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a b s t r a c t

A multi-period stochastic model and an algorithmic approach to location of prison facilities under

uncertainty are presented and applied to the Chilean prison system. The problem consists of finding

locations and sizes of a preset number of new jails and determining where and when to increase the

capacity of both new and existing facilities over a time horizon, while minimizing the expected costs of

the prison system. Constraints include maximum inmate transfer distances, upper and lower bounds

for facility capacities, and scheduling of facility openings and expansion, among others. The uncertainty

lies in the future demand for capacity, because of the long time horizon under study and because of the

changes in criminal laws, which could strongly modify the historical tendencies of penal population

growth. Uncertainty comes from the effects of penal reform in the capacity demand. It is represented in

the model through probabilistic scenarios, and the large-scale model is solved via a heuristic mixture of

branch-and-fix coordination and branch-and-bound schemes to satisfy the constraints in all scenarios,

the so-called branch-and-cluster coordination scheme. We discuss computational experience and

compare the results obtained for the minimum expected cost and average scenario strategies. Our

results demonstrate that the minimum expected cost solution leads to better solutions than does the

average scenario approach. Additionally, the results show that the stochastic algorithmic approach that

we propose outperforms the plain use of a state-of-the-art optimization engine, at least for the three

versions of the real-life case that have been tested by us.

& 2011 Published by Elsevier Ltd.

1. Introduction

The prison location and sizing problem seeks to find optimal
locations and sizes (in terms of number of inmates) for a given
number of new prison facilities, and to decide where and when to
increase their capacities, as well as the capacities of existing jails,
so as to minimize the expected cost of a prison system that
satisfies all the demands for space. As a pilot case we use the
Chilean prison system. We must also solve the inmate-to-jail
assignment problem. We consider the case of Chile, where the
penal population is comprised of detainees who stay in the prison
system for a few days at most; of persons under trial, who are held
in the prison system as long as the trial is not finished; and of
convicted inmates, whose sentences go from a few months to life.

Inmates belonging to the first two categories must remain in
prisons that are close to the courts, because of frequent travel
between prison and court. Convicted inmates can be far from
court, but they need to be within a preset distance from their
family’s residence, for humanitarian reasons. Although there are
small confinement cells for some of the detainees, most of the
penal population share the same prisons, with internal separation.

Recently, the authority in charge of the prison system overtook
the task of planning its prison system for a time horizon that was
set to 20 years. Apart from the inherent difficulties of the jail
location, assignment and sizing problem, a critical aspect of
planning for such a long time horizon is the uncertainty in the
forecast of the population. In addition to this uncertainty, criminal
law reforms recently implemented throughout Chile are bringing
large changes to historical trends. The reforms have introduced
deep modifications in sentencing policies and increase uncer-
tainty regarding future inmate population. The percentage of
convicted offenders who are imprisoned is now smaller, but
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changes in the perceived efficiency of law enforcement will also
impact the quantity and frequency of legal action.

An additional difficulty comes from the fact that the prison
system is currently overcrowded. As a consequence, inmates,
especially sentenced inmates, instead of being kept close to their
family’s hometown, are assigned to jails that still have space.
Thus, when forecasting, one should not use historical tendencies
in the prison population without taking this into account.
The full description of the planning problem is presented in
[18], where a model is proposed for the prison location problem,
in which expected inmate population over a 20 year horizon is
predicted via a flow model together with historical information
for each Chilean province during the period 1992–1998.
The uncertain demand comes from the effects of the penal
reform on the capacity demand. The demand estimates were
used to generate eight independent scenarios and the problem
was solved using a minimum regret procedure for choosing good
solutions in a two-stage simple recourse environment. There
were two groups of four scenarios: the first four were simple
projections of the current population of the prison system, with
different values for police effectiveness and different outcomes of
the criminal laws reforms. The remaining four scenarios consid-
ered the same parameters, but the projections were corrected
by taking into account the overcrowding effect. Because of the
great uncertainty in the forecast, the different scenarios pose
very different requirements as far as location and size of the
facilities are concerned. The problem was addressed by stochastic
optimization.

In contrast to the approach in [18], in this paper uncertainty
will be represented via a multi-period scenario tree, and we
present a compact full recourse model. A heuristic combination of
the branch-and-fix coordination (BFC) algorithmic framework
[2,9,10] and of a branch-and-bound scheme, so-called branch-
and-cluster coordination (BCC) scheme, is developed to coordi-
nate the management of feasible decisions under the various
scenarios. The proposed minimum expected cost strategy com-
pares favorably with the average scenario strategy. The stochastic
algorithmic approach that we propose outperforms the plain use
of a state-of-the-art optimization engine, at least for the three
versions of the real-life case that we have tested. The results
of the paper can be easily extended to other facility location
and sizing problems under uncertainty of future demand. Other
examples of this type of problem appear when locating any public
(hospitals) or private (malls) facilities in areas of uncertain
development.

The remainder of the paper is structured as follows. Section 2
introduces the background to the site selection problem and
previous work on the subject. Section 3 describes the theoretical
framework for the minimum expected cost strategy employed in
the paper. Section 4 sets up the mixed integer deterministic
equivalent model representing the siting problem. Section 5 pre-
sents the proposed solution algorithm. Section 6 reports the
computational experience and, finally, Section 7 draws conclusions.

