scenarios in x
with profit below /p must be upper bounded by bp,
p = 1, . . . , P.

– Second order stochastic dominance. The modeler gives a
set of profiles P ¼ fð/p; epÞ; p ¼ 1; . . . ; Pg, where /p is as
above and ep is the upper bound of the expected profit
shortfall. The concept of the expected shortfall of the
profit on reaching a given threshold may have its roots
in the Integrated Chance Constraints concept introduced
in Klein (1986), see also Eppen et al. (1989) and Klein
and van der Vlerk (2006).

Some of these risk measures, and many other approaches in the
literature, try to reduce the probability of occurrence of undesir-
able scenarios or the maximization of the solution value for the
worst scenario with a given probability of failure, but they do
not pay attention to the best scenarios (except the last strategy
depending on the number of profiles). On the contrary, decision
makers usually look for a trade-off between the risk minimization
and the profit maximization. For this reason, the risk measures are
usually combined with the optimization of the expected value of
the objective function (see above), leading to strategies that com-
bine Expected Value and Deficit Probability (Schultz & Tiedemann,
2003) and Expected Value and CVaR (Schultz & Tiedemann, 2006),
among others. All of the above cited risk averse strategies are pre-
sented for the two-stage setting and, to our knowledge, they have
not been used in the multistage setting, and this extension is non-
trivial. What follows show how these approaches are modeled in a
multistage stochastic mixed 0–1 program by including some new
0–1 variables and/or constraints.

4.1. Qe & VaR: Value-at-Risk strategy

The model that maximizes a combination of the expected profit
and the Value at Risk can be represented as follows:

max c
X
g2G

wgðagxgþcgygÞþqa

s:t: A0xrðgÞ þAxgþB0yrðgÞ þByg ¼ b 8g 2GX
g02N g

ag0xg0 þcg0yg0
� �

þMxmx Pa 8g 2GT ; where Xg ¼fxg

X
x2X

wxmx
6 b

xg 2f0;1gnt ; yg P 0 8g 2G
mx 2f0;1g 8x2X

a2R;

ð21Þ

where a is a rational variable, mx is a 0–1 variable with value 1 if the
profit for scenario x is smaller than a and 0 otherwise, Mx is a big
enough parameter (although for computational purposes, it should
be as small as possible, but still allowing any feasible solution to the
original problem), and c and q are weighting factors, such that
c 2 {0,1} and q > 0. Remember that N g is the set of ancestor nodes
in the path back from leaf node g to root node 1. Note: The b prob-
ability of failing to satisfy a given constraint may have its roots in
the concept of Chance Constraints introduced in Charnes and Coo-
per (1959).

Fig. 7. Copper prices (US$ per Ton) in the 27-scenario tree instance.
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4.2. VaR & overCVaR: Conditional expectation above VaR strategy

As stated at the beginning of Section 4, the advantage of the VaR
strategy over the traditional maxmin strategy is obvious since it
takes into account a bound on the probability of the occurrence
of scenarios whose profit is below VaR. However, it does not con-
sider how bad the scenarios with a profit above VaR can be. By con-
trast, the so-called VaR & overCVaR strategy maximizes a
combination of the VaR and of the weighted Conditional expecta-
tion above VaR, and the model is as follows:

max aþ q
X
g2GT

wg

X
g02N g

ag0xg0 þ cg0yg0
� �

� a

0
@

1
A
þ

s:t: A0xrðgÞ þ Axg þ B0yrðgÞ þ Byg ¼ b 8g 2 GX
g02N g

ag0xg0 þ cg0yg0
� �

þMxmx P a 8g 2 GT ;

where Xg ¼ fxgX
x2X

wxmx
6 b

xg 2 f0;1gnt ; yg P 0 8g 2 G
mx 2 f0;1g 8x 2 X:

ð22Þ

where z+ = max{0,z}.

4.3. Qe & CVaR: Conditional expectation below VaR strategy

The so-called Qe & CVaR strategy maximizes a combination of
the expected profit and the Conditional Value-at-Risk and can be
expressed as follows:

max c
X
g2G

wgðagxg þ cgygÞ

þ q a� 1
1� b

X
g2GT

wg a�
X

g02N g

ag0xg0 þ cg0yg0
� �0

@
1
A
þ

0
@

1
A

s:t: A0xrðgÞ þ Axg þ B0yrðgÞ þ Byg ¼ b 8g 2 G
xg 2 f0;1gnt ; yg P 0 8g 2 G
a 2 R

ð23Þ

Note: For c = 0 and q = 1 one obtains the CVaR strategy introduced
in Rockafellar and Uryasev (2000).

