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Abstract

In this paper, we discuss the problem of selecting suppliers for an organisation, where a number of suppliers
have made price offers for supply of items, but have limited capacity. Selecting the cheapest combination of
suppliers is a straightforward matter, but purchasers often have a dual goal of lowering the number of
suppliers they deal with. This second goal makes this issue a bicriteria problem – minimisation of cost and
minimisation of the number of suppliers. We present a mixed integer programming (MIP) model for this
scenario. Quality and delivery performance are modelled as constraints. Smaller instances of this model
may be solved using an MIP solver, but large instances will require a heuristic. We present a multi-
population genetic algorithm for generating Pareto-optimal solutions of the problem. The performance of
this algorithm is compared against MIP solutions and Monte Carlo solutions.
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1. Introduction

In the globalised business world of today, firms are increasingly focusing on their core activities
and outsourcing the other activities. This has highlighted the methods used by firms in the
selection of supply partners. While traditionally firms have simply chosen their suppliers on the
basis of the lowest bids, the increased reliance on the suppliers has caused firms to choose their
suppliers more carefully, on a long-term basis. To sustain and nurture these long-term
relationships, firms are reducing the number of suppliers they deal with. The adoption of just-
in-time philosophy and the emphasis on supply chain integration have also raised the need to
reduce the number of suppliers. This has given rise to the twin goals of lowering the cost of
supplies and of lowering the number of suppliers.
In this paper, we discuss the problem of selecting the suppliers for an organisation, where a

number of suppliers have made price offers for supply of items, but have limited capacity.
Selecting the cheapest combination of suppliers is a straightforward matter, but purchasers often
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have a goal of lowering the number of suppliers they deal with. This second goal makes this issue a
bicriteria problem – minimisation of cost and minimisation of the number of suppliers.
In the next section, a review of the literature is presented. Next, we discuss an optimisation

model designed to address this problem. Algorithms to generate Pareto-optimal solutions of the
model are discussed in the following section. Then we present the result of computational testing
of the algorithms. We conclude with some final remarks.

2. Literature review

The greatest number of articles published in the area of supplier selection is qualitative –
discussing the issues involved in the selection process in a normative or a descriptive fashion.
Weber et al. (1991) have reviewed papers on supplier selection published since 1966 till 1991. They
looked at 74 articles in the period and identified the selection criteria discussed in the articles.
Their study was based on 23 supplier selection criteria identified earlier by Dickson (1966). Weber
and colleagues tabulated the 74 articles, based on which of these 23 criteria were discussed, and in
which year. In order of frequency, net price, delivery, and quality were the three most discussed
criteria. They also reviewed the use of quantitative methods of vendor selection in these articles.
The most frequently discussed method, by far, was the linear weighting scheme, where a weight is
placed on some measure of the criterion, and the weighted measures are simply added. They found
only 10 articles that used mathematical programming methodology. Of these, only two recognised
the multi-criteria nature of the problem and applied techniques from the multi-objective
programming (MOP) field. Consequently, Weber and colleagues suggest multi-objective
programming as a fruitful area for future research in this area. We review below a few articles
that adopt a quantitative orientation on supplier selection.
Buffa and Jackson (1983) provided an early model that recognised the multi-objective nature of

vendor selection. Their model selected vendors and allocated orders based on the vendors’
historical quality (acceptance rate), on-time arrival rates, late arrival rates, and early arrival rates.
They modelled all the objectives as goals: minimisation of the sum of deviation from the goals was
the objective of their linear programme. There were a total of five such goals in the objective
function.
Narasimham (1983) illustrated the application of the analytic hierarchy process (AHP) to