2. The prison system

Gendarmerı́a de Chile is the Chilean government entity
responsible for administering the country’s correctional facilities.
Some 65,000 persons are housed by the national prison system,
falling into three categories, which depend on the status of the
criminal proceedings against them. They are as follows:

1. Detainees: persons in custody awaiting formal charges.
2. Charged inmates: persons formally charged (arraigned) and

awaiting trial or sentencing.

3. Convicted inmates: persons tried and sentenced, whether
serving in open or in closed facilities.

The total prison population, made up of prisoners in all three
categories, can also be classified according to the type of prison
infrastructure. Institutional statistics reveal that about 31,000
persons were held in closed prisons (where inmates have to
remain at all times, until their sentence expiry date), and 34,000
in the open or semi-open system (in which inmates can be
released for some periods of time, as for example, during the
day). The prison population is assigned to the various penal
institutions based on criteria such as gender and type of sentence
received. In this work, we restrict our analysis to inmates held in
the closed prison system.

Each Chilean province consists of one or more court jurisdic-
tions depending on its population. Each jurisdiction is located
entirely within a single province, and all inmates in a jurisdiction
are assigned to one of its facilities.

In order to ensure sufficient capacity for an uncertain inmate
population, the system must decide which existing institutions
should be expanded, when such expansions should be implemented
and what the final capacities should be. The size, the timing of the
opening and the location of new institutions must also be decided.

The problem considers the costs of opening and expanding
facilities subject to a series of physical and legal constraints. The
system must be designed so as to meet the uncertain demand for
space over a 20 year time horizon which is decided by the
authorities in charge.

The inmates are divided into two types: those detained for a few
days or awaiting trial or sentencing, and those who have been
sentenced. The first group is held at facilities that should be located
as close as possible to their respective courts, given that inmates must
travel frequently between the two locations. It is not mandatory,
however that sentenced prisoners be imprisoned in the same city or
geographical division as the court that sentenced them. But it is
desirable that they be held in institutions located as close as possible
to their families. Factors included in the problem are controlled use of
prison overpopulation, limits on transfer distances for the two inmate
groups, lower and upper bounds for facility capacities, scheduling of
facility openings and expansions over the planning horizon, and
solutions for various possible space demand scenarios.

In [18] uncertainty is handled with a minimum regret strategy
in a two-stage environment. The prison-siting model solved there
had the following characteristics:

1. Aggregate data for various scenarios are treated simulta-
neously in one common model via a compact representation.
This means that a single model included all variables and
constraints, which are repeated for each possible scenario.

2. There was only one set of site selections for all scenarios. The
opening date decisions had to anticipate all possibilities,
regardless of the uncertainty involved, i.e., a simple recourse
environment was considered.

3. The worst (biggest) cost among the various scenarios was
minimized.

A simulation model was defined in an earlier paper on
modeling the future growth of the prison population [19]. It
was based on a simplified diagram describing the flow of persons
through the system. The flow included detainees, inmates under
trial and convicted inmates.

However, the main characteristics of our current model are as
follows:

1. The capacities of prison facilities in a given province should be
sufficient to house all detainees and charged prisoners from
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that province plus the convicted inmates assigned to it (from
the same or any other province). Note that overpopulation is
inevitable when the number of detainees plus prisoners under
trial exceeds the province’s prison capacity, because these
categories cannot be transferred to facilities in other provinces.
In such cases, convicted inmates assigned to these jails also
contribute to the overpopulation. Our model deals with this
phenomenon by allowing overpopulation, but penalizing it in
the objective function. The overpopulation cost or penalty has
a relation to facility opening costs, and was set in such a way
as to force the model to open a new facility when there is
enough overpopulation in its province for filling 1/3 of its
opening size. Notice that the capacity of prison facilities is a
soft constraint in the model.

2. No province capacity ever declines but rather grows in
accordance with implemented expansions. No existing facility
closes during the 20 year time horizon. Any new facility
remains open for the duration of the horizon.

3. Existing facilities have a current capacity and a maximum
expanded capacity determined by Gendarmerı́a de Chile.

4. Convicts can be transferred between provinces with limits on
transfer distances.

5. The decision to open a new facility must be taken one period in
advance to allow sufficient time for construction given the
variability in the evolution of the uncertain parameters.

6. Recourse is allowed along the time horizon, thus, the opening
decisions do not need to anticipate all scenarios.

Additionally, the planning horizon is divided into six time
periods to agree with the budgetary constraints of the agency in
charge of the prison system. There are policy derived constraints
on the number of facilities to be opened along the time horizon,
such as (1) a given number of facilities must be opened in the first
time period, (2) at most one new facility can be opened in each
province, and (3) a fixed number of facilities must be opened
along the time horizon.

3. Modeling under uncertainty

The problem as described in the previous section involves
three sets of random parameters that will be treated by using a
Stochastic Integer Programming (SIP) approach. These are con-
victed inmate-, charged inmate- and detainee-populations for
each province and time period.

See [6,14,15], among others, for successful methods dealing with
uncertainty in continuous problems. Also see [1,3,10,20,24,25],
among others, for successful implementations of SIP.