A more amenable representation of model (23) is as follows, see
Schultz and Tiedemann (2006):

max c
X
g2G

wgðagxgþcgygÞþq a� 1
1�b

X
x2X

wxvx

 !

s:t: A0xrðgÞ þAxgþB0yrðgÞ þByg ¼ b 8g 2G
a�

X
g02N g

ag0xg0 þcg0yg0g
� �

6vx 8g 2GT ; where Xg ¼fxg

xg 2f0;1gnt ;yg P 0 8g 2G
vx P 0 8x2X

a2R;

ð24Þ

where vx is a non-negative variable equal to the difference (if it is
positive) between a and the profit for scenario x. Therefore, in
the objective function, the weighted sum of this variables is
minimized.

4.4. Qe & DP: Deficit probability

Consider model (25), which maximizes the expected profit
minus the weighted probability of occurrence of any scenario
whose profit is below a given threshold, see Schultz and Tiede-
mann (2003). As in the VaR strategy, a new 0–1 variable per sce-
nario, say mx, is needed but now its value is 1 if the profit for
scenario x is smaller than the give threshold /, and 0 otherwise.

max
X
g2G

wgðagxgþcgygÞ�q
X
x2X

wxmx

s:t: A0xrðgÞ þAxgþB0yrðgÞ þByg ¼ b 8g 2GX
g02N g

ðag0xg0 þcg0yg0gÞþMxmx P/ 8g 2GT ; where Xg ¼fxg

xg 2f0;1gnt ;yg P 0 8g 2G
mx 2f0;1g 8x2X:

ð25Þ

4.5. Stochastic dominance constraint recourse-integer strategies

For a given set of profiles P ¼ fð/p; bpÞ; p ¼ 1; . . . ; Pg, the first-
order stochastic dominance constraint strategy (called sdc-1) can
be modeled as follows:

max
X
g2G

wgðagxgþ cgygÞ

s:t: A0xrðgÞ þAxgþB0yrðgÞ þByg ¼ b 8g 2GX
g02N g

ag0xg0 þ cg0yg0g
� �

þMxmxp P /p 8g 2GT ;where Xg ¼fxg; p2P

X
x2X

wxmxp
6 bp 8p2P

xg 2f0;1gnt ;yg P 0 8g 2G
mxp 2f0;1g 8x2X; p2P;

ð26Þ

where mxp is a 0–1 variable with value 1 if the objective function va-
lue for scenario x is smaller than threshold /p and 0 otherwise.

For a given set of profiles P ¼ fð/p; epÞ; p ¼ 1; . . . ; Pg, the second-
order stochastic dominance constraint strategy (called sdc-2) can
be modeled as follows:

max
X
g2G

wgðagxgþ cgygÞ

s:t: A0xrðgÞ þAxgþB0yrðgÞ þByg ¼ b 8g 2G
/p�

X
g02N g

ðag0xg0 þ cg0yg0gÞ6vxp 8g 2GT ;where Xg ¼fxg; p2P

X
x2X

wxvxp
6 ep 8p2P

xg 2f0;1gnt ;yg P 0 8g 2G
vxp P 0 8x2X; p2P;

ð27Þ

where vxp is a non-negative variable equal to the difference (if it is
positive) between threshold /p and the profit for scenario x, the so
called profit shortfall. Notice that this strategy does not require
additional 0–1 variables.

Solution considerations: We must point out that the models
(21), (22), (26) and (27) have a computational disadvantage
when compared with the models (24) and (25), since they have
constraints linking 0–1 variables from different scenarios. Notice
that the disadvantage is stronger for the models (26) and (27)
with jPj > 1 than for the models (21) and (22). At any rate, a
decomposition approach must be used for solving very large
instances. A Lagrange relaxation can be proposed for dualizing
those linking constraints as done in the strategy presented in
Gollmer et al. (2011) for the second-order sdc. Moreover, see
in Section 6 the outline of our future research work on this
subject.
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Obviously, the risk averse strategies may have better results
than the risk neutral one for decision makers with aversion to risk,
mainly to the so called black swan scenarios. The ranking of the
goodness of the strategies is only based on the modeler’s prefer-
ences but, undoubtedly, the CVaR strategies are better that the
VaR one. For sophisticated users, the stochastic dominance based
strategies are the ones that most protect the user from unwanted
scenarios implementations in terms of the profit obtained. So,
the planning problem that is the subject of our work is basically
a market related problem rather than a logistic problem. However,
we can observe in the results of Section 5 how much each risk
averse strategy reduces the risk at the cost of reducing the ex-
pected profit (that sometimes is not very high in our testbeds).