supplier selection. In their example, the top-level evaluation criteria were pricing structure,
delivery, quality, and service. Following the AHP procedure, these criteria were further broken
down into their components. In the next level, the vendors were compared pair-wise for their
contribution to the above components. Final vendor rankings were obtained by summing up the
weighting from the bottom-up. Barbarosoglu and Yazgac (1997) have presented a case study
where the AHP procedure was used. Their model had a more extensive breakdown of the selection
criteria than that of Narasimham (1983). Ghodsypour and O’Brien (1998) have extended the AHP
approach by using the final AHP supplier scores themselves as weights for the supplier orders in a
linear programme that seeks to maximise the sum of the products of supplier scores and supplier
orders subject to capacity and quality constraints.
Weber and Current (1993) present a multi-objective, mixed integer programming (MIP)

formulation of a single-item, single-plant vendor selection problem involving three criteria: price,
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quality, and delivery. Associated with each supplier, there is a price, a percentage defective, and a
percentage late delivery. Limits on the maximum and minimum amount of business for particular
suppliers, and on order quantity limits placed by the suppliers exist. The criterion of number of
suppliers is modelled as a constraint. Standard integer programming (IP) software is used in
conjunction with a weighting scheme to generate non-dominant solutions. Weber and Ellram
(1993) present a decision support system designed to aid the purchasing manager using the above
model as a basis. Weber et al. (2000) have extended this multi-objective model to include a data
envelopment analysis to compare the efficiencies of employing different numbers of vendors.
Min (1994) has applied the multi-attribute utility approach of decision making to the supplier

selection problem. This is essentially a scheme of weighing the multiple attribute with their scaling
constants. Before this, each criteria score is converted to its utility function. The scaling and the
utility function are elicited from the decision maker’s trade-off of the multiple criteria.
Current and Weber (1994) have demonstrated how various supplier selection problems can be

modelled as facility location problems. The ‘‘facility location’’ in facility location models is simply
replaced by ‘‘supplier location’’ so that facility location models will work for supplier selection
problems. Both models have the task of covering the customer demands. The authors have also
suggested changes to the facility location models to make them amenable to address specific
supplier selection considerations. Single objectives of cost minimisation or of supplier number
minimisation are considered.
Jayaraman et al. (1999) presented a single-objective mathematical programming model that

selects suppliers and allocates the orders to them. Their single objective includes the cost of the
purchase and the cost of engaging a supplier. The model has constraints regarding lead time,
quality, storage space, and production capacity of the suppliers.
Degraeve and Roodhooft (1999) presented a supplier selection and order allocation model for a

single item over multiple time periods. This is a single-objective mathematical programming
model that considers ‘‘total’’ costs in this scenario: supplier transaction costs, receiving costs,
invoice costs, order costs, price discounts, set-up costs, etc. A case study involving the purchase of
electrodes for a manufacturing company is discussed.
Karpak et al. (1999) discussed a case where the multi-objective technique of visual goal

programming was used to address the supplier selection with the objectives of acquisition cost,
quality, and delivery reliability.
Dahel (2003) considers three criteria: cost, percentage defectives, and percentage late deliveries,

in a vendor selection model that includes the discount offered by suppliers for purchase volumes.
This is a multi-objective mathematical programming model; however, the set of Pareto-optimal
solutions is not explored: the model simply imputes penalty costs for defective items and late
deliveries and thus converts the multiple objectives into a single objective. Computational times
are presented for various problem sizes and numbers of discount brackets.
Although Buffa and Jackson (1983) modelled the supplier-selection problem as a multi-

objective one, they effectively converted the objectives into one, by combining the deviations of all
objectives from their goals using goal programming. Thus, they were able to use a straightforward
linear program. Weber and Current (1993) maintained the separation of the objectives, but the
size of their problem was small (they considered only one item, and the maximum number of
suppliers is six in their example) and so they were able to use standard IP software to explore the
non-dominant solutions. Karpak et al. (1999) used goal programming in their paper, as Buffa and
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Jackson (1983) had done before. Dahel (2003) has used an MIP formulation and a commercial
software to solve their model, but the maximum number of suppliers in their paper was 30; thus,
the number of binary variables was not very high. Further, minimising the number of suppliers
selected was not an objective in the paper.
In conclusion, the most common quantitative methodology presented in the literature is the linear