Facility location problems with uncertainties have been
addressed in different contexts. When different future scenarios
are possible, the two preferred schemes are to minimize expected
cost and to minimize regret. A review of both is offered in [26],
where a procedure mixing both approaches is presented. From
different points of view, a good review of general location
problems has been provided in [5], where there is stochastic
demand and congestion at the facilities. See in [18] an approach
to locate facilities to maximize satisfied demand.

Now, let us consider the following deterministic problem:

min axþcy

s:t: AxþBy¼ b,

xAf0;1gn, yZ0, ð1Þ

where m, n and nc are the number of constraints, 0–1 variables
and continuous variables, respectively, a and c are n- and
nc-dimensional objective function coefficient vectors, respec-
tively; b is the m-dimensional right-hand side (rhs) of the

constraint system; A and B are m�n and m� nc constraint
matrices, respectively; and x and y are an n-vector of 0–1
variables and an nc-vector of continuous variables, respectively.

We use a scenario tree approach based on [1, 2, 3], in which
uncertainty is modeled in terms of a set of scenarios. For this
purpose we introduce the following definitions. A period of a time
horizon is one or several years in which the random parameters
are realized and decisions can be taken; a scenario is the
realization of uncertain and deterministic parameters during all
the periods of the time horizon; and a scenario group for a given
time period is the group of scenarios with the same uncertain
parameter realizations up to that period. (That is, a scenario group
defines a group of partial scenarios).

To illustrate the multi-period scenario tree concept, let Fig. 1
be a scenario tree in which each branching level represents a time
period in which a decision can be taken. In the figure, the time
periods are t¼1, 2, 3 and 4. Once a decision has been taken at
some of these time periods, various possible situations may occur.
In our example, after time period 1, there are two such situations
in time period t¼2, represented by nodes 2 and 3. This informa-
tion is generally presented in the form of a tree in which each
path from the root to a leaf represents a scenario and corresponds
to the realization of the entire set of uncertain parameters. For
example, path 1, 3, 6, 12 represents one scenario, and it is
customary to call it scenario 12, i.e., denote the scenario using
its last node. In what follows, we do not distinguish between a
scenario (or a group) and the corresponding node on the tree
(with the same number). Each node in the tree must be associated
with a scenario group in such a manner that any two scenarios
belong to the same group (i.e., they have the same partial
scenario) in a given time period if they include the same
occurrences of uncertain parameters up to that time period. For
example, for time period 3, scenarios 12 and 13 belong to the
same group associated with path f1;3,6g, i.e., with group g¼6.
Notice the difference between a scenario (a path from the root
node to a leaf node) and a partial scenario (a path from the root to
an intermediate node).

The notation for the scenario tree to be used in the paper is as
follows:

T set of periods in the time horizon
T þ set of all time periods except the last one
O set of scenarios
G set of scenario groups
Gt set of scenario groups in time period t ðGt DGÞ, for tAT

Fig. 1. Example of multi-period scenario tree.
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G� set of all scenario groups except the first one (that is
associated with the root node)

Og set of scenarios in group g ðOg DOÞ, for gAG. The non-
anticipativity principle, stated in [27] and restated in
[6,21], among many others, requires that decisions
pertaining to scenarios in a same group (i.e., partial
scenarios with the same value in the parameters) be
the same

sðgÞ immediate ancestor node of node g, for gAG
N g set of nodes in the ancestor path from node g to the root

node, for gAG. (Note: sg AN g)
tðgÞ time period of scenario group g.

If the parameters a, b and c in problem (1) are random
parameters with a set of discrete occurrences, say, ao, bo and
co over the set O of scenarios oAO, we will model our problem
as follows:

min
X
oAO

woðaoxoþcoyoÞ

s:t: AxoþByo ¼ bo 8oAO,

ðx,yÞAN ,

xoAf0;1gn, yoZ0 8oAO, ð2Þ

where wo is a positive weight assigned to scenario o, for instance
its probability;

P
oAOwo ¼ 1; xo and yo represent the x and y

variables for scenario o, respectively; and the so-called non-

anticipativity set is defined by

N ¼ fv9vot ¼ vo0t 8o,o0AOg ,gAGt ,tATg, ð3Þ

where v¼ ðx,yÞ and vot is such that vo ¼ ðvot ,8tAT Þ.
The non-anticipativity principle ensures that the solution for

time period t in the model does not depend on information that is
yet unavailable. To model the constraints in (3), two different
approaches can be used, namely, the compact representation and
the splitting variable representation. The latter has two alter-
native formulations. The first one is known as a node-based (or
scenario group-based) representation. It uses copies of the vari-
ables with nonzero coefficients in constraints belonging to dif-
ferent time periods. The second formulation, referred to as a
scenario-based representation, requires that all variables be
copied. In both formulations the non-anticipativity constraint
(for short, NAC) must be explicitly incorporated into the model,
but for the purpose of the paper the second formulation preserves
the model structure better.

Upon incorporating the set (3) in model (2), we obtain the
Deterministic Equivalent Model (DEM) for the splitting variable
representation:

min
X
oAO

woðaoxoþcoyoÞ

s:t: AxoþByo ¼ bo 8oAO,

xot ¼ xo0t 8tAT þ , 8gAGt , o,o0AOg , oao0,
xoAf0;1gn,yoZ0 8oAO: ð4Þ

Notice that xot ¼ xo0t implies that t is up to t(g) as the parameters
for each scenario group are identical.