5. Computational experience

The previous models have been tested by using a realistic in-
stance. We present two different studies. First, we compare the
solution obtained by the deterministic expected value based model
with the solution obtained by the stochastic one using the risk neu-
tral strategy. In a second step, we analyze the impact of consider-
ing risk adverse measures in the model. We use three illustrative
cases related to 27-, 45- and 75-scenario trees, respectively. Note
that we use a discrete distribution for b-VaR and presenting the
uncertainty, while VaR and CVaR were initially proposed for con-
tinuous distributions. Therefore, the weight of each scenario for
small trees can be so big that only a small number of scenarios
can represent risky situations and, then, the VaR and CVaR values
could not be representative. Notice that changes in only one sce-
nario can cause big changes in the value of these risk measures.
For this reason, among others, a higher number of scenarios is
more interesting than a smaller one.

We can observe in Section 5.1 that the expected profit obtained
by using the risk neutral strategy is very similar to the Expected re-
sult of the Expected Value (EEV) obtained by the deterministic
model. However, given the volatility of the copper prices, the b-
VaR, b-CVaR and conditional expected negative profit are much
better by using the stochastic model than by using the determinis-
tic one. Additionally, the risk reduction provided by the other strat-
egies cannot be provided by the deterministic model.

Section 5.2 computationally analyzes the deterioration of the
expected profit due to the risk reduction obtained by the risk
averse strategies that have been studied in Section 4.

The computational experience has been carried out using the
following HW/SW platform: 2 quad-core Xeon E5450 3.0 gigahertz
64-bit processors with 6 megabyte of cache each and 64 gigabyte
(8 � 8 gigabyte) of 667 megahertz fully buffered RAM memory,
GAMS 23.6 (GAMS, 2011) as a modeler system and CPLEX v12.2
(IBM ILOG, 2010) as the optimizer. It uses realistic data from a
real-life copper extraction instance.

Table 1 shows the dimensions of the deterministic model based
on the expected value of the uncertain parameters and the risk
neutral DEM (20). The headings are as follows: m, number of con-
straints; n01, number of 0–1 variables; nc, number of continuous
variables; nel, number of nonzero elements in the constraint ma-
trix; and den, matrix density (in %). The dimensions are quite large
for the DEM instances.

5.1. Risk neutral approach: Deterministic versus stochastic models

Let us start with the stochastic model (20) applied to the 27-
scenario tree case depicted in Fig. 7 for the uncertainty in copper
prices. This model has been solved using two different values for
the termination criteria, namely, quasi-optimality gap bounds
GAP = 0.01% and 0.5%. Table 2 shows the main statistics of the solu-
tion obtained in both cases. Notice that a slightly better solution
has been obtained for the 0.01% maximum gap, but 20 hours of
computation were required, with a gap of 0.02% after 2000 seconds
of elapsed time. Given the solution’s quality and the required
elapsed time, we consider it reasonable to set the maximum gap
to 0.5%. Notice that this gap only refers to the profit (here, the
objective function to be maximized), called the solution value in
the table.

Let EV (Expected Value) denote the traditional deterministic
model where the uncertain parameters have been replaced by their
expected values, EEV is the Expected profit of the Expected Value,
obtained by applying the EV solution to the scenarios, and WS
(Wait-and-See) is the average of the profits obtained by the inde-
pendent models related to each scenario, which is an upper bound
of the expected profit of the original stochastic model. Notice that
the WS solution usually does not satisfy the relaxed non-anticip-
ativity constraints. The methodology for obtaining the EEV is very
well established for the two-stage setting, see Birge and Louveaux
(2011), but it is not for the multistage one, see Escudero, Garín, and
Pérez (2007). Alternatively, we propose the following methodology
for obtaining the EEV in a rolling horizon type of calculation (see
Agustín et al., 2012 for more details): (1) The solution for the first
stage is obtained from the EV solution, (2) Once the solution up to
stage t is fixed, jGt j independent scenario subtrees remain, (3) The
EV solution is independently obtained for the scenario subtrees,
whose root nodes are the nodes in Gt , so that the solution for each
root node is fixed to its EV solution, (4) The procedure continues
until stage T � 1, where the mixed 0–1 two-stage problems for
each related node are solved. So, at the end of the process there
is a solution for each scenario and EEV is obtained by weighting
the solution values for the scenarios as calculated by the proce-
dure. Table 3 shows the main results related to the WS and EEV
solutions. We can observe that the EEV solution value (in our case,
the expected profit) is only 0.6% smaller than that provided by the
risk neutral model (20). However, it has worse VaR, CVaR and con-
ditional expected negative profit than most of the alternative ap-
proaches presented above, even than the risk neutral
maximization of the expected profit over the scenarios along the
time horizon. Additionally, the expected profit deterioration by
using risk averse strategies may not be so high (depending on
the risk targets) but the risk reduction can be very strong.