weighting scheme. The next most common methodology is the AHP process. There are not many
papers dealing with the application of mathematical optimisation to the supplier selection problem.
Among them there are even fewer papers (Buffa and Jackson, 1983; Weber and Current, 1993;
Karpak et al., 1999; Dahel, 2003) that explicitly model the problem as a multi-objective optimisation
problem. All these papers consider the three objectives of the supplier selection process as cost,
quality, and delivery; the number of suppliers is often modelled as a constraint rather than an
objective. In this paper, we consider the number of selected suppliers as an independent objective in
view of the importance of this objective in modern supply chain management.
The distinct contribution in our paper is the explicit recognition of the number of suppliers as

an objective, presenting an MIP formulation, and designing a genetic algorithm to find the
efficient frontier for larger-sized problems.

3. Bi-criteria supplier selection

Modern supply chain management emphasises close integration between suppliers and
purchasers. Organisations are striving to have strategic relationships with suppliers. This calls
for a reduction or a rationalisation of the number of suppliers. It is then possible to allocate scarce
resources to develop relationships with the few chosen suppliers. In the earlier era of transactional
relationships, it made sense to have as many suppliers as possible in order to find the cheapest
deal. In these days of integrative relationships, reducing the number of suppliers has become one
of the objectives of supplier selection. The model presented below has supplier reduction as one of
the explicit objectives.

3.1. Problem statement

Notation
iA1 . . . n, index of items
jA1 . . . m, index of candidate suppliers
Di 5Demand for item i
pij 5Price of supplier j to supply item i
Cij 5Capacity of supplier j to supply item i
qij 5Quality (fraction defectives) of supplier j when supplying item i
Qi 5Acceptable quality for item i
lij 5Delivery (fraction late) of supplier j when supplying item i
Li 5Acceptable delivery for item i
f1 5Total cost of purchase
f2 5Total number of suppliers selected
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Decision variables
xij 5Quantity of item i ordered to supplier j
yj 5 1 if supplier j is selected; 0 otherwise

Model
The optimisation problem in this paper is

MinZ ¼ ðf1; f2Þ
Subject to:

X
j
xij*Di; i ¼ 1; . . . n: ð1Þ

All the item demands must be covered.

xij)Cij; i ¼ 1 . . . n; j ¼ 1; . . .m: ð2Þ
Capacity limits of each supplier may not be exceeded.

X
j
xijqij)QiDi; i ¼ 1; . . . n: ð3Þ

Aggregate quality must be acceptable.
X

j
xij lij)LiDi; i ¼ 1; . . . : n: ð4Þ

Aggregate lateness must be acceptable.

xij)Diyj; i ¼ 1; n; j ¼ 1; . . .m: ð5Þ
Each selected supplier is counted.

f1 ¼
X

ij
xijpij: ð6Þ

This calculates the total cost.

f2 ¼
X

j
yj: ð7Þ

This calculates the number of suppliers.

xij*0; yieð0; 1Þ:
This is a mixed binary integer programming problem, with m binary variables (yj), mn non-
negative variables (xij), and two objectives (f1, f2). Quality and delivery are constrained to be
within acceptable limits.

4. Solution approaches

Faced with multiple objectives, the analyst may opt for one of three approaches (Ehrgott and
Gandibleux, 2002, p. 376). In the preference-oriented approach, the analyst has a priori
knowledge of the decision maker’s preferences so that the analyst can assign weightings to the
different objectives. In this approach, the decision maker is presented with one solution that
satisfies their preferences. Most of the multi-objective supplier selection models presented in the
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literature belong to this approach (Narasimham, 1983; Min, 1994; Dahel, 2003). Another
approach is to let the preferences be articulated, as solutions are presented to the decision maker,
interactively (Karpak et al., 1999). In the generating approach, the decision maker is presented
with the complete set of non-dominated or Pareto-optimal solutions so that they can get a full
perspective on the trade-offs involved. This is particularly suited to a problem with two objectives,
where the trade-off between the two objectives can be clearly seen in a two-dimensional chart. This
is the approach we have followed in this paper. We developed and tested the following algorithms
for generating the set of Pareto-optimal solutions to the problem presented in the last section.

