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We present a methodology for long-term mine planning based on a general capacitated multicommodity network flow
formulation. It considers underground and open-pit ore deposits sharing multiple downstream processing plants over a long
horizon. The purpose of the model is to optimize several mines in an integrated fashion, but real size instances are hard to
solve due to the combinatorial nature of the problem. We tackle this by solving the relaxation of a tight linear formulation,
and we round the resulting near-integer solution with a customized procedure. The model has been implemented at Codelco,
the largest copper producer in the world. Since 2001, the system has been used on a regular basis and has increased the net
present value of the production plan for a single mine by 5%. Moreover, integrating multiple mines provided an additional
increase of 3%. The system has allowed planners to evaluate more scenarios. In particular, the model was used to study
the option of delaying by four years the conversion of Chiquicamata, Codelco’s largest open-pit mine, to underground
operations.
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1. Introduction
Basically, there are two major forms of mining: under-
ground and open pit. For both, the use of analytical models
to support extraction planning has a long practice. In par-
ticular, the notion of a cutoff grade (Lane 1988) has been
a fundamental concept in many of these models, where
the objective is to find a threshold that determines whether
a block, the basic geological planning unit, is profitable
to mine.

Given the advances in software and hardware, the use
of operations research (OR)—in particular, mixed-integer
programming (MIP)—has gained strength (Alford et al.
2007, Cacceta 2007). This approach—in contrast with cut-
off grade models—allows for a detailed representation of
the mine, where the block of rock is the minimum ele-
ment that can be defined. Moreover, MIP-based models
can incorporate in a natural form constraints related to
geomechanical, economic or extraction sequencing condi-
tions. The down side is that the size of such models makes

the formulations difficult to solve, and the literature so
far reports few applications to large-scale mines. In that
respect, this paper presents and solves a MIP model that
has been successfully used in Chilean copper mines by
Codelco, a state-owned company, for both underground and
open-pit extraction.

Codelco is the largest copper enterprise in the world,
and it has been a fundamental pillar of Chile’s econ-
omy for decades. As such, it has placed strong empha-
sis on achieving excellence in every aspect of its opera-
tions, ranging from extraction planning to safety and the
working conditions of its miners. A telling fact is that in
August 2010, when 33 miners from a small company got
trapped 700 meters below the surface—a story that received
worldwide attention—the technical leader of the success-
ful rescue effort was the General Manager of Mining from
El Teniente, Codelco’s largest underground mine (he also
happened to be a main counterpart for this project).
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Our collaboration with Codelco started in 1999. First, we
developed a model for long-term planning at El Teniente.
Improvements attributable to the model led to an increase
in value of the mine of over $100 M. Then, the model
was extended to incorporate open-pit mines. It was imple-
mented at Andina and Codelco North Division, which are
two clusters of mines located in northern Chile. In these
clusters, several mines share common plant installations,
which include flotation, leaching, and bioleaching pro-
cesses. Moreover, at Andina—and soon at Codelco North
Division—open-pit and underground mines coexist. Our
model is specifically suited for these cases, and since 2001
it has been used on a regular basis.

Overall, our paper makes the following contributions.
• It integrates the extraction phase with downstream

processes, showing the advantages of integrating planning
along the whole production chain until the final product—
refined copper—is obtained to be shipped. Traditionally,
mining and plant processes have been solved separately,
iterating between the two problems to match supply and
demand.

• It considers, as is the case in Codelco, the interac-
tion of multiple mines, multiple products, and multiple
downstream processes. In particular, it incorporates the
notion of material from different mines competing for lim-
ited downstream processing capacity. Traditionally, plan-
ning has been carried out not considering this multiplicity.

• It develops a comprehensive model that is an alter-
native to the traditional approach based on cutoff grades,
and it generalizes the concept of underground and open-
pit mining as part of a capacitated network. This allows
representing any form of mining as a process in the produc-
tion chain, including the transition from open-pit to under-
ground operations.

• It establishes the complexity of the mining problem
for both underground and open pit. For underground mines,
we solve the problem by taking advantage of their nature,
where ore grades decrease vertically at each drawpoint. For
open pit, we present an extended formulation with a tight
linear relaxation. In both cases, we use a rounding heuristic
to find integer solutions. This approach was favored over
other methods, such as decomposition, because in our expe-
rience it required less on-site OR expertise, which facil-
itated the adoption and widespread use of the model at
Codelco.

• It reports two independent case studies at Codelco
North Division and El Teniente, where the model was used
with gains between 5% and 8% in net present value (NPV).
A third study at Andina had a similar impact.

The reminder of the paper has the following structure.
In the next section we present a brief literature review. In §3
we describe the problem, and we provide some background
on mining operations. In §4 we present our framework
based on a general capacitated multicommodity network
flow problem. In §5 we introduce the customized round-
ing heuristics used to generate approximate solutions. In §6

we provide an overview of the model’s implementation
and impact at Codelco. In the final section we conclude.
The theoretical proofs are given in an online companion to
this paper, an electronic companion to this paper is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/.

2. Literature Review
Most mining optimization models available in the literature
have been developed for open-pit mines, and they solve
only a partial version of the long-term planning problem
(Newman et al. 2010b). Historically, the problem has been
divided in two: the ultimate pit problem, which determines
the best final pit; and the production scheduling problem
that considers which blocks to remove and when.

There are two main approaches to solve the ultimate pit
problem: one based on cutoff grades and the other based
on OR techniques. The optimal cutoff grade methodology
was made popular through the work of Lane (1988). See
Kim and Zhao (1994) and Poniewierski et al. (2003) for
extensive discussions. The basic premise of this approach
is that one can use cutoff grades to maximize NPV subject
to capacity constraints, with higher cutoffs in the initial
years leading to higher overall profits. The approach has
important operational advantages, and it is embedded in
the background of most mining practitioners. However, the
assumption of a fixed cutoff grade—which depends on an
aggregated delineation between ore and waste—generates
suboptimal solutions because it ignores that the value of a
block is not inherent to the block but rather depends on the
interaction with the rest of the mine and the capacity of the
downstream processes.

The use of OR techniques to solve the ultimate pit prob-
lem started with the classic “moving cone” heuristic; see,
for instance, Kim (1978) or Laurich (1990). This approach
takes a block as a reference point and expands the pit
upward according to pit slope rules. This solution can be
suboptimal, but it is intuitively appealing. Among the algo-
rithms that are guaranteed to reach the optimum, histori-
cally the most important are Lerchs and Grossmann (1965)
and Picard (1976). The first one is based on graph the-
ory, but its structure is very similar to the dual simplex
method; see Underwood and Tolwinski (1998). The algo-
rithm by Picard reduces the ultimate pit problem to finding
a maximum closure in a graph, so it can be solved as a
maximum flow. A comparison of both procedures with an
extensive literature review can be found in Hochbaum and
Chen (2000).