Table 1
Model dimensions.

m n01 nc nel den

Deterministic 10,708 6613 55 47,699 0.067
27-scen tree risk neutral DEM 288,272 100,974 737 1,208,798 0.004
45-scen tree risk neutral DEM 480,490 167,951 823 2,651,860 <0.004
75-scen tree risk neutral DEM 800,694 274,813 1992 3,628,801 <0.002

Table 2
27-scen tree. Stochastic solution values. Risk neutral model (20).

Max GAP

0.01% 0.50%

LP relaxation solution value 354.72 354.72
Solution value 354.67 354.18
Optimality GAP (%) 0.01 0.15
Greatest scen. solution value 990.53 991.02
Median 308.70 307.81
0.10-VaR �10.53 �11.85
0.05-VaR �38.90 �39.10
0.10-CVaR �39.57 �39.77
Smallest scen. solution value �52.19 �52.34
Weight of scenarios with negative profit 0.16 0.16
Conditional expected negative profit �25.50 �25.89
CPU time (seconds) 70,973 241
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5.2. Risk averse measures

In this section the results for the 27-scenario tree instance are
reported by solving the different risk averse models presented in
Section 4. A computational comparison with the risk neutral model
(20) is presented in order to analyze the impact of these measures
on the solution. Tables 4,5 present the results of the VaR and CVaR
models (21) and (24), respectively, for c = 1 and q P 0. The head-
ings are as follows: ZLP, solution value of the LP relaxation; ZMIP,
solution value of the incumbent solution; GAP, related optimality
gap (remember that the bound for the optimality GAP has been
set to 0.5%); b, upper bound on the probability of default, given
by the user for the scenario to occur; VaR is the 0.10-VaR; CVaR

is the 0.10-CVaR; %QE, normalized weighted expected profit over
all scenarios, where 100 is the expected profit for the risk neutral
model (20); P(<0), sum of the weights of the scenarios with a neg-
ative profit; E(<0), conditional expectation of the scenarios with a
negative profit; t, elapsed time (in secs.) for obtaining the incum-
bent solution.

We can observe in Tables 4,5 that the weight parameter q > 1
provides good VaR and CVaR values in both models. However, it
does no provide good expected profit, since there is a 12% reduc-
tion (approx.) with respect to the risk neutral model (20) for
q = 5 and b = 0.05, and an even larger reduction for very large q
values. Notice that the VaR based model (21) requires much more
elapsed time that the CVaR model (24) (on average, 1 hour and 3-
4 minutes, respectively).

Table 6 presents the results of the VaR + Over-CVaR model (22).
The headings are the same as in Tables 4,5. We can observe that, in
general, this strategy provides good results, but it requires much
more elapsed time than the strategy VaR in some cases and the
strategy CVaR in all cases.

Table 7 presents the results of the Qe& DP model (25). The addi-
tional headings are as follows: /, threshold profit; and P(</), sum
of the weights of the scenarios with profit below the threshold. The
results in the table clearly show a risk reduction when compared
with the risk neutral model (20) for big q values. The larger the
threshold, the worse the solution value is in terms of the CVaR
and the probability of having a scenario with negative profit.
Therefore, the best combination for this situation seems to be a
small threshold (say, / = 30) and a large parameter q (say, 400);

Table 3
27-scen tree. Deterministic solutions. WS and EEV.

WS EEV

Solution value 404.19 352.18
Optimality GAP (%) 0.02 0.02
Greatest scen solution value 1031.72 986.39
Median 314.72 310.38
0.10-VaR 71.74 �19.20
0.05-VaR 39.73 �51.74
0.10-CVaR 44.33 �53.53
Smallest scen solution value 28.88 �66.67
Weight of scenarios with negative profit 0.00 0.16
Conditional expected negative profit 0.00 �37.41
CPU time 207 80

Table 4
27-scen tree. Stochastic solution values. Qe & VaR model (21).

q ZLP ZMIP GAP (%) b % QE VaR CVaR P(<0) E(<0) t (seconds)