4.1. MIP

As mentioned above, the problem presented in this paper is a multi-objective MIP problem. It is
possible to find the Pareto-optimal solutions by constraining the number of selected suppliers and
solving the resulting MIP problem.
A pseudo code for such an algorithm is:

NumSuppliers5m;
While feasible solutions are found,
{ Min f1

s.t.
constraints (1) to (6) above, andP

j yj4NumSuppliers}
NumSuppliers5NumSuppliers � 1;

}
All the Pareto-optimal solutions to the problem will be generated by this MIP algorithm.

4.2. Multi-objective genetic algorithm (MGA)

Exact Pareto-optimal solutions to smaller- and medium-sized problems can be generated using the
MIP formulation with an MIP solver, as discussed above. When the number of suppliers is high,
MIP solvers are unable to generate all the Pareto-optimal solutions in a realistic time frame. Such
larger-sized problems motivate the development of heuristic approaches.
The application of multi-objective programming to supplier selection is not very common, but

the area of multi-objective programming itself is well established. Many books and articles have
been published in this field. Jones et al. (2002) have reviewed the use of meta-heuristics in the area
of multi-objective decision making. They noticed a significant growth in the use of meta-heuristics
in the late 1990s. The primary area of application was within the multi-objective programming
paradigm (as contrasted with goal programming or interactive methods). The most widely used
meta-heuristic was genetic algorithms, followed by simulated annealing and tabu search. In this
paper, we present a genetic algorithm for this problem.
Genetic algorithms start with a set of solutions, called chromosomes. In each iteration of the

genetic algorithm, a selection procedure evaluates the chromosomes and selects a pair for mating
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and mutation in order to produce new offspring chromosomes. Thus, a new set (populations) of
solutions is generated in each iteration. Genetic algorithms are especially suited for multi-
objective optimisation because genetic algorithms work through generating multiple solutions,
and multiple solutions are useful for the identification of non-inferior solutions in multi-objective
optimisation.
In our genetic algorithm, each chromosome (solution) is a sub-set of the suppliers in our

supplier set. Thus, each chromosome may be conceptualised as an array of size m, the elements in
this array being binary integers – a ‘‘1’’ value signifying that the supplier is selected, a ‘‘0’’ value
signifying that the supplier is not selected. In other words, each chromosome is a yj vector. The
genetic algorithm manipulates the chromosomes by mating and mutation to produce new
chromosomes. Given a chromosome, one still needs to find the minimum (optimal) cost associated
with it, thus evaluating the chromosome.
In applying the genetic algorithm to multi-objective programming, the issue of selecting the

mating pair needs to be resolved. For single objectives, obviously the parents can be selected on
the basis of their achievement of the single objective, but with multiple objectives all the various
objectives need to be considered. Researchers have resolved this issue in different ways. For each
selection instance, Murata et al. (1996) applied different random weights to the objectives to
permit a wide selection of parents. Some other authors (e.g. Cochran et al., 2003) separated the
populations into sub-populations, one for each criterion, and allowed the genetic algorithm to
work separately for each population. Because in our case, one of the criteria (number of suppliers)
is discrete, we separated the total population into sub-populations, based on the number of
suppliers in the chromosome. From each of these sub-populations elite chromosomes are chosen,
based on the cost, for mating and mutation. Because the offspring can have a different number of
suppliers than the parents, the offspring are reclassified after each generation and inserted into the
appropriate sub-population.