OR techniques have also been used to solve the pro-
duction scheduling problem for a single mine. Among the
papers based on optimization methods, Gershon (1983)
presents a MIP formulation, Dagdelen and Johnson (1986)
suggest a Lagrangian relaxation, Caccetta and Hill (2003)
use branch and cut, and Tolwinski and Underwood (1996)
propose a dynamic programming approach. Given the com-
plexity of the problem, several papers have resorted to
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heuristic methods such as simulation (Fytas et al. 1993,
Erarslan and Celebi 2001), neural networks (Denby and
Schofield 1995), and simulated annealing (Kumral and
Dowd 2005). For other approaches that combine optimiza-
tion and heuristic methods, see Sevim and Lei (1988), Sarin
and West-Hansen (2005), Busnach et al. (1985), Dowd and
Onur (1993), Elevli (1995), Wang and Sun (2001), Ramazan
(2007), and Chicoisne et al. (2009).

The literature on underground mining is more recent,
partially due to the complicated nature of its operations.
Indeed, there is no equivalent to the Lerchs-Grossman algo-
rithm or the work by Picard for open pit. Yun et al. (1990)
use a genetic algorithm to determine the number and spac-
ing of openings given restrictions on their relative place-
ment. Alford (1995) describes the floating stope method
as a tool for analysis of mineral reserves. Barbaro and
Ramani (1986) formulate a MIP model that can be used
to determine whether to produce in a given time period.
Kuchta et al. (2004, 2003) describe the implementation of
a production scheduling MIP model at a Swedish under-
ground mine. Their objective is to minimize the deviation
from a pre-specified demand target per period, which con-
trasts with our model that maximizes NPV. The sizes of
the instances are not comparable either, but there are some
similarities with our project in terms of the methods used
to reduce the size of the model.

As noted in Hochbaum and Chen (2000), a comprehen-
sive model of mining operations has seldom been addressed
in the literature. Even fewer implementations of such mod-
els have been reported in practice. The work by Carlyle
and Eaves (2001) is a noteworthy attempt. They developed
a MIP model for an underground platinum and palladium
mine and considered several planning decisions, but it was
applied to only one sector of the mine, and near optimal
integer solutions were obtained with a commercial software
package. In our case, we consider all the sectors simulta-
neously, and we even allow for multiple mines. In fact, we
are unaware of other implementations that solve an inte-
grated long-term planning problem with the level of detail
considered here.

3. Problem Description
Most mines have a long life-cycle. Therefore, the plan-
ning horizon is somewhere between 10 and 30 years,
with shorter periods at the beginning where more detail is
required. In general, planning decisions are final and can-
not be reversed, meaning that they can drastically affect
the future of the mine. The long-term planner must solve
three main problems: (i) Investment: determine the selec-
tion and timing of investments; (ii) Extraction: determine
the production in the mine; and (iii) Processing: determine
the operation of the plants. Solving each one of these prob-
lems, even separately, is already a complex task. However,
the need for an integrated planning approach cannot be
dismissed. For instance, the real value of an investment

project is appreciated only once its coherence is verified
with respect to the extraction and processing decisions.
Our methodology explicitly solves problems (ii) and (iii),
i.e., extraction and processing. The investment decisions
are usually restricted to a small set of options and can be
evaluated with our model by running different scenarios.

3.1. Underground Mining

Here we present a brief description of the operations at
an underground mine. The first step is the selection of
reserves. This consists in defining the boundaries of the
orebody, delimiting the material to be removed, and it is
done according to economic criteria that determine what
is profitable based on the grade distribution. Large under-
ground mines typically are subdivided in sectors by design,
and the selection of reserves is made for each sector.

For planning and operational purposes, the geological
configuration of the whole deposit is expressed through
a block model. Each block is uniquely identified together
with its geological characteristic, in particular the ore
grades. These values are estimated using geostatistic proce-
dures such as kriging. A column or drawpoint is the vertical
aggregation of blocks, and a mine or sector corresponds to
a set of neighboring columns.

Once the drawpoints are specified, the following step is
to program the ore extraction on a time scale taking into
account geological restrictions and the downstream capac-
ities. There are several mining methods for underground
mines (Newman et al. 2010b). In our model, we consider
the block caving method, which is the prevalent under-
ground mining method at Codelco. In a nutshell, the block
caving method consists in creating a void at each drawpoint
so that the rock breaks and falls due to its own weight.
For this to happen, the rock extraction pattern must fol-
low specific rules: (i) the columns have to enter production
in a particular sequence to generate a “wave” that breaks
the rock; (ii) the wave has to advance smoothly, which
requires regularity in heights among neighboring columns;
and (iii) at each drawpoint there is maximum extraction
rate to prevent the roof from collapsing, and there is a min-
imum number of blocks that must be removed in order to
avoid solid pillars.

Figure 1 shows the typical flow in an underground mine.
The broken rock is removed from the drawpoints, which
are arranged along parallel crosscuts. Each crosscut has
enough space for an LHD machine that hauls the mate-
rial to a dumping point.1 The material is then funneled
through ore passes and reaches the internal crusher, where
the rock is crushed to a size that can be transported by
train to the processing stages outside the mine. For our pur-
poses, the flow finishes at the concentration plants where
the profitable minerals are obtained by eliminating waste.
Each one of these intermediate processes can be character-
ized through technical coefficients, such as its capacity and
variable cost.
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Figure 1. Description of underground mining operations.
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3.2. Open-Pit Mining

Open-pit mining is conceptually similar to underground
mining, except that the orebody is reached from above,
which requires removing plenty of overburden from the
soil. A preliminary definition of the regions to be mined
is done using geological models that take into account the
geometry of the pit and technical requirements (e.g., the
maximum slope to prevent the walls of the pit from col-
lapsing). The regions are called expansions, which are also
known as pushbacks or phases. In figurative terms, an

Figure 2. Description of open-pit mining operations.

Expansion

Bench

Note. Within an expansion, benches are extracted from top to bottom.

expansion can be viewed as a “slice” of the pit. Each expan-
sion is subdivided in benches of a predetermined height that
must be extracted in order, from top to bottom. Figure 2
illustrates the geometry of expansions and benches, and
Figure 3 shows a view from above.