We now modify the notation to consider scenario groups
instead of single scenarios in DEM. The compact representation
of the stochastic model (2) can be written

min
X
gAG

wgðagxgþcgygÞ

s:t: A0xsðgÞ þAxg
þB0ysðgÞ þByg

¼ bg
8gAG,

xg Af0;1gnt ,yg
Z0 8gAG, ð5Þ

where nt is the number of the x variables at each time period t,
and ag, bg and cg are the counterparts of parameters ao, bo and co

related to scenario group g, for gAG, such that the values of the

parameters for each scenario in the group are identical. Addition-
ally, xg and yg represent the x and y variables for scenario group g,
respectively, and A0 and B0 are the constraint matrices for the x

and y variables related to the immediate ancestor of group g.
Different approaches exist for solving the type of problem

under consideration here. Typically, Lagrangean relaxation
schemes (see a survey in [12]) and Benders [4] decomposition
schemes are used for stochastic continuous linear programming
problems. For integer problems there are a few valid alternatives,
including schemes such as Benders decomposition [6,7,17],
Lagrangean decomposition [8,16,22,23], disjunctive decomposi-
tion [20], stochastic branch-and-cut [24], Benders decomposition
based branch-and-bound [25] and the already cited branch-and-
fix coordination (BFC) [2,9,10], among others. This last method is
the basis for the approach utilized in our work.

If one ignores the NAC in model (4), the model decomposes
into 9O9 submodels, and the model for scenario o is as follows:

min aoxoþcoyo

s:t: AxoþByo ¼ bo,

xoAf0;1gn, yoZ0: ð6Þ

The BFC scheme is specifically designed to coordinate the
selection of the variable and node to be branched from in the
branch-and-fix (BF) tree corresponding to each scenario so that
the NAC, which have been relaxed from the model, are automati-
cally satisfied when the appropriate variables are fixed at 0 or 1. The
procedure also coordinates and reinforces active node pruning,
variable fixing and objective function bounding for each node
subproblem.

To gain computational efficiency it is not necessary to relax the
NAC for all scenario pairs. The number of joint scenarios kept in a
given model (i.e., scenarios whose NAC are explicitly included in
the model) depends basically on the dimensions of the scenario
model. A scenario cluster, then, is a set of scenarios whose mutual
NAC are explicitly modeled. The criterion for forming the clusters,
say O1, . . . ,Oq, where q is the number of clusters, will be problem
dependent. However, we favor the approach that shows higher
scenario clustering for greater number of scenario groups in
common. So, each scenario cluster has a related submodel. In
any case, the clusters define a partition of O, that is, Op \Op0 ¼ |,
p,p0 ¼ 1, . . . ,q, pap0 and O¼

S
p ¼ 1,...,qOp. Thus, every scenario

exclusively belongs to a cluster.
The model for each scenario cluster p¼ 1, . . . ,q can be written

using the compact representation, and it should include only the
variables and constraints related to the scenarios in the cluster.

A heuristic procedure for obtaining good solutions for the pure
0–1 cluster model is given in [3]. For a heuristic approach to the
mixed 0–1 case, see Section 5 below.

4. DEM for the selecting prison facility site problem

Let us introduce the following additional notation:
Sets

J set of provinces
J i subset of provinces located close enough to province i,

including itself, for iAJ

Deterministic parameters

A ‘‘unit’’ cost is always a ‘‘per inmate’’ cost.
cjt fixed cost of opening a new facility in province j at time

period t, for jAJ ,tAT þ

P. Hernández et al. / Computers & Operations Research 39 (2012) 2232–2241 2235
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ĉ jt unit cost of expanding a facility in province j at time
period t. Note: Existing facilities cannot be expanded at
time period t¼1, nor can new facilities be available

kt
ij unit cost of transferring convicted inmates between

province (court) i and prison facilities in province j at
time period t

sjt unit cost of overpopulation in province j at time period t

XEj maximum capacity of existing facilities in province j

XNj maximum capacity of each new facility in province j

XN
j

minimum capacity of each new facility in province j, if
any

dt discount factor used in the cost evaluation of time
period t

dj bound on the number of new prison facilities in pro-
vince j

np number of new prisons that must be built along the time
horizon

np1 number of new prisons that must be built during time
period 1

XE1
j total prison capacity (number of inmates) in currently

existing facilities in province j at the beginning of the
time horizon

wg positive weight assigned to scenario group g, for gAG

Stochastic parameters for each scenario group g for gAG

Dþ
g

j demand for convicted inmate capacity in province j at
time period t(g)

D�
g

j demand for charged inmate and detainee capacity in
province j at time period t(g)

Variables for each scenario group g for gAG

Cg
ij number of convicted inmates originating in courts of

province i assigned to facilities of province j at time
period t(g)

dg
j 0–1 variable that is equal to 1 if a new prison is opened

in province j at time period t(g) and zero otherwise, for
tðgÞAT þ because of construction delays

gg
j number of new facilities that are opened in province j up

to time period t(g) for tðgÞ41
XEg

j total prison capacity (number of inmates) in currently
existing facilities in province j at time period t(g) for
tðgÞ41 (such that XEj

g is a parameter for g¼1)
XNg

j total prison capacity in new facilities in province j at
time period t(g) for tðgÞ41.