4.2.1. Evaluation of the chromosome
There are m suppliers, which could be included or excluded in any solution to this problem. Thus,
the number of possible chromosomes is 2m. Given a chromosome, which is a selected set J of
suppliers, evaluating the chromosome entails allocating items to suppliers, which is a linear
programming problem as given below.

LP1 : Min
X

i

X
jeJ

xijpij

s.t.
X

jeJ
xij*Di; i ¼ 1; . . . n: ð8Þ

All the item demands must be covered.

xij)Cij; i ¼ 1 . . . n; jeJ: ð9Þ
Capacity limits of each supplier in the set may not be exceeded.

X
jeJ

xijqij)QiDi; i ¼ 1; . . . : n: ð10Þ
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Aggregate quality must be acceptable.
X

jeJ
xij lij)LiDi; i ¼ 1; . . . n: ð11Þ

Aggregate lateness must be acceptable.

xij*0:

This linear program (LP1) needs to be solved for each chromosome generated by the genetic
algorithm. However, the size of the linear program can be considerably reduced by making the
observation that once a set of suppliers is selected, allocations for an item do not interact with
allocations for any other item. Thus, LP1, above, can be broken down into n linear programs, one
for each item i:

LP2 : Min
X

jeJ
xijpij

s.t.
X

jeJ
xij*Di: ð12Þ

All the demand for this item must be covered.

xij)Cij; jeJ : ð13Þ
Capacity limits of each supplier in the set may not be exceeded.

X
jeJ

xijqij)QiDi: ð14Þ

Aggregate quality for this item must be acceptable.
X

jeJ
xij lij)LiDi: ð15Þ

Aggregate lateness for this item must be acceptable.

xij*0:

If one of these smaller linear programs is infeasible, the whole set J of suppliers (or the
chromosome) is infeasible. LP2 minimises the cost of allocating items to the suppliers; this
minimum cost provides the evaluation of the chromosome.

4.2.2. A heuristic bounding approach to reduce the number of LP2 iterations
For larger-sized problems, when the number of suppliers and number of items are high, evaluating
each chromosome can take considerable time: n linear programs (LP2) need to be solved for each
chromosome (which is a list of suppliers, yj, here), with |yj| variables and |yj|13 constraints. The
number of chromosomes to evaluate can run into tens of thousands. We developed a fast heuristic
confidence interval on the value (minimum cost) of a chromosome, so that only a promising
chromosome is evaluated using linear programming. Such a lower bound on the optimum value of
a chromosome is found by selecting suppliers from this list (yj) in a greedy manner for each item,
allocating demand to suppliers in a non-decreasing order of item-prices (picking the cheapest
suppliers first), until the demand is met. If the demand cannot be met, obviously the chromosome is
infeasible, and it does not need to be evaluated further. If the demand can be met, the chromosome
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may still be infeasible because of quality and delivery constraints. However, the price obtained by
the above greedy allocation of suppliers provides a ‘‘greedy’’ lower bound (GLB) on the minimum
price of a chromosome. Further, we examined the ratio of the minimal-cost (LP2) value of
individual chromosomes to their lower bound (GLB). The variation of this bound ratio was found
to be small. Hence, a statistical approach was followed to heuristically tighten the GLB. We
evaluated the first 100 chromosomes of each problem by both the linear program (LP2) and the
GLB to determine the average and standard deviation of the bound ratio. This gave us good
statistical estimators for the variation of the bound ratio. These estimators were then used to find
the 95% confidence estimate (CE) for the lower value of the bound ratio. Multiplying the GLB of
the subsequent chromosomes by this estimate (CE) provided a tight heuristic lower bound (TLB)
on the value of the chromosomes. The genetic algorithm then goes through the LP2 procedure to
evaluate a chromosome only if this tightened lower bound (TLB) is lower than the lowest cost in
the sub-population found so far; otherwise, the TLB is used as the evaluation. We found that this
heuristic bounding approach reduces the use of the LP2 procedure significantly, using LP2 only in
20–30% of the evaluations. The solution found by the heuristically bounded procedure was within
1% of the solution found by using only the LP2 procedure.