The bench is the minimal extraction decision unit. When
a bench is mined, all its material needs to be removed from
the pit—including waste, which has no economic value.
There are three processes involved in removing a bench:
perforation and blasting, where the bench is separated from
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Figure 3. Expansions of an open-pit mine, viewed from above.
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the soil using dynamite; loading, where all the material
is loaded into large size trucks; and transportation, where
the material is taken to either a metallurgic process or a
waste dump. It is worth mentioning that perforation and
blasting impose severe constraints on the sequence in which
expansions are extracted. For instance, there is a minimum
distance required between two expansions in operation on
the same wall of the pit to avoid rock spillage.

As in underground mining, the sequence of downstream
processes involves rock size reduction and ore recovery.
However, there are some important differences. First, the
existence of stockpiles plays an important role in balanc-
ing the plant inflow, and they are held for several years
before entering the metallurgic processes. Second, a sig-
nificant fraction of the material extracted from the mine
is taken to the waste dumps, which might be located sev-
eral miles away from the pit. This introduces an important
trade-off between sending low-grade ore to the downstream
processes or to the costly dumps.

In the case of copper, the existence of two ore types,
sulfides and oxides, is another key element of an integrated
plan. Although the geological reserves typically have both
types, in the traditional planning scheme, mining plans are
defined considering only one main metallurgic process for a
particular type. Thus, an integrated plan considers different
ore types in alternative concentration lines that would be
otherwise discarded or sent to processes with low yields.

4. Model Formulation and Discussion
In this section we present a mathematical programming
approach to optimize long-term production plans in open-
pit and underground mines that share downstream processes
(we refer the reader to the online companion for a descrip-
tion of the legacy planning approach). A graphical rep-
resentation of the different stages in the model is given
in Figure 4, where material flows from left to right. The
network of mining operations begins with the production
or rock extraction phase that takes place at sectors for
underground mines and at expansions for open pit. This
phase corresponds to the first stage on the left-hand side
of Figure 4. Then the extracted rock is fed into the net-
work of downstream processes that involves size reduction
and chemical reactions. The last stage is the concentration
phase, which yields the three final products: copper, molyb-
denum, and arsenic. The first two have commercial value
while the third one is a contaminant on which environmen-
tal restrictions are imposed.

In what follows, we present the model with its essen-
tial components. When necessary, we use the subindices O
and U to denote open-pit and underground mines, respec-
tively. In §4.1, we first introduce a unified model for the
network of downstream processes. This part is shared by
all the mines regardless of their type. Then, in §§4.2 and
4.3 we present a specific model of the production phase
that captures the unique characteristics of underground and
open-pit mining, respectively.
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Figure 4. Network flow representation for mining operations that share downstream processes.
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4.1. Unified Model Formulation for
Downstream Processes

The downstream processes are modeled as a capacitated
multicommodity network flow problem. The starting nodes
s ∈ S = SU ∪ SO represent the different sectors (SU 5 for
underground mines and expansions (SO) for open-pit mines.
The intermediate nodes u1 v ∈ V represent stocking points
and processing stages that precede the concentration plants,
which are the final nodes (F 5 in the network. Multiple
products flow through the network. A given product k ∈K
represents material (i.e., rock) with an average rock size
and a grade of copper, molybdenum, and arsenic within a
certain range. Depending on the characteristics of the ore
deposits, the product definition might also include other
relevant attributes such as the chemical nature (sulfide or
oxide) or geological properties (e.g., rock hardness). The
set of commercial products is denoted COM, whereas the
set of contaminants is denoted CONT.

The flow of product k ∈ K going from node u to node
v in period t ∈ T = 811 0 0 0 1 T 9 is denoted fuvkt and is mea-
sured in tons. As the material flows through the downstream
processes, the average rock size is reduced, and the valu-
able minerals are separated from waste. Let TCvkk′ denote
the transformation coefficient at node v ∈ V , which rep-
resents the amount of output k′ obtained for each ton of
input k, with

∑

k′∈K TCvkk′ = 11 ∀v ∈ V 1k ∈ K. Let cvkt
denote the cost of processing a ton of product k at node
v in period t ∈ T , while the maximum capacity across all
products at node v in period t is given by CPvt . For nodes
v ∈ V that can hold inventory, let yvkt represent the amount
of product k available at the beginning of period t, and let
CSvt be the maximum stock level per period in tons (if the

node cannot hold inventory, then CSvt = 0). If k is a con-
taminant, then the maximum amount that can be released
per period is Ekt (otherwise, Ekt = �). We assume that the
firm is a price-taker and that all the production of product
k in period t can be sold at the market price pkt (clearly,
pkt = 0 for noncommercial products).

The link of the downstream processes with the upstream
production phase is established through the auxiliary vari-
ables ProdCostst and xskt . The former denotes the total pro-
duction cost, while the latter represents the tons of prod-
uct k produced in sector/expansion s in period t. The math-
ematical formulation of the downstream processes is the
following:

max
T
∑

t=1

∑

k∈K

∑

u∈V∪S

�t−1

(

∑

v∈F

∑

k′∈COM

pk′tTCvkk′ fuvkt−
∑

v∈V∪F

cvktfuvkt

)

−

T
∑

t=1

∑

s∈S

�t−1 ProdCostst1 (1)

subject to

xskt =
∑

v∈V∪F

fsvkt ∀ s ∈ S1 k ∈K1 t ∈ T 1 (2)

∑

u∈V∪S

∑

k∈K

TCvkk′ fuvkt + yvk′t−1 =
∑

u∈V∪F

fvuk′t + yvk′t

∀ v ∈ V 1 k′ ∈K1 t ∈ T 1 (3)
∑

u∈V∪S

∑

k∈K

fuvkt ¶ CPvt ∀ v ∈ V ∪ F 1 t ∈ T 1 (4)

∑

k∈K

yvkt ¶ CSvt ∀ v ∈ V 1 t ∈ T 1 (5)

∑

u∈V∪S

∑

v∈F

∑

k∈K

TCvkk′ fuvkt ¶Ek′t ∀ k′
∈ CONT1 t ∈ T 1 (6)

fuvkt1 yvkt ¾ 0 ∀ u1 v ∈ V 1 k ∈K1 t ∈ T 0 (7)
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The objective of the model is to maximize the NPV of
the deposits over the next T periods. The first term in the
objective function (1) corresponds to the discounted bene-
fits obtained from selling the final products. The second and
third terms represent the discounted processing and pro-
duction costs, respectively (here the parameter �< 1 is the
discount factor). Constraints (2) feed the production from
each sector/expansion into the network of downstream pro-
cesses. Constraints (2) ensure flow conservation and inven-
tory balance at each node. Constraints (2) and (4) impose
maximum processing capacities and stock levels respec-
tively. Finally, Constraints (5) limit the release of pollutants
at the final stage, and Constraints (6) are the usual non-
negativity conditions on flows and inventory levels.