0 354.72 354.18 0.15 0.00 100.00 �11.85 �39.77 0.157 �25.88 241
0.5 382.78 343.26 0.05 0.05 97.76 23.11 �0.06 0.069 �8.60 3122
1 424.99 351.26 0.05 0.05 91.21 49.07 28.45 0.000 0.00 2448
5 855.81 478.30 0.06 0.05 87.89 54.70 33.91 0.000 0.00 2342
10 1414.96 646.76 0.04 0.05 87.20 55.06 34.27 0.000 0.00 3190
100 11540.70 4257.68 0.12 0.05 65.54 61.27 37.70 0.000 0.00 3174
10,000 1125725.59 402648.97 0.16 0.05 65.60 61.28 37.14 0.000 0.00 5570

0.5 406.36 361.25 0.45 0.10 96.14 41.44 3.37 0.056 �8.28 4256
1 471.34 385.44 0.03 0.10 94.44 50.93 5.87 0.056 �7.21 3405
5 1076.65 649.52 0.50 0.10 85.98 69.00 31.29 0.000 0.00 2842
10 1848.47 995.65 0.40 0.10 85.40 69.32 31.32 0.000 0.00 4946
100 15893.13 7230.05 0.34 0.10 85.21 69.28 31.46 0.000 0.00 1968
10,000 1561747.00 693547.64 0.25 0.10 85.17 69.32 31.57 0.000 0.00 3807

Table 5
27-scen tree. Stochastic solution values. Qe & CVaR model (24).

q ZLP ZMIP GAP(%) b % QE VaR CVaR P(<0) E(<0) t (seconds)

0 354.72 354.18 0.15 0.00 100.00 �11.85 �39.77 0.157 �25.88 241
0.01 354.25 354.15 0.15 0.05 100.00 �10.71 �39.94 0.157 �25.89 301
0.5 341.05 339.74 0.39 0.05 97.50 22.25 �5.78 0.069 �8.97 193
0.75 342.57 341.21 0.40 0.05 92.71 42.60 24.51 0.000 0.00 335
1 347.84 346.90 0.27 0.05 91.03 48.62 28.53 0.000 0.00 206
5 465.12 459.16 0.33 0.05 87.78 53.99 33.86 0.000 0.00 280
10 631.78 608.38 0.48 0.05 87.08 54.06 34.03 0.000 0.00 239
100 3663.48 3326.77 0.47 0.05 86.47 54.78 34.38 0.000 0.00 298
10,000 337426.10 303513.62 0.12 0.05 86.39 54.26 34.33 0.000 0.00 335

0.01 354.34 353.36 0.37 0.10 99.78 �10.75 �39.23 0.157 �25.29 315
0.5 347.07 346.07 0.29 0.10 97.66 21.98 �5.52 0.069 �9.17 279
0.75 349.43 348.09 0.38 0.10 93.27 42.15 23.15 0.000 0.00 241
1 356.62 355.48 0.32 0.10 91.01 53.19 32.57 0.000 0.00 224
5 511.27 503.47 0.48 0.10 87.59 62.57 37.96 0.000 0.00 318
10 726.03 700.20 0.40 0.10 86.60 63.62 38.65 0.000 0.00 313
100 4630.34 4347.86 0.38 0.10 64.81 60.31 36.01 0.000 0.00 373
10,000 434340.60 412059.55 0.32 0.10 64.82 60.31 36.01 0.000 0.00 289
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however, notice that in the end the combination is chosen by the
user to satisfy his own requirements. This combination provides
solutions very similar to the ones provided by the CVaR model
(24), see Table 5. However, the former requires more than
5000 seconds and the latter only requires 200 seconds (approx.)
of elapsed time.

Finally, Tables 8,9 present the results of the Stochastic Domi-
nance Constraint models (26) and (27), respectively. We have not
reported results for big sets P of profiles due to the excessively
elapsed time required by the MIP solver. However, we have exper-
imented with jPj ¼ 2 and jPj ¼ 1 profiles for the sdc-1 and sdc-2
strategies, respectively. We can observe that, in general, the results
are very good but, in some cases, the elapsed time is very high.
Although more computational experience would be needed, it
seems that these strategies are worth considering in the future
by using more profiles, provided that a quick exact decomposition
algorithm is used instead of a MIP solver, see Section 6.