4.2.3. Particulars of the genetic algorithm
The details of the genetic algorithm are given in this section. As mentioned before, the core of the
genetic algorithm consists of a set of solutions, which are called chromosomes. In each iteration of
the algorithm, the current set of chromosomes gives rise to a new set of chromosomes using the
processes of mating and mutation. The iterations continue until a pre-set limit on the number of
iterations.

� Chromosomes: in our algorithm, as described before, each chromosome is a vector yj. Recall
that if yj 5 1, the supplier j is selected; otherwise, supplier j is not in the solution.

� Evaluation: each chromosome is evaluated using the bounding procedure given in the last
section. Traditionally, genetic algorithms work on maximisation problems. The current
problem, however, is a minimisation problem. The evaluation turned the problem into a
maximisation problem by subtracting the objective function from

P
ieI Di Pi, where Pi5Max

jeJ(pij). Thus, an evaluation (so-called fitness) represents the savings by using the current
chromosome from the cost incurred by using the suppliers with the highest prices. When a
chromosome is infeasible, a fitness of zero is returned.

� Initial population: initially, chromosomes are generated randomly, with the probability of
selection of a supplier as 0.5. The number of initial chromosomes generated is 4�m. Once a
chromosome is generated, it is evaluated as above and placed in the sub-population
corresponding to the number of selected suppliers.

� Selection: from each sub-population, two parent chromosomes are selected, the probability of
selection of a parent being proportional to its fitness.

� Mating by crossover: two child chromosomes are generated from the two selected parent
chromosomes by the crossover operation. The crossover site is generated randomly. The
processes of crossover and mutation in the mating process can be illustrated using strings of
binary digits. Each string is a chromosome, a set of suppliers (15 selected; 05not selected).
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Parent 1: 01010101
Parent 2: 11100110
Crossing over the entire string from fourth bit (crossover site) onwards from parent 1 to child
2, and parent 2 to child 1, while retaining the first 3 bits from parent 1 to child 1 and parent 2
to child 2 results in the following:
Child 1: 01000110
Child 2: 11110101

� Mating by crossover and mutation: two more parent chromosomes are selected from each sub-
population. They are mated as above, and mutated. For example, mutating (randomly) bit 1 and
5 of above child 1 and bit 3 and 7 of child 2 (from 0 to 1 and vice versa) results in the children:
Child 1: 11001110
Child 2: 11010111

� The probability of mutation was set at 0.1.
� New population: all the child chromosomes are evaluated and placed in the sub-population

corresponding to their number of suppliers. From each sub-population, four chromosomes
with the highest fitness are retained, and others are discarded. The population is ready for new
generation of chromosomes again.

� Iteration limit: the generation of new populations continued until the number of evaluations
reached an evaluation limit, which was set at 150�m.

� Solution: the final chromosomes in each sub-population are the four best solutions for the
corresponding number of suppliers.

4.2.4. Monte Carlo optimisation (MCO)
A simple variation of the genetic algorithm described above would be to skip the mating and
mutation operations and generate individual chromosomes directly. An MCO algorithm was
implemented where supplier sets were generated by including (or excluding) a supplier in a set
randomly (with a probability of 0.5). This way a list of suppliers, yj, is generated each time. Items
are allocated to suppliers in the list using the same bounded LP procedure as above. A list of non-
dominated solutions found this way is maintained. This MCO algorithm was used to evaluate the
performance of the MGA algorithm.

5. Computational results

To gauge the performance of the above algorithms, multiple problems were randomly generated
and solved.