4.2. Underground Extraction

To model the production phase for underground mines,
we assume that the mining method is block caving, as
explained in §3.1. Let the index i ∈ I4s5 denote a draw-
point or column in sector s ∈ SU and let the index n ∈

N4i5 denote the blocks in that column that are numbered
0 to �N4i5� − 1 from bottom to top. The main decision in
the production phase is when to remove each block. For
that, we introduce the binary variable zint—which equals
one if the extraction of block n in column i is initiated in
period t—and the continuous variable eint , which represents
the fraction of the block that is removed in each period.

As part of the model’s input, we need the following
sets and parameters. Let TONink be the amount (tons) of
product k contained in block 4i1 n5. Let E MIN4i5 denote
the minimum set of blocks of column i that must be
removed once production at that column is initiated. Let
IU =

⋃

s∈SU
I4s5 be the set of drawpoints/columns in all the

underground mines considered. Let ã denote the maximum
number of periods a drawpoint can remain open. Let �in be
the height of block 4i1 n5, and let the variable hit denote the
height of column i in period t that is given by the blocks
that have been removed so far. Let �s denote the maxi-
mum height differential allowed between two neighboring
columns in sector s, and let IJ be the set of column pairs
that are close enough to be considered neighbors.

The extraction precedence relationship among columns
is given by the set SECU , where 4i1 j5 ∈ SECU if the extrac-
tion of column i must begin before it takes place at col-
umn j . Initiating production at column i incurs a fixed
cost ai and let bst be the variable cost per ton of rock
extracted from sector s in period t. Removing block 4i1 n5
takes a minimum of �in days, and let DPt denote the dura-
tion of period t. Let MAX_AREAst (MIN_AREAst) and
MAX_EXTst (MIN_EXTst) be the maximum (minimum)
incorporated area and extracted tons allowed in sector s in
period t, respectively. Finally, let WIN4s5 denote the pro-
duction time window for sector s. The following constraints
complete the model formulation for underground mines.

xskt =
∑

i∈I4s5

∑

n∈N4i5

TONink eint ∀ s ∈ SU 1 k ∈K1 t ∈ T 1 (8)

ProdCostst =
∑

i∈I4s5

aizi0t + bst
∑

k∈K

xskt ∀ s ∈ SU 1 t ∈ T 1 (9)

∑

t∈T

zint ¶ 1 ∀ i ∈ IU 1 n ∈N4i51 (10)

t
∑

g=1

eing ¶
t
∑

g=1

zing ∀ i ∈ IU 1 n ∈N4i51 t ∈ T 1 (11)

T
∑

t=1

∑

n∈E MIN4i5

eint ¾
T
∑

t=1

�E MIN4i5�zi0t ∀ i ∈ IU 1 (12)

t
∑

g=1

Zin+1g ¶
t
∑

g=1

eing ∀i ∈ IU 1 n ∈N4i51 t ∈ T 1 (13)

t
∑

g=1

zj0g ¶
t
∑

g=1

ei0g ∀ 4i1 j5 ∈ SECU 1 t ∈ T 1 (14)

zi0t +
T
∑

g=t+ã

eing ¶ 1 ∀ i ∈ IU 1 n ∈N4i51 t ∈ T 1 (15)

∑

n∈N4i5

�ineint ¶ DPt ∀ i ∈ IU 1 t ∈ T 1 (16)

hit = hit−1 +
∑

n∈N4i5

�ineint ∀ i ∈ IU 1 t ∈ T 1 (17)

hit −hjt ¶ �s ∀ i1 j ∈ IJ 1 s ∈ SU 1 t ∈ T 1 (18)

MIN_AREAst ¶
∑

i∈I4s5

AREAi zi0t ¶ MAX_AREAst

∀ s ∈ SU 1 t ∈ T 1 (19)

MIN_EXTst¶
∑

k∈K

xskt¶MAX_EXTst ∀s∈SU 1 t∈T 1 (20)

∑

i∈I4s5

zi0t = 0 ∀ s ∈ SU 1 t ∈ T \WIN4s51 (21)

zint ∈ 801191 eint1 hit ¾ 0 ∀ i ∈ IU 1 n ∈N4i51 t ∈ T 0 (22)

Constraints (8) define the production per sector, prod-
uct, and period. Constraints (9) define the production
cost, which has a fixed cost component for each col-
umn that starts production and a variable cost per ton of
rock removed. Constraints (10) ensure that each block is
removed at most once. Constraints (11) establish the logical
link between variables eint and zint so that the extraction of
a block cannot occur in a period prior to when it is initiated.
Constraints (12) ensure that the minimum set of blocks is
removed if a column enters production. Constraints (13)
require the extraction of block n to finish before the extrac-
tion of block n+1 can start at each drawpoint. Constraints
(14) restrict the order in which the drawpoints can enter
production.2 Constraints (15) impose the maximum dura-
tion of a drawpoint. Constraints (16) limit the extraction
rate of each column. Constraints (17) define the height of
the column in each period, and Constraints (18) guaran-
tee that neighboring columns have similar heights so that
the rock breaks smoothly. Constraints (19) and (20) impose
bounds on the area incorporated and the rock extracted per
period, respectively. Constraints (21) ensure that a sector
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is extracted within its time window, and Constraints (22)
restrict the domain of the decision variables.

The formulation above captures the specific elements of
underground operations, but the amount of detail comes at
a cost. Indeed, the following proposition formally states the
complexity of the underground mining problem (the proof
is in the online companion):

Proposition 1. The long-term production planning prob-
lem for underground mines given by Equations (1)–(22) is
strongly NP-hard.

The previous result justifies the use of approximate solu-
tion methods. Fortunately, the nature of underground min-
ing gives us a hand. Notice that the binary requirement
on the variables zint ensures that the blocks of a column
are extracted one by one from bottom to top. However, if
the blocks at the bottom have the highest copper grades—
which by design is usually the case—then the binary
requirement can be relaxed because the sole fact that this is
a maximization problem will force the extraction to occur
in the desired order. Hence, in that case the LP relaxation
provides a near-integer solution. This is an important obser-
vation that is pivotal to the solution method described later.
Therefore, we state it formally in the following lemma,
proved in the online companion.

Lemma 2. If the blocks n ∈N4i5 in column i are identical
except for the grade of each commercial product k ∈ COM,
which is decreasing from the bottom to the top of a column,
then the optimal solution to the LP relaxation satisfies zint ∈

80119 for all blocks except the first and last one extracted
in period t.

Clearly, the lemma also holds if the commercial products
have decreasing (nonincreasing) grades and the non-
commercial products—in particular, the contaminants—
have increasing (nondecreasing) grades. In practice,
because the mine is designed primarily to extract copper,
the columns exhibit vertically decreasing copper grades,
while for the other secondary products the grades are rela-
tively constant.