YEg
j volume (number of inmates) of expansion of existing

prison facilities in province j at time period t(g), for
tðgÞ41

YNg
j volume of expansion of new prison facilities in province

j at time period t(g) for tðgÞ41
Sg

j volume of overpopulation in prison facilities in province
j at time period t(g).

DEM

min
X
gAG

X
jAJ

wgdtðgÞcj,tðgÞd
g
j ð7Þ

þ
X

gAG�

X
jAJ

wgdtðgÞĉ j,tðgÞðYEg
j þYNg

j Þ ð8Þ

þ
X
gAG

X
iAJ

X
jAJ i

wgdtðgÞktðgÞ
ij Cg

ij ð9Þ

þ
X
gAG

X
jAJ

wgdtðgÞsj,tðgÞS
g
j ð10Þ

s:t:
X
jAJ

d1
j ¼ np1, ð11Þ

X
kAN g

X
jAJ

dk
j ¼ np 8gAG9T 9, ð12Þ

X
kAN g

dk
j rdj 8jAJ , gAG9T 9, ð13Þ

gg
j ¼ g

sðgÞ
j þdsðgÞj 8jAJ , gAG�, ð14Þ

XEg
j rXEj 8jAJ , gAG�, ð15Þ

XN
j
gg

j rXNg
j rXNjgg

j 8jAJ , gAG�, ð16Þ

XEg
j ¼ XEsðgÞj þYEg

j 8jAJ , gAG�, ð17Þ

XNg
j ¼ XNsðgÞ

j þYNg
j 8jAJ , gAG�, ð18Þ

X
jAJ i

Cg
ij ¼Dþg

i 8iAJ , gAG, ð19Þ

D�
g

j þ
X

iAJ :jAJ i

Cg
ijrXEg

j þXNg
j þSg

j 8jAJ , gAG, ð20Þ

Cg
ij,S

g
j Z0 8iAJ j, jAJ , gAG, ð21Þ

XEg
j ,XNg

j ,YEg
j ,YNg

j ,gg
j Z0 8iAJ j, jAJ , gAG�, ð22Þ

dg
j Af0;1g 8jAJ , gAG: ð23Þ

The objective function includes the cost of installing new
facilities (7), the cost of expanding existing and new facilities
(8), the cost of transferring convicted inmates (9) and the over-
population cost (10). Notice that no facility expansion can be
performed at time period t¼1 and no new facility will be opened
in the last period 9T 9. Constraints (11) and (12) specify the total
number of new prison facilities. Constraints (13) bound the
number of new prison facilities per province. Constraints (14)
give the equations for the facility opening update, such that a
facility is available in the period immediately following the time
period in which it is open. Constraints (15) and (16) bound the
inmate capacity of existing and new facilities, respectively. Con-
straints (17) and (18) update the inmate capacity of existing and
new facilities, respectively. Constraints (19) give the equation for
the convicted prisoners assignment. Constraints (20) balance the
inmate numbers. Notice that the integer constraint of the g
variables is implicitly satisfied, given the integer character of
the d variables.

5. Branch-and-cluster coordination algorithmic scheme

In the previous sections a mixed 0–1 DEM was presented for
the prison facility siting problem. To deal with uncertainty in the
real-life problem considered in this paper, 108 scenarios were
generated based on the model for the prison population predic-
tion given in [18]. The topology of the scenario tree is shown in
Fig. 2. The dashed lines in the figure indicate that the structure for
the other branches is repeated.

It was also decided for computational reasons that the pro-
blem would be treated using clusters of 36 scenarios, each
containing compact representations of the submodels. Thus, the
tree shown in Fig. 2 can be divided into three clusters (q¼3).
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Notice that the only decisions shared by all clusters are those
related to the first time period. The related 0–1 variables are the
prison opening decisions to be made in that period for imple-
mentation in time period 2, due to the time lag between making
the decision and the actually opening of the facilities.

We present a heuristic specialization of the BFC-MSMIP
approach given in [10] to handle the necessary coordination of
the first period decisions. We call it branch-and-cluster coordina-
tion (BCC), it provides very good feasible solutions in affordable
computing effort (in terms of memory and elapsed time), see
Section 6. The basic steps of the algorithm are described below.
For this purpose, we split the time horizon in two stages. The first
stage only includes the first time period. The second stage
includes all other time periods. In the first phase we solve model
(7)–(23), where the integrality constraints on and the NAC of the
second stage 0–1 variables are removed. In the second phase,
after fixing the first stage variables to the values just obtained in
the first phase, we solve the individual cluster submodels by
using an MIP solver.