5.1. Problem generation

The number of suppliers was used as an indicator of the problem size. The number of items was
set at three levels: half the number of suppliers, equal to the number of suppliers, and double the
number of suppliers. The demand for an item was sampled from a uniform distribution of [1, 100].
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The price of an item for any supplier was drawn from a uniform distribution of [1, 10]. The
capacity of a supplier to supply an item was drawn from a uniform distribution of [1, 50]. If the
total capacity of all the suppliers for an item was o2.5 times the demand for that item, their
capacities were multiplied by 1.5 until the total capacity was at least 2.5 times the demand. The
quality and delivery of a supplier for any item were each drawn separately from a uniform
distribution of [0.01, 0.05]. The acceptable levels of quality and delivery were each set at 0.03.

5.2. Results

The MIP algorithm was implemented in the MIP package CPLEX version 9. MGA and MCO
algorithms were programmed in Microsoft Visual C11 (version 6). All the computational tests
were run on an IBM PC (with Intels 1.73 GHZ, 990 MB RAM). The genetic and random
algorithms were allowed to run for number of evaluations5 150� number of suppliers. The result
for one problem instance, with 20 suppliers and 10 items, is shown in Fig. 1.
The essential purpose of developing approximate algorithms is to find solutions as close as

possible to the exact solutions. Thus, a crucial measure to evaluate the quality of solutions of
approximate algorithms to multiple-objective problems is the distance from the exact solutions.
Examining Fig. 1, the solutions found by the genetic algorithm are close to the exact solutions,
while the randomly generated solutions are farther away. Sayin (2000) has provided three
measures to evaluate the quality of approximate algorithms in Pareto-optimal solutions of multi-
objective problems. Coverage is a measure of how well the approximate Pareto-optimal solutions
represent the total efficient frontier. As can be seen in Fig. 1, the genetic algorithm as well as the
Monte Carlo generation are able to provide solutions quite close in coverage to the exact
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Fig. 1. Pareto-optimal solutions provided by different algorithms.
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solutions. Uniformity is the ability to find solutions uniformly distributed around the solution
space. Points in clusters are not desirable. Again, the genetic and random algorithms are able to
capture a good distribution of the solutions. Cardinality relates to the number of solutions
provided. The number of solutions provided by the genetic algorithm is close to the ones
generated by MIP. Monte Carlo generation is slightly worse in this regard.
To further test the algorithms, 10 problems of various sizes (here, problem size refers to the

number of suppliers and the number of items in a problem) were generated and solved by the
algorithms. The results are shown in Table 1. The cardinality measure is represented in the table
by the average number of Pareto-optimal solutions found by the algorithm. The cost of the
solution is measured by the average ratio of the cost found by an algorithm to the cost found by
the genetic algorithm. The average times taken to generate the Pareto-optimal solution frontiers
are also shown in the table. To ensure parity in comparison, the total number of solutions
generated by the Monte Carlo algorithm was the same as the number of solutions generated by
the genetic algorithm.
The results show that the computational times for the MIP algorithm grow very quickly as the

problem size increases. The MIP algorithm could not compute the efficient frontier for problems
with 2550 variables (of which 50 were binary), and 5150 constraints within the 2-h time limit. For
the problems able to be solved by MIP, the solutions found by the genetic algorithm are close to
the solutions found by MIP, the ratio of the costs ranging from 94% to 99%. However, the
genetic algorithm is much quicker. The Monte Carlo algorithm and the genetic algorithm take
about the same time, as can be expected because the same number of chromosomes are evaluated.
MGA provides 4–13% better solutions than the Monte Carlo algorithm for the smaller problems,
but for the biggest problems the solution quality of MGA is not much better than that of the