4.3. Open-Pit Extraction

In contrast with underground mines, the mining method for
open pit excavations allows for a more aggregated model
because there is no need to get into the details at the
block level. Here the index i ∈ I4s5 represents a drawpoint
or bench in expansion s ∈ SO , which are numbered 1 to
�I4s5� from top to bottom. The decision variables are zit ∈

80119, which equals one if the extraction of bench i is
initiated in period t; and eit ¾ 0, which is a continuous
variable that represents the tonnage extracted per period.
Let IO =

⋃

s∈SO
I4s5 be the set of drawpoints/benches across

all open-pit mines. Let S4m5 be the set of all the expan-
sions in the open-pit mine m ∈ MO . Let SECO denote the
set of all pairs 4i1 j5, such that the extraction at bench i
must be initiated before it takes place at bench j . The pair

4i1 j5 ∈ SECO could be benches from different expansions
due to geomechanical requirements. All the other parame-
ters are the same as in the underground case. The follow-
ing constraints complete the production plan optimization
model for open-pit mines.

xskt =
∑

i∈I4s5

TONik eit ∀ s ∈ SO1 k ∈K1 t ∈ T 1 (23)

ProdCostst =
∑

i∈I4s5

aizit + bst
∑

k∈K

xskt ∀ s ∈ SO1 t ∈ T 1 (24)

∑

t∈T

zit ¶ 1 ∀ i ∈ IO1 (25)

t
∑

g=1

eig ¶
t
∑

g=1

zig ∀ i ∈ IO1 t ∈ T 1 (26)

T
∑

t=1

eit ¾
T
∑

t=1

zit ∀ i ∈ IS1 (27)

t
∑

g=1

Zi+1g ¶
t
∑

g=1

eig ∀i ∈ IO1 t ∈ T 1 (28)

∑

i∈I4s5

�ieit ¶ DPt ∀ s ∈ SO1 t ∈ T 1 (29)

∑

i∈I4s5

zit = 0 ∀ s ∈ SO1 t ∈ T \T4s51 (30)

t
∑

g=1

zjg ¶
t
∑

g=1

eig ∀ 4i1 j5 ∈ SECO1 t ∈ T 1 (31)

MIN_EXTmt ¶
∑

s∈S4m5

∑

k∈K

xskt ¶ MAX_EXTmt

∀m ∈MO1 t ∈ T 1 (32)

zit ∈ 801191 eit ¾ 0 ∀ i ∈ IO1 t ∈ T 0 (33)

Constraints (23) and (24) define the production and
costs variables, respectively, similar to Constraints (8) and
(9) in the underground case. Constraints (25) ensure that
each bench is removed at most once. Constraints (26)
establish the logical link between variables eit and zit so
that the extraction of a bench cannot occur in a period
prior to when it is initiated. Constraints (27) ensure that
bench is not partially extracted. Constraints (28) require
the extraction to take place top down within an expansion.
Constraints (29) limit the extraction rate per expansion,
and Constraints (30) enforce the extraction time window.
Constraints (31) impose the bench extraction sequence,
and Constraints (32) limit the total extraction per period.
Finally, Constraints (33) restrict the domain of the decision
variables.

The following proposition is equivalent to Proposition 1
for open-pit mines.

Proposition 3. The long-term production planning prob-
lem for open-pit mines given by Equations (1)–(7) and
Equations (23)–(33) is strongly NP-hard.
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Figure 5. Extraction graph of the production phase for open-pit mines.
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For open pit, there is no equivalent to Lemma 2. In fact,
several benches of overburden must be removed before the
ore deposit is reached, and even then, the best ore grades
are usually deeper in the ground. In terms of our model,
this means that the solution of the LP relaxation is highly
fractional because it is optimal to reach the lower benches
as soon as possible. Indeed, most of the zit variables have
small fractional values, very close to zero. This makes it
hard to construct feasible integer solutions based on the
LP relaxation. In particular, branch-and-bound or rounding
heuristics become very inefficient. To overcome this obsta-
cle, we strengthen the formulation for open-pit mines by
adding a network structure to the production phase. This is
explained next.

For each expansion, we generate a directed graph where
the nodes represent a bench-period grid, as shown in the
left-hand side of Figure 5. At a given node, there is an
outgoing arc to all the benches that can be reached in the
next period, according to the conditions imposed by Con-
straints (25)–(30). An artificial starting bench and period
is added to the upper level of the grid, and similarly an
artificial ending bench and period is added to the lower
part (see the right-hand side of Figure 5). Hence, timing
the extraction of the expansion is equivalent to moving one
unit of flow from the upper left corner to the lower right
of the grid.

We introduce some additional notation to formulate the
extraction graph for an expansion s ∈ SO . Let t = 0 and
t = T + 1 denote the artificial starting and ending peri-
ods respectively. Similarly, let Or4s5 and De4s5 denote the
artificial starting and ending benches. Let AN4i1 t5 and
SU4i1 t5 denote the antecessors and successors of bench i
in period t in the extraction graph, so AN4i1 t5 is some
interval terminating in i, and SU4i1 t5 is an interval starting
in i. Let wijt be a binary decision variable that equals one
if the unit of flow (i.e., the extraction) goes from bench i
to bench j in period t. In other words, if wijt = 1, then it
implies that the extraction of benches i and j must begin

in periods t − 1 and t, respectively; and given the prece-
dence, Constraints (28), all the benches in between must
be fully extracted in period t. Finally, we add an arc from
node 4Or4s51 T 5 to 4De4s51 T + 15 so the model can still
decide not to extract an expansion at all (see Figure 5). The
formulation of the extraction graph is the following:

∑

j∈SU4Or4s5105

wOr4s5j1 = 1 ∀ s ∈ SO1 (34)

∑

j∈AN4De4s51 T+15

wj De4s5T+1 = 1 ∀ s ∈ SO1 (35)

∑

j∈AN4i1 t5

wjit =
∑

j∈SU4i1 t5

wij4t+15 ∀ i ∈ IO1 t ∈ T 1 (36)

zit =
i−1
∑

h=0

∑

j∈SU4h1 t−15
j¾i

whjt ∀ i ∈ IO1 t ∈ T 1 (37)

wijt ∈ 80119 ∀ i1 j ∈ IO1 t ∈ T 0 (38)

Constraints (34) and (35) impose that a unit of flow
starting from the upper left node of the extraction graph
in period t = 0 must finish at the lower right in period
t = T + 1. Constraints (36) establish the flow conservation
at each node of the graph. Constraints (37) link the flow
variables wijt with the zit variables, and Constraints (38)
impose the binary condition.