For a better comparison of different solutions proposed by the
risk averse approaches, Fig. 8 depicts the 0.10-CVaR value (in

abscissas) and the Expected Value (in ordinates) presented in Ta-
bles 4,5 for the 27-scenario tree case. We can observe how the
strategies perform a trade-off between maximizing the profit (ex-
pected value) and minimize the risk (-CVaR). Fig. 8(a)–(c) represent
the results for b equal to 0.10 and 0.05, and the different values of q
in Tables 4,5, respectively. Fig. 8(d) represents the results for /
equal to 30 and 90 and the different values of q in Table 7.
Fig. 8(e) represents the results for the different profiles in Table 8,
where /1 varies from �10 to 30, b1 = 0.05, /2 = 40 and b2 = 0.10. Fi-
nally, Fig. 8(f) represents the results for the different profiles in Ta-
ble 9, where / varies from 0 to 60 and e1 is equal to 1 and 2. We can
observe that the strategies Qe & CVaR and sdc-2 provide the best
results in our testbed. These figures for cases (a) to (d) represent
the Pareto frontier of the bi-objective problem that consists of
maximizing the net profit and minimizing the risk. The asterisk
represents the value for the risk-neutral approach. It can be ob-
served that a great reduction in risk can be obtained with some
reduction in net profit by adequately weighting the parameters
of the risk averse measures.

Table 6
27-scen tree. Stochastic solution values. VaR & overCVaR model (22).

q ZLP ZMIP GAP(%) b % QE VaR CVaR P(<0) E(<0) t (seconds)

0.5 774.54 769.97 0.50 0.05 57.53 59.44 33.45 0.000 0.00 353
1 359.72 355.15 0.50 0.05 100.11 �11.59 �42.01 0.130 �32.85 25,899
5 642.28 444.86 0.50 0.05 88.13 53.97 28.89 0.009 �11.16 4476
10 1068.16 613.19 0.31 0.05 87.22 55.07 38.13 0.000 0.00 2672
100 8793.76 4218.26 0.20 0.05 65.22 61.21 35.75 0.000 0.00 3550
10,000 858951.30 402870.22 0.09 0.05 65.60 61.19 37.23 0.000 0.00 2135

0.5 774.71 769.93 0.44 0.10 57.52 59.14 33.46 0.000 0.00 468
1 364.72 359.17 1.49 0.10 99.76 �3.22 �63.39 0.157 �40.37 72,000a

5 756.29 584.88 0.44 0.10 86.18 68.69 18.16 0.000 0.00 2305
10 1312.81 930.63 0.10 0.10 85.13 69.37 20.47 0.000 0.00 2129
100 11438.15 7176.66 0.22 0.10 85.11 69.40 26.51 0.000 0.00 4688
10,000 1125623.00 693796.13 0.21 0.10 84.95 69.36 22.60 0.000 0.00 4921

a 20 h time limit reached.

Table 7
27-scen tree. Stochastic solution values. Qe & DP model (25).

q ZLP ZMIP GAP(%) / P(</) % QE VaR CVaR P(<0) E(<0)) t (seconds)

0 354.72 354.18 0.15 1.00 100.00 �11.85 �39.77 0.157 �25.88 241
25 353.57 349.17 0.50 30.00 0.21 100.09 �7.89 �37.81 0.111 �34.07 2830

100 350.44 338.63 0.35 30.00 0.13 99.14 11.89 �19.56 0.079 �24.65 6819
200 346.82 327.74 0.26 30.00 0.07 96.45 30.44 4.27 0.056 �7.84 14,599
400 341.56 314.45 0.45 30.00 0.07 96.62 30.41 4.38 0.056 �7.64 5083
800 334.79 290.49 0.23 30.00 0.04 90.38 50.87 30.54 0.000 0.00 4800

1200 329.34 275.44 0.33 30.00 0.00 90.32 50.86 30.35 0.000 0.00 6937
25 351.84 348.25 0.46 90.00 0.24 100.02 �7.28 �39.06 0.157 �25.03 478

100 343.59 330.51 0.48 90.00 0.24 100.11 �9.84 �39.99 0.157 �25.68 1256
200 333.68 309.18 0.39 90.00 0.21 99.32 2.31 �34.77 0.097 �34.77 5537
400 319.10 267.05 0.49 90.00 0.20 97.88 13.47 �15.12 0.069 �23.29 4023
800 294.59 194.78 0.18 90.00 0.15 89.50 55.49 28.36 0.000 0.00 4586

1200 277.26 133.67 0.26 90.00 0.00 89.50 55.52 28.33 0.000 0.00 5899

Table 8
27-scen tree. Stochastic solution values. sdc-1 model (26).