Table 1

Computational results

Problem size MIP Genetic Algorithm Monte Carlo

Average

number of

solutions

Average

cost ratio

to genetic

Average

time in

seconds

Average

number of

solutions

Average

time in

seconds

Average

number of

solutions

Average

cost ratio

to genetic

Average

time in

seconds

20, 10 16.9 0.9885 1.05 16.2 o1 12.9 1.093 o1

20, 20 15.5 0.9936 4.72 14.4 o1 11.7 1.067 o1

20, 40 14.3 0.9930 27.03 13.2 o1 10.6 1.044 o1

50, 25 46.0 0.9419 511.3 39.2 4.11 26.1 1.126 2.06

50, 50 � 39.0 5.70 25.5 1.103 3.70

50, 100 � 36.8 12.41 25.5 1.070 9.10

100, 50 � 67.7 30.7 37.9 1.045 28.9

100, 100 � 67.9 79.04 38.9 1.041 63.6

100, 200 � 65.8 222.2 35.6 1.035 173.9

200, 100 � 105.3 584.2 56.4 1.006 769.6

200, 200 � 105.8 1546.5 56.3 1.005 1522.9

200, 400 � 103.8 4308.1 56.7 1.005 4447.9

�Efficient frontier could not be computed within 2 h.
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Monte Carlo algorithm. However, MGA performs much better than Monte Carlo with regard to
the cardinality of the solutions. The performance of MGA in this regard improves in comparison
as the problem size increases. For the largest problems, the Monte Carlo algorithm generates only
about half the number of solutions generated by MGA.

6. Discussion of the efficient frontier

Figure 2 shows the efficient frontier for different levels of the ratio of suppliers to number of items.
The graphic shows the result for 10 replications, with the number of suppliers fixed at 20.
Obviously, the total cost increases as the number of items increases. The frontier is also flatter as
the number of items decreases. The opportunity for supplier reduction clearly reduces as the
number of items increases vis-à-vis the number of suppliers.
The purpose of generating Pareto-optimal solutions is to make the trade-offs clear to the

decision maker, so that they can figure out their preferences and make a decision. The cost of
supplier rationalisation or vendor reduction programmes can be visualised clearly from the
Pareto-optimal frontier. The exact MIP algorithm may be used for smaller problems and the
genetic algorithm may be used for larger problems. As an example, the percentage increase in cost
for a simulated problem with number of suppliers at 20 and various number of items is shown in
Fig. 3.
With the ratio of number of items to number of suppliers at 1:1, the cost does not increase at all

until the number of suppliers is reduced by 25%. A 40% reduction in number of suppliers results
in only a 4% increase in costs. When the items:suppliers ratio increases to 2:1, 20% reduction in
the number of suppliers results in a 4% increase in costs. Thus, with our limited simulated data,
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Fig. 2. The efficient frontier for different ratios of items to suppliers.
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this suggests that the tail of this curve is quite flat, and the management goal of supplier reduction
may be achieved with not very significant increases in costs.

7. Conclusion

The contributions of this paper are twofold: the inclusion of number of selected suppliers as a
criterion in supplier selection in an MIP model and the development and testing of a multi-
population genetic algorithm for the generation of Pareto-optimal solutions.
We presented a supplier selection problem with two criteria: number of suppliers selected and

the cost of purchase. Quality and delivery performance were modelled as constraints. Three
algorithms were presented to generate the Pareto-optimal solutions. The exact (MIP) algorithm
solved problems with up to 50 suppliers within reasonable time, but not higher-sized problems.
The performance of multi-population genetic algorithm was close to the MIP algorithm results.
The genetic algorithm performed better than MCO, particularly in regard to the number of
solutions generated. In regard to the purchase cost of the solutions, the genetic algorithm
performed better for all but the largest problems for which the performances of the two
algorithms were almost even.
This paper focused on two objectives: number of selected suppliers and the total cost of

purchase. However, the literature shows that the objectives of quality and delivery are important
as well. Previous authors (Weber and Current, 1993) have discussed the cost–quality–delivery
tradeoffs, but the number of suppliers was not included as an objective. The multiple trade-off
between these objectives is worthy of further investigation.
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Fig. 3. Increase in costs due to reduction in the number of suppliers.
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