This strengthening procedure resembles the lift and
project technique described in Balas (2001). On one
hand, the introduction of the wijt variables and Equa-
tions (34)–(36) represents a higher dimensional represen-
tation of the extraction phase, which can be viewed as an
extended formulation—or lifting—of the original formu-
lation given by Equations (25)–(30). On the other hand,
Equation (37) projects the wijt variables to the space of the
zit variables. The advantage of doing this is summarized
in the following observations: (i) the extended formula-
tion (34)–(38) is valid because the sets AN4i1 t5 and SU4i1 t5
are constructed from Equations (25)–(30), so only feasible
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extraction sequences are allowed; (ii) Equations (34)–(36)
are an integral polyhedron because it is a model of a flow of
one unit through a network; and (iii) its projection is an inte-
gral polyhedron because the extreme points of the projection
all arise from extreme points of the extended polyhedron
(see Balas 2001, Proposition 1). Therefore, in the absence
of constraints linking different expansions, the extended for-
mulation is stronger than the original formulation because
it yields an integral polyhedron in the zit variables, which
was not the case in the original formulation. The following
example illustrates the overall idea. Consider a single expan-
sion with three benches that have the same characteristics,
except that the total copper content is increasing: TON1 <
TON2 < TON3 (see Figure 6). For simplicity, assume that
there are no other products, and ignore any production costs.
Moreover, assume that the extraction rate allows at most one
bench to be extracted in each period. The LP relaxation of
the original formulation (25)–(30) has the fractional solu-
tion zit = 1/3, ∀ i1 t = 11213, while it can be easily verified
that the extended formulation imposes z21 = z31 = z32 = 0,
so its LP relaxation yields z11 = z22 = z33 = 1. If we now
consider n benches with increasing grades, then the solution
of the original formulation is zit = 1/n, ∀ i1 t = 11 0 0 0 1 n,
which shows that the fractional values can be arbitrarily
small. Note that when different expansions are linked—
e.g., by the downstream processes—the integrality of the
extended formulation is lost. However, it still provides a
good starting point for the rounding heuristic described in
the next section.

5. Solution Approach
Our approach to solve the unified model for open-pit and
underground mines consists of solving the LP relaxation
and then using a specific rounding heuristic for each type
of mine to find a feasible integer solution. We chose this
approach because it required less technical intervention on
behalf of the users. Other methods, such as Lagrangian
relaxation, were more likely to require specific knowledge
and expertise on site for tuning and calibrating the param-
eters. We believe our choice facilitated the adoption of the
model within Codelco. Moreover, due to the strong model

Figure 6. A three-bench expansion (left) and its extrac-
tion graph (right) when one bench can be
extracted per period.
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Note. The bold arrows represent the solution in the extended formulation.

formulation, the rounding heuristics have worked very well,
and full-size instances can be solved within a few hours—
which is remarkable given that it took several weeks with
the legacy planning approach.

Here we describe the solution approach for open-pit
mines (see the online companion for underground mining).
Note that in the relaxed problem we can assume with no loss
of optimality that Equation (11) holds as an equality so the
zint and eint variables take the same values. Therefore, we
omit the latter. Similarly, we can assume that Equation (26)
holds as an equality, so we omit the eit variables because
they are equal to zit1 ∀ i1 t. Note that the solution approach
applies to any mineral, not only copper.

The heuristic to solve the open pit problem is performed
in an iterative fashion. The premise of the heuristic, as
in most rounding procedures, is that the LP solutions are
good starting points to build near-optimal integer solutions.
This was definitely the case with the extended formulation
described in §4.3. Therefore, the starting point is the solu-
tion of the LP relaxation. Then a subset of extraction vari-
ables is fixed, and the LP relaxation is solved again. This
procedure continues until there are no fractional variables
remaining. The overall structure of the heuristic is the fol-
lowing.

Step 0. Initialization. Solve the LP relaxation of the
open-pit problem, and let zLP4q5

it denote the solution for the
extraction variables where q represents a counter. Initialize
q = 1 and initialize å4m5 to contain all the expansions in
the open-pit mine m ∈MO .

Step 1. Extraction simulation. For each expansion
s ∈

⋃

m∈MO
å4m5, apply Algorithm 1—described in the

online companion—to simulate its extraction. Start with the
inner expansions of the open pit and continue outward. Let
z

SIM4q5
it denote the output of the simulation algorithm and let
Buf 4s5 contain the last bench that is reached in each period
of the simulated extraction of expansion s.

Step 2. Expansion selection. For each mine m ∈ MO ,
select the expansion that minimizes the squared difference
between the extraction simulation (from the previous step)
and the solution of the qth LP relaxation. In formal terms, let

s∗

q4m5= arg min
s∈å4m5

∑

i∈I4s51t∈T

4z
SIM4q5
it − z

LP4q5
it 520

Step 3. Tighten LP formulation. Add the following two
constraints to the open-pit problem:

zit = z
SIM4q5
it ∀ i ∈ I4s∗

q4m551 m ∈MO1

t ∈ T 1 4i1 t5y Buf 4s∗

q4m551 (39)

zit + zit+1 = 1 ∀ 4i1 t5 ∈ Buf 4s∗

q4m551 m ∈MO0 (40)

Solve the q + 1th LP relaxation and let zLP4q+15
it denote the

solution for the extraction variables. For each m ∈MO , rede-
fine å4m5=å4m5\8s∗

q4m59. If
⋃

m∈MO
å4m5 is empty, then

STOP. Otherwise, increment the counter q = q + 1 and go
to Step 1.
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After initializing the variables (Step 0), the outcome of
the qth LP relaxation is used in Step 1 to build an integer
solution for each expansion, which is denoted z

SIM4q5
it . The

superscript SIM stands for “simulation” of the extraction
phase. In Step 2, the expansions to be fixed are selected
based on how much the extraction simulation z

SIM4q5
it differs

from the LP solution z
LP4q5
it . Finally, in Step 3, additional

constraints are added to the open-pit problem to fix the
extraction variables for the expansions selected in Step 2.
Constraint (39) sets the variable zit equal to 0-1 according
to Z

SIM4q5
it . For a bench that is extracted in two consecutive

periods, Constraint (40) is imposed, which allows the LP
relaxation to decide what fraction of the bench to extract in
each period. These benches act as buffers between periods
and give the LP relaxation more flexibility to satisfy all the
constraints. Note that when there are few expansions left to
be fixed, usually it is possible to solve the MIP formulation
to optimality in a reasonable time.