/1 b1 /2 b2 ZLP ZMIP GAP(%) % QE VaR CVaR P(<0) E (<0) t (seconds)

�10 0.05 40 0.10 352.69 341.28 0.51 96.36 40.00 2.462 0.056 �9.08 25,410
0 0.05 40 0.10 352.15 341.05 1.34 96.29 40.00 5.716 0.037 �7.34 42,583a

10 0.05 40 0.10 351.59 336.19 0.18 94.92 40.05 15.680 0.000 0.00 4778
20 0.05 40 0.10 351.02 329.79 0.13 93.11 42.57 23.813 0.000 0.00 2641
30 0.05 40 0.10 350.34 319.66 0.36 90.25 50.21 30.676 0.000 0.00 7881
40 0.05 40 0.10 Infeasible

a Cplex stop. out of memory.
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Table 9
27-scen tree. Stochastic solution values. sdc-2 model (27).

/1 e1 ZLP ZMIP GAP(%) % QE VaR CVaR P(<0) E (<0) t (seconds)

0 1 349.07 348.38 0.20 98.36 14.92 �7.24 0.069 �14.31 866
10 1 344.67 343.84 0.24 97.08 21.32 2.86 0.056 �7.33 876
20 1 338.66 337.82 0.24 95.38 29.20 8.48 0.000 0.00 639
30 1 332.35 330.90 0.41 93.42 37.43 21.32 0.000 0.00 3216
40 1 324.38 323.68 0.22 91.39 45.00 27.72 0.000 0.00 567
50 1 Infeasible
60 1 Infeasible

0 2 352.66 351.43 0.35 99.22 8.93 �20.56 0.097 �20.56 2744
10 2 350.23 349.48 0.22 98.67 13.60 �10.36 0.069 �18.04 378
20 2 346.90 345.76 0.33 97.62 20.46 �4.57 0.056 �10.60 4740
30 2 341.01 339.64 0.40 95.89 30.34 9.59 0.037 �2.37 4455
40 2 334.33 333.92 0.12 94.28 40.57 19.44 0.000 0.00 5442
50 2 326.48 325.60 0.27 91.93 50.13 29.43 0.000 0.00 269
60 2 308.41 235.76 0.10 66.56 59.95 34.61 0.000 0.00 1726

Fig. 8. 27-scen tree. Expected value versus CVaR.

Table 10
45-scen tree. Stochastic solution values.

Model q ZLP ZMIP GAP (%) % QE VaR CVaR P(<0) E(<0) t (seconds)

QE 0 350.15 349.82 0.09 100.00 �0.23 �33.47 0.102 �29.84 915
QE & DP 400 340.36 316.98 0.50 93.79 53.70 29.88 0.000 0.00 29,892
QE & VaR 1 482.78 388.56 0.10 97.08 48.95 14.61 0.028 �6.28 29,731
QE & CVaR 0.50 336.04 334.61 0.42 97.39 36.71 8.42 0.028 �10.39 529

0.75 337.40 336.77 0.19 92.86 52.34 31.99 0.000 0.00 398
sdc-2 343.40 342.71 0.20 97.97 33.50 8.60 0.028 �10.90 14,221
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Given the large elapsed time reported in Tables 4,5 for the 27-
scenario tree case, we only experimented for the 45- and 75-sce-
nario tree cases with the following strategies:

� risk neutral model (20),
� Qe & VaR model (21) with c = q = 1 and b = 0.10,
� Qe & CVaR model (24) with c = 1, q 2 {0.5,0.75} and b = 0.10,
� Qe & DP model (25), with q = 400 and / = 30,
� sdc-2 model (27) with /1 = 30 and e1 = 2,

whose main results are shown in Tables 10,11, respectively.
Similarly to the smaller instances with 27 scenarios, we can ob-
serve that the tested risk averse strategies provide better solutions
than the risk neutral approach, in the sense that, with a moderate
reduction in the expected profit (from 2.03% to 7.65%), the different
risk measures give an interesting risk reduction as measured by the
non-negative 0.10-VaR and 0.10-CVaR values. In any case, observe
in Table 1 the very large dimensions of the risk neutral model (20).

It is worth pointing out that the risk averse strategies that have
been experimented with in this work offer much better results in
the VaR, CVaR and conditional expected negative profit than the
risk neutral strategy, without, on the other hand, reducing too
much the expected profit.