We now analyze the first phase of the algorithm, thus, in what
follows, pAf1,qg denotes the index of a cluster. Variables related
to that cluster are indexed with a superscript p. Let d1p

j denote the
jth element of the variables vector d1p, where 1 refers to the first
stage. Let also Rp denote the branch-and-fix (for short, BF) tree
associated with cluster p (see below the definition of a BF tree as a
special branch-and-bound tree, for short B&B), and Hp be the set
of active nodes in Rp. Any two active nodes, say, hAHp and
h0AHp0 with pap0 are called twin nodes if the paths from the root
node to each of them in their own BF trees, say Rp and Rp0, have
been branched on the same values of the d variables. A set of twin
nodes will be called a Twin Node Family (for short, TNF), say f, if
any node is a twin node to all nodes in the family. Let F denote
the set of families of twin nodes, so that one can say that the
nodes h and h0 are twins if h,h0A f , f AF . A BF tree differs from a
simple B&B tree associated with a scenario in that the fixing of a
0–1 variable in the B&B tree (in our case, BF tree) automatically
produces the fixing of that variable to the same value in all related
nodes in the TNF under consideration. As an illustration, let us
consider the active node h in the BF tree Rp and assume a
branching is required on the variable d1p

j ; in that case, two new
subproblems are created in the BF trees associated with the
clusters, such that the new branches from each node h0 in set f

where hA f , f AF are as follows: d1p
j ¼ d1p0

j ¼ 1 on one descendant
node from each node in set f and dp

j ¼ d1p0
j ¼ 0 on the other

descendant node. So, the proposal is to execute in a coordinated
way the q BF phases, one per cluster.

The main differences between the algorithms BCC and BFC-

MSMIP are as follows: First, BCC splits the full DEM model into q

scenario cluster submodels for the second phase, once the values

of the first stage variables have been fixed. Second, the integrality

constraints of the 0–1 variables are removed in the submodel to

be solved by BCC at any branching TNF in the BF phase, so a

simple LP model is solved as a provider of a lower bound of the

solution value for the TNF submodel under consideration. And,

third, BCC as a heuristic only looks for a good feasible solution,

while BFC-MSMIP is an exact algorithm and, then, looks for the

optimal solution of the original problem.
Roughly speaking, the BCC algorithm is as follows:

� Step 1: Solve the LP relaxation of the original problem by
solving the corresponding q cluster related LP models. Each
model will be the root node problem of Rp 8pAf1,qg. If all NAC
and integrality constraints are satisfied for all periods in all
scenario clusters, then stop; the optimal solution to the original
stochastic mixed 0–1 problem (2) has been obtained. Other-
wise, a lower bound for the optimal solution has been found.
� Step 2: Following a criterion that has performed well in the

past, see for example [2,25], the first stage TNF branching is
done following the depth first strategy. The selection of the
branching variable is done by using the highest expected
minimum fractional value. The scheme is as follows: Let

Dj ¼min
Xq

p ¼ 1

wpdn1p
j ,q�

Xq

p ¼ 1

wpdn1p
j

( )
8jAJ 1

,

where dn1p
j is the current fractional value of the variable d1p

j ,
J 1

is the subset of 0–1 variables not yet branched on in the
branching TNF, and wp represents the weight assigned to
cluster p. The branching variable to select, say b, is such that

b¼ argmax
jAJ 1 fDjg:

Branching on the b variable will create a new TNF, such that
the strategy is ‘‘branching on the zero value’’ for

Xq

p ¼ 1

wpdn1p
j rq�

Xq

p ¼ 1

wpd
n1p
j

and, otherwise, ‘‘branching on the one value’’.
� Step 3: The selected 0–1 variable is branched on the same 0–1

value at all the node members of the branching TNF.
� Step 4: Optimization of the q LP models attached to the newly

created TNF after branching on the chosen first stage 0–1 b
variable. If its related LP model is infeasible then go to Step 6.
� Step 5: If the solution that has been obtained in Step 4 has

fractional values for the first stage 0–1 variables, then go to
Step 2 to select another branching variable to continue the
branching phase. Otherwise, a first stage integer solution for
the branching TNF has been obtained. If all NAC and integrality
constraints are satisfied for all periods in all scenario clusters,
then stop; a feasible solution to the original stochastic mixed
0–1 problem (2) has been obtained. Otherwise, the d1p

j vari-
ables are fixed to their just obtained values. If the NAC for the
first stage continuous variables are not satisfied, an LP relaxa-
tion of the original model (7)–(23) must be solved, where the
first stage 0–1 variables are fixed to the just obtained values. If
the integrality constraints of the 0–1 variables are satisfied for
all periods in all scenarios in the just solved LP model, the
feasible solution for the original model is found then stop.
Otherwise, the first stage variables are fixed at their values
and, as a consequence, the q mixed 0–1 scenario clusters
submodels for the second stage become independent (i.e, there

108 scenarios in 3 clusters
with 36 scenarios each

First
stage

Second
stage

Fig. 2. Scenario tree for the prison facility sites selection problem.
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is one model per cluster) and, then, they are optimized by
using a MIP solver. If there is an infeasible solution for any of
the cluster submodels then go to Step 6. Otherwise, the
optimal solution of the cluster submodels gives a feasible
solution to the original problem.
� Step 6: ‘‘Branch on the one value’’ if it has only been ‘‘branched

on the zero value’’, and vice versa. In any case, goto Step 3,
unless it has been branched on in both directions. In this latter
case, goto Step 7.
� Step 7: (Both branches have already been used) Do back-

tracking and go to Step 6.

6. Computational experience

The dimensions of the real-life problem that is used for
obtaining the computational results reported in this section are:
9J 9¼ 51 provinces, 13 of them are eligible for being candidates to
open prisons, 9T 9¼ 6 time periods, 9O9¼ 108 scenarios and
9G9¼ 202 scenario groups. The topology of the scenario tree is
11,33,22, that is, there are (1), (3,9,27), (54,108) nodes in the time
periods (1), (2,3,4), (5,6), respectively, see Fig. 2. The time periods
1 to 6 correspond to the six periods: year 1, years 2–3, 4–7, 8–11,
12–15 and 16–20, respectively.