6. Implementation and Impact at Codelco
All the data needed by the model were extracted directly
from Codelco’s databases. The investments in equipment,
machinery, and facilities that had lifespans shorter than
the planning horizon were prorated and included as vari-
able costs, but in what follows, they are still referred to as
investments. Some standard preprocessing routines similar
to Kuchta et al. (2003) were performed in order to reduce the
number of binary variables. Representative instance sizes
after preprocessing are shown in Table 1.

The model was implemented using the modeling lan-
guage GAMS and was solved using the parallel barrier
interior point algorithm of CPLEX on a computer running
Microsoft Windows. Given the large timeframe spanned
by the project, it has benefited from several upgrades in
commercial software and hardware performance. In §6.1
we describe a large-scale case study performed at Codelco
North Division, and in §6.2 we summarize the current uses
of the model and its impact on Codelco’s operations. A case
study at El Teniente is reported in the online companion.

6.1. Case Study at the North Division

Codelco North Division is located 1,650 kilometers north
of Santiago and at approximately 3,000 meters above sea
level. It comprehends several open-pit mines at different
stages of their life-cycles. Currently, the two most impor-
tant mines are Chuquicamata (better known as “Chuqui”)
and Radomiro Tomic (RT). Chuquicamata has been in oper-
ation for nearly a century, and its pit today covers more than

Table 1. Example of instance sizes after pre-processing.

No. of No. of
Model constraints variables 0-1 variables

Underground mine 446,521 535,639 196,386
Open-pit mine 245,391 898,742 160,386

1,300 hectares and is almost 1 kilometer deep. In contrast,
the exploitation of RT started only in 1995, but it ramped
up production very quickly. While Chuquicamata is mainly
composed of sulfides, RT’s reserves are mostly oxides.

The case study analyzed at Codelco North Division con-
sidered both mines, Chuquicamata and RT, and we used the
geological, technical, and economic information available in
2004. We considered a 10-year planning horizon divided in
yearly periods, with a fixed price for copper of 85 ¢/lb. As
before, sunk costs were excluded from the evaluation and
investments were mostly the acquisition of major extraction
machinery including trucks, drills, and loaders.

Prior to this project, extraction planning for Chuquica-
mata and RT had been done separately. To isolate the impact
of the model from the mere benefits due to integrating both
mines, we compared our proposed solution against three
benchmarks:

(i) Legacy-based independent plans (l − ind): This is
the optimized baseline where we impose the flow levels
determined by the legacy planning approach, and then we
solve the model to find the best solution under such condi-
tions. Here, different mines are planned independently, so
the downstream processes are not shared.

(ii) Model-based independent plans (m − ind): In this
instance the two mines are not allowed to interact (as in
l− ind), but we no longer impose the flow levels from the
legacy approach.

(iii) Legacy-based integrated plan (l − int): In this in-
stance the flow levels are determined by the legacy planning
process (as in l − ind), but the two mines are communi-
cated, so it provides an estimation of the value of integrated
planning under the legacy approach.

We denoted our proposed solution m− int, which stands
for model-based integrated plan. In Table 2 we compare
m− int against the three benchmarks. The total economic
benefit from using the model-based methodology corre-
sponds to a gain of 8.2% with respect to the optimized
baseline l− ind. The total impact has the following break-
down: 3.2 percentage points (pp) are due to integrated plan-
ning (l− int vs. l− ind), 4.7 pp are due to the model-based
approach (m− ind vs. l − ind), 0.2 pp can be attributed to
synergies between integrated planning and the model-based
approach—to see this, note that the increase from m− ind to

Table 2. Economic evaluation of the model-based plan
(m − int5 vs. benchmarks at Codelco North
Division.

m− int l− ind m− ind l− int
(%) (%) (%) (%)

Revenues 104 000 107 101
Production costs −106 000 008 000
Investments −2703 000 −3108 000

NPV 802 000 407 302

Note. Figures are shown as percentage changes with respect to
the baseline (l − ind ).
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m− int is 3.4% versus only 3.2% from l− ind to l− int—
and finally, 0.1 pp is the multiplicative effect. In other
words, the specific impact of the model-based approach is in
the order of 5%, which is consistent with the result obtained
in the case study done at El Teniente (see the online com-
panion). The fact that there are synergies is another interest-
ing observation, meaning that integrated planning and the
model-based approach reinforce each other.

In Table 3 we compare our solution m − int with the
three benchmark plans. We observe that the total mined
material is almost identical in all instances, so the total
costs are comparable (see Table 2). This is intuitive because
the ore with higher grades is located at the bottom of the
pit, and to get there all the material above it needs to
be extracted. The total extraction might be different if the
model decides not to extract a whole expansion, but that
did not happen in this exercise. The economic improvement
of the model-based over the legacy approach comes mainly
from two sources. First, the model-based approach requires
less investment in machinery because it can achieve bet-
ter utilization by smoothing production whereas the legacy
approach needs to make additional investments to accom-
modate higher production peaks.3 Second, and more impor-
tantly, the model-based approach produces more copper
than the legacy approach. In particular, with respect to the
baseline l− ind, the solution m− int sends 5.5% more ore to
the downstream plants reducing the average grade by 2.6%.
Unlike traditional methodologies that use a cutoff grade per
mine and period, the model-based approach simultaneously
considers multiple elements to decide when and where to
process each bench of the pit, resulting in a better usage of
the available capacity. For instance, we verified that in our
solutions when the benches are close to the plant, the model
decides to send ore of relatively lower grade than that sent
from benches that are further away.

An interesting observation comes from comparing the
independent and integrated model-based solutions (m− ind
and m− int, respectively). The former has a better recovery
rate and produces more copper but has a lower NPV than
the latter. The reason is that the integrated solution redirects

Table 3. Mining plan summary of the model-based vs.
benchmarks at North Division.

m− int l− ind m− ind l− int

Total extraction 2,882,457 2,889,825 2,874,050 2,889,825
(Kton)

Ore to process 1,468,104 1,391,384 1,456,711 1,418,244
(Kton)

Average ore 0.660 0.678 0.663 0.674
grade (%)

Average recovery 80.4 81.0 82.1 80.5
rate (%)

Copper produced 7,792 7,643 7,926 7,693
(Kton)

Note. Material flows are shown in kiloton, grades are shown in
percentage.

mineral from Chuquicamata to a plant next to RT that had
some slack capacity (<10%) in the nonintegrated solution
m− ind. However, this move is counterintuitive because the
mineral from Chuquicamata is mostly sulfides, and sulfides
have a lower recovery rate at the RT plant that is mostly
for oxides. The up side is that the processing cost at the RT
plant is lower, and although there is an additional transporta-
tion cost, it does not offset the savings because the material
sent from Chuquicamata comes from the bench that is the
closest to RT. Hence, the nonintegrated solution (m− ind)
recovers more copper but at a higher cost, which can be seen
in Table 2. This kind of subtlety would be harder to identify
using the legacy approach.