6. Conclusions and future work

In this work we have presented the stochastic version of the
copper extraction planning problem along a time horizon (i.e.,
years) under uncertainty in the (volatile) copper prices. The prob-
lem is a very large-scale Deterministic Equivalent Model (DEM)
with 0–1 and continuous variables, even for a reduced version of
the original one, since it must represent the uncertainty in the
volatile copper prices by a multistage scenario tree. We have
presented the DEM to the stochastic problem in a compact repre-
sentation. The first conclusion that can be drawn from this work
is that even the risk neutral approach, see model (20), provides a
better solution than the traditional (and myopic) deterministic
solution by considering the expected value of the uncertain param-
eters. The expected profit EEV obtained by using the deterministic
model does not differ too much from the expected profit obtained
by using the risk neutral strategy, but the VaR, CVaR and condi-
tional expected negative profit are much worse and, then, the
advantage of the stochastic model over the deterministic one is
clear. Additionally, by using the appropriate parameters provided
by the modeler for the risk averse measures, a high risk reduction
can be achieved without too high expected profit deterioration.

A second result from the 27-, 45- and 75-scenario tree cases
that we have experimented with is that the risk adverse Expected
value & CVaR strategy, see model (24), and the second-order sto-
chastic dominance constraints (sdc) strategy, see model (27), seem
to provide better results in the solution’s quality (since they reduce
the risk of bad scenarios without reducing too much the expected
profit) and they require less elapsed time than any other ones. In

any case, these results have to be validated by an extensive compu-
tational experiment with larger cases. Notice that we did not fully
experiment with bigger profiles in the sdc strategies, nor with the
Conditional expectation above CVaR strategy (22) and the others,
due to the excessive computer requirements (i.e., memory and
elapsed time) of the MIP engine for solving the very large scale in-
stances of the real-life copper extraction problem under uncer-
tainty in copper prices.

The third definitive conclusion that can be drawn from the
analysis of the three scenario tree illustrative cases is that solv-
ing the DEM by using a state-of-the-art optimization engine may
require, even in compact representation, so much computing ef-
fort for large-scale instances that a decomposition algorithm is
required. This scheme would allow the use of scenario bundles
based on a so-called break stage, see (Escudero et al., 2012).
We need to develop a decomposition approach for solving large
scale real-life instances, where smaller MIP submodels can be
solved in parallel. For that purpose we can represent the DEM
by a mixture of the splitting variable and the compact represen-
tations. The first representation will allow (based on the break
stage) to decompose the model by scenario bundles. A Branch-
and-Fix Coordination (BFC) (Alonso-Ayuso et al., 2003) type of
scheme can be used for handling the splitting variable represen-
tation to obtain the solution value of the original stochastic MIP
problem, where the compact representation of the independent
submodels related to the scenario bundles for the stages after
the break stage will be optimized by using a MIP solver; see
(Escudero et al., 2012). As an alternative to the BFC approach,
the splitting variable representation will allow to use a Lagran-
gean Decomposition approach to obtain strong lower bounds
on the solution value of the original stochastic problem, by dual-
izing the nonanticipativity constraints related to all stages up to
the break stage; several schemes for updating the Lagrangean
multipliers will be computationally analyzed and feasible solu-
tions from the Lagrangean dual solution can be obtained. At
any rate, the strategies Value-at-Risk (21), Conditional expecta-
tion above VaR (22) and stochastic dominance constraints (26)
and (27) require cross scenario constraints. Although those con-
straints are very few, their dualization via Lagrangean Relaxation
is an additional challenge for the decomposition approaches.

As a last, but no least piece of future research, we are planning
to consider in the decomposition algorithms a combination of
exogenous uncertainty (the one that has been tackled in the paper)
and the endogenous one where the values of some of the decision
variables can modify the weights of the scenarios of the subtree
whose root node is the one (in the given stage) where the decision
is made. In the mining problem it could be the case when multiple
sectors are replaced with clusters. This interesting feature is not
considered in the model presented in the paper (since it is a market
model rather a logistic model). In any case, it would be a more dif-
ficult model with a greater number of constraints and variables but
we hope that it can be handled by the decomposition methods to
be developed.

Table 11
75-scen tree. Stochastic solution values.

Model q ZLP ZMIP GAP(%) % QE VaR CVaR P(<0) E(<0) t (seconds)

QE 0 345.61 344.99 0.18 100.00 2.20 �26.85 0.091 �28.82 2115
QE & DP 400 332.29 302.12 3.39 93.76 56.99 34.09 0.000 0.00 72,000a

QE & VaR 1 485.01 392.49 0.07 92.35 73.91 38.35 0.000 0.00 67,387
QE & CVaR 0.50 347.06 346.06 0.29 97.66 46.45 16.78 0.023 �8.91 1780

0.75 352.35 351.40 0.27 96.40 49.75 23.75 0.016 �3.71 2276
sdc-2 1 340.26 19,126b

a 20 h time limit reached.
b Cplex stop, out of memory.
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