For illustrative purposes, the demand for the scenarios is
shown in Fig. 3. For confidentiality reasons, the demand is shown
relative to the first time period’s demand, which has been set to
100. For comparison purposes, the scenario tree has been devel-
oped based on the 1992–1998 data used in [18].

The scenario tree has been developed based on [18]. np¼10
prison facilities must be open in the time horizon, np1 ¼ 3 of them
must be open in time period 1. dj ¼ 0 for all provinces but the 13
given eligible provinces to open prisons, such that dj ¼ 1 for those
candidates provinces (i.e., only a new prison facility per province
is allowed, at most) and, so, the g variables may only have 0–1
values.

The models and the BCC algorithm were written in GAMS
v23.3 [11] using CPLEX v12.1 [13] as the MIP solver, and were
executed on a 2.67 GHz Pentium IV PC with 12.0 GB of RAM
running Windows 7 Ultimate.

It should be noted that all models have a similar basic
structure. What changes from one BCC iteration to the next are
the parameters for each scenario cluster and the variables to be
fixed. This structural characteristic is reflected in the separation of
the scheme into two parts. The first part defines the generic
model structure while the second incorporates the variables to be
fixed plus the data. In this manner the generic structure is
generated only once, and is thereafter invoked each time the
control routine is iterated.

One alternative strategy is analyzed in addition to the mini-
mum expected cost strategy proposed above, namely, the average

scenario strategy. This approach replaces the uncertain para-
meters by their average over all scenarios along the time horizon.

Table 1 shows for the real-life case the weights for the three
clusters in each of the three versions of the case that are tested,
the weights being the only difference among versions.

The scenarios of largest demand are in Cluster 1, those of
intermediate demand are found in Cluster 2, and those with
lowest demand are concentrated in Cluster 3. Thus, in Version
1 the clusters with the worst scenarios have the lowest prob-
ability, in Version 2 all clusters are equiprobable, and in Version
3 the clusters with the worst scenarios have the highest prob-
ability. Moreover, the scenarios within each cluster remain
equiprobable in all versions.

Table 2 gives the dimensions of the scenario-related determi-
nistic model. It also gives the dimensions of the compact repre-
sentation of the deterministic equivalent model (DEM) to the
stochastic problem (2). The notation is as follows: m, number of
constraints; nc, number of continuous variables; n, number of 0–1
variables; and dens, constraint matrix density. 13 0–1 variables
out of 1222 belong to the first time period (that actually gives the
set of decisions to be made). There are 13�5 ¼ 65 d variables in
the deterministic model and 13�94 ¼ 1222 d variables in the
DEM compact model. (Remember that only 13 given provinces
out of 51 provinces are eligible to open new prisons, and no new
prison facility can be built in the last time period.) As we will
show below the DEM has been extremely difficult to solve, even
the optimality of the incumbent solution could not be proven by
CPLEX after spending much computing effort.

As previously noted, our algorithm divides its operation into
two phases. The values of the variables in the first phase are
determined via the BCC scheme and, once a first phase integer
solution has been obtained, the algorithm proceeds to the second
phase where the MP submodels are split by cluster and solved
independently by CPLEX.

It is worth pointing out the small influence in the solution
value that have the cost of facility expansion, convicted inmate
transferring and facility overpopulation when it is compared with
the much higher cost of new facilities opening. So, the NAC for the
continuous variables have been relaxed for the cases that we have
experimented with (and whose results are reported below).
Additionally, the periods have from two up to five years and,
then, decisions on the jail capacity can be very easily adjusted. So,
the value of those variables have been averaged in the results
presented below.

For Version 1 (cluster probabilities 0.15, 0.30, 0.55), the BCC
algorithm obtains a feasible solution, whose value is 306.80, in
0.73 h of computing time. The plain use of CPLEX obtains the first
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Fig. 3. Tree of the stochastic demand.

Table 1
Cluster probabilities for the versions of the real-life case.

Version 1 Version 2 Version 3

Cluster 1 0.15 0.33 0.55

Cluster 2 0.30 0.33 0.30

Cluster 3 0.55 0.33 0.15

Table 2
Model dimensions.

Deterministic model DEM compact model

m 1615 57,907

nc 2759 93,324

n 65 1222

densð%) 0.396 0.017
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(bad) solution value 2108.72, in 143 s, and the best feasible
solution, whose value is 304.04, in 11.57 h of computing time
with a 0.52% optimality gap and, then, the execution was stopped.

For Version 2 (cluster probabilities 0.33, 0.33, 0.33), the BCC
algorithm obtains a feasible solution, whose value is 304.14, in
0.9 h of computing. The plain use of CPLEX proves in 6.7 h of
computing that the solution value has a 0.81% optimality gap and,
then, the execution was stopped. CPLEX has found the same
solution after 2.6 h of computing.