6.2. Current Uses of the Model

This project began in 1999, when the model was first imple-
mented and validated in the case study described in §0.
To date, the system, known as MUCH (“model of the Uni-
versity of Chile”) has been implemented in all of Codelco’s
major divisions. In what follows we present some examples
of how the model is being used to support current planning
decisions.

(1) Routinely planning support: Several MUCH runs are
carried out every week. The planners need to continuously
evaluate production decisions as the input data change over
time, such as prices, costs, grade of mineral, and work inter-
ruptions caused by machine failures or strikes. Based on
the multiple runs made with MUCH, the planners work out
the details of a definite plan at the different decision levels.
MUCH also provides insight for initiatives Codelco engi-
neers want to test, such as determining which expansions
become attractive if future copper prices are higher or the
impact of adding a $4 M truck to the current fleet of about
80 trucks. In addition, Codelco carries out two yearly formal
plans for the following year. One is an exploratory, tentative
plan done at midyear, and a final proposal is developed at
the end of the year. This is important because it suggests
major investments, like the purchase of a crusher, with a
cost of about $100 M. In this case, MUCH is used to eval-
uate the impact of different capacity levels, e.g., 50, 100,
or 150 thousand tons/day. These investments translate into
alterations of the nodes and arcs in the network, and the
model allows visualizing how the overall production chain
would perform.

(2) Simultaneous planning of underground and open pit
mines: At Andina, located 80 km north of Santiago, the
model has been used since 2006 to plan a mixed opera-
tion mine with open-pit and underground extraction. To the
best of our knowledge it is the first system to optimize
simultaneously both types of mine operations that compete
for plant processing capacity. Compared to the 2008 legacy
plan, using the model separately for each mine led to an
improvement of 5% in net income, equivalent to $180 M.
Integrating both mines led to an additional increase of 3%,
which is consistent with the results obtained at Codelco
North Division (see §6.1). Also, several exercises have been
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carried out to evaluate different scenarios. For instance, the
model was used to analyze the effect of delaying the extrac-
tion of an expansion from 2009 to 2011. The results showed
that the delay would have led to a loss of $114 M, so it was
avoided. In another scenario, a 10-year delay for a sector
in the underground mine was studied and the result was a
loss of $654 M. However, this was assuming a conventional
fixed extraction rate of 165 K ton/day for the open-pit mine
and a very restrictive time window for a particular expan-
sion. In a follow-up study, these assumptions were removed,
and the model showed that it was optimal to extract material
from the open-pit mine at a rate of 233 K ton/day, which
contributed with higher grade ore to the plant, and delaying
the underground sector led to a profit of $184 M.

(3) Analysis of strategic decisions: In addition to the reg-
ular use of MUCH for planning purposes, the model has
been used to support basic strategic decisions. For instance,
a main sulfides concentration plant is located at Chuquica-
mata in the North Division. The mine RT is located 7 km
away. There is a lixiviation plant located at RT, but with a
lower recovery factor for sulfides than the plant at Chuquica-
mata. The question was: should the sulfides material be sent
from RT to the Chuquicamata plant, at a higher transporta-
tion cost, instead of being processed at the RT plant? The
decision was not trivial because it had to consider the costs
of processing, transportation, and copper recovery under
multiple scenarios for copper prices, fuel costs, and mineral
grades. After many MUCH runs it could be established that
using the plant at Chuquicamata was the better option, and
this decision was implemented in the annual plans.

Another important issue dealt with the mine Chuquica-
mata. As the open-pit mine started one hundred years ago, it
became too deep, and Codelco developed a project to con-
vert the mine to underground operation. Codelco has used
the MUCH optimization system to evaluate the timing of
this huge transformation. Certainly, a structural project like
this involved many other studies and elements that impact
such important and strategic decisions. The conversion is
now set to take place in 2018, and it involves an invest-
ment of $2,000 M. It represents one of the major strate-
gic projects that Codelco has put forward to strengthen its
competitive position during the next decades (Economía y
Negocios 2010).4

7. Conclusions
In this paper we have presented an approach to optimize
long-term production plans for copper mines considering
multiple deposits, multiple products and multiple processing
plants. The model is a multicommodity capacitated network
flow, where nodes correspond to extraction or processing
points. The flow components are copper and molybdenum in
different stages of production, as well as the main pollutant,
arsenic. Arc or node capacities reflect limits on extraction,
transportation, and processing, while investments are rep-
resented as costs. Constraints include bounds on extraction

rates, restrictions induced by safety considerations related
to rock spillage and instability of walls, as well as limits on
pollutants. One major decision is how to allocate mineral
from the different mines to the downstream processes.

An important challenge here was the algorithmic solution.
Given that there are hundreds of thousands of integer vari-
ables, an approximation heuristic was used. In the case of
underground mines, an iterative rounding approach worked
well, aided by the vertically decreasing rate of copper at
each drawpoint. For the open-pit mines, an extended net-
work flow formulation proved to be quite strong, leading to
less fractional values.

As shown by the different mines of Codelco where the
system was implemented, there was an important impact on
the decision process due to the introduction of the model-
based approach. In particular, at Codelco North Division the
use of the model led to an increase of 8% in NPV, which
can be decomposed in 3% due to mine integration and 5%
due to the optimized plan. Similar results were obtained at
El Teniente and Andina. For several years now, the system
has been used on a regular basis for routine long-term plan-
ning. Through the analysis of scenarios, the model has also
been used to support strategic decisions such as the conver-
sion of Chuquicamata to an underground mine.

Overall, the system has become an essential planning tool
to support Codelco’s mission of increasing its long-term
value and thus its contribution to the country. Given the suc-
cess of this project, further collaboration between the Uni-
versity of Chile and Codelco has been established. Current
work focuses on short-term planning models and how to
incorporate uncertainty, mostly due to price volatility in the
copper market.

Electronic Companion

An electronic companion to this paper is available as part of the
online version that can be found at http://or.journal.informs.org/.

Endnotes

1. LHD stands for loading, hauling, and dumping.
2. Note that the left-hand side of Constraints (11), (13), and (14)
is formulated as a cumulative sum over time, which helps tighten
the LP relaxation.
3. The reduction in investments can be seen in Table 2.
Percentage-wise, these are important reductions. However, in
absolute terms they are small compared to total revenue and costs.
4. We recently became aware of the paper by Newman et al.
(2010a), who specifically study the conversion from open pit to
underground for a South African mine, although this work has not
been implemented.
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