For Version 3 (cluster probabilities 0.55, 0.30, 0.15), the BCC
algorithm obtains a feasible solution, whose value is 316.46, in
0.84 h of computing. The plain use of CPLEX obtains the first (bad)
solution value 2165.662, in 153 s, and the best feasible solution,
whose value is 314.40, in 8.83 h of computing with a 0.56%
optimality gap and, then, the execution was stopped.

For comparison purposes several computational experiments
were carried out, producing jointly the average scenario solution
for each time period. Given the decisions implied in that approach,
the results of such decisions are evaluated for each scenario.

Figs. 4 and 5 show some results by using the stochastic and
deterministic approaches. Fig. 4 shows the number of jails opened
at each period along the time horizon for each of the scenario
groups in the three versions of the case under consideration as the
solutions provided by the stochastic approach. It also gives the
solution provided by the deterministic approach.

Fig. 5 shows the differences in (a) number of new jails, (b) the
total capacity of these jails, and (c) the average capacity of these
jails in the stochastic and deterministic solutions for Version 1.
The results are normalized such that they are relative to the
solution provided by the deterministic approach, which has been
set to 100. The shadowed zone represents the variation range of
the solution provided by the stochastic approach over the 108
scenarios. The line with circle icons in the zone gives the average
of the proposed solution. We can observe that the stochastic
approach anticipates the jails opening with respect to the opening
provided by the solution of the deterministic approach. It also
gives a bigger total jails capacity while the average capacity varies
with respect to the deterministic solution depending on the time
period. The results are similar for Versions 2 and 3. Notice that the
solution of the deterministic model proposes a smaller number of
jails than the stochastic model, since it does not take into account
that the demand can be small enough for some scenarios when
comparing it with the average demand. On the other hand, the
stochastic model, while proposing a higher number of jails, has
more flexibility on matching capacity and demand and, then, the
capacity of these jails can be adapted. As a result, the jails are
smaller or larger than those provided by the deterministic model,
depending on the demand for each scenario. In any case, it always
offers more total capacity, and then, it reduces overpopulation
cost. Additionally, it advances decisions to earlier time periods.
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Fig. 4. Number of new jails opened. (a) Version 1. (b) Version 2. (c) Version 3.
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While the deterministic model opens more jails in time period 4,
the stochastic model concentrates the effort on opening jails in
the first three time periods. There is not too-much work to be
done in time period 4, and it simply satisfies in time period 5 the
minimum jail opening requirements for the whole time horizon.
It seems that both types of models could provide a better solution
if the constraint forcing to open 10 jails along the time horizon is
relaxed. This observation is clearer in the stochastic model since it
opens many jails in the last available time period.

Table 3 summarizes the objective function values under the
two strategies in each of the three cases that are studied. The
Diff.% column gives the percentage difference between the mini-
mum expected cost and the average scenario solution value over
the min expected cost. Notice that in all the three versions of the
real-life case, the minimum expected cost strategy obtains much
better results than the other strategy.

Let us point out that when one uses the average scenario
strategy and moves forward in the time horizon, the initial
decisions about later time periods can be modified, while opti-
mizing a new smaller average scenario problem each time. The
time horizon gets reduced by one time period at each iteration,
thus reducing the variance of the uncertain parameters. In other
words, once one has obtained the solution for the first time period
by solving the deterministic problem then, either after replacing
the uncertainties by the average scenario or after observing the
realization of the uncertain parameters, the average scenario
approach fixes the solution for that time period. Next, it solves
the average scenario problem for the remaining time periods. This
procedure is repeated until there are no time periods left. A more
accurate approach could be to consider a rolling horizon for a
number of time periods, but this is beyond the scope of this work.
This method, however, could show a bigger difference Diff.% with
rolling horizon in favor of the minimum expected cost approach
than the difference shown in Table 3.

7. Conclusions

The paper addresses a real-life problem of selecting prison
facility sites under uncertainty through a stochastic integer
programming approach, by modeling the uncertainty of convict-
, untried prisoner- and detainee-populations using a scenario tree
based approach. The model and solution approach can be easily
adapted to other prison site selection problems and some other
facility location problems. For example, the first stage in the BCC
scheme could include more than one time period.

There are costs associated with enforcing the proximity of the
inmates to either courts or their families. In the case of detainees
and inmates under trial, in addition to the direct cost, there are
penalties related to (i) the time it takes to transfer an inmate from
the jail to the court and back; (ii) the use of guards, in a situation
in which the prisons are understaffed; and (iii) even more
important, a penalty related to the risk of escape. This risk is
high and its impact is obviously very important, since most of the

courts are located in urban areas. In the case of convicted inmates,
the closeness to the families has to be maintained for humanitar-
ian reasons; otherwise, the families would feel that they are also
punished for the same crime. In addition, experience shows that
closeness to families is helpful in inmate rehabilitation.

The results for the minimum expected cost strategy in the BCC
scheme were compared with the average scenario approach.
(Notice that the average scenario approach is the most frequently
used approach today, even though it gives worse results than a
stochastic approach.) In the present application, the clear and
consistent superiority of the minimum expected cost approach
over the other strategy demonstrates that, in the three versions of
the real-life case we have experimented with, the latter is only
optimal for the average scenario, which in fact may not even exist.
Finally, the proposed stochastic algorithmic approach outper-
forms the plain use of a state-of-the-art optimization engine in
computing effort (one order of magnitude), having a similar
solution quality.
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