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División Análisis y Control de Gestión, Gobierno Regional del Maule, Chile, e-mail: jmunoz@coremaule.cl

Andrés Weintraub
Departamento de Ingenierı́a Industrial, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile,
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Abstract—This study addresses the problem of scheduling the daily assignment of available trucks
for delivery of forest products required at different destinations. The products are logs of various types
depending on their point of origin, and are defined in terms of length and diameter. Their destinations
include sawmills, pulp mills, and other plants, and ports for export abroad. They are available for
pickup and delivery by trucks within a previously defined road network during a working day. The
trucks’ trip times and load capacities are known. An integer linear programming model is
developed for minimizing the costs associated with the daily truck transport operations that satisfy
each destination’s product demand. The model is based on column generation, each column
representing a given truck’s trip schedule for a working day feasible for that vehicle. The linear
relaxation of the model is solved by dynamically generating columns that are attractive for
incorporation and then solving the integer model constructed with all the columns so generated.
This approach is then applied to instances whose size and degree of difficulty are similar to those
actually encountered in the Chilean forest industry. In every case the linear relaxation optimum is
3% below the integer solution, with execution times low enough to be useful in real-world
applications.
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1. INTRODUCTION

Forest companies must make daily decisions on how to deliver

wood products from points of origin where trees are harvested

to destinations such as sawmills, pulp mills and other plants as

well as ports for direct shipment abroad. These products consist

of logs of various types depending on the zone of origin in the

harvest area, and are defined basically by their length and diam-

eter. Daily production at each point of origin, including remain-

ders from the previous day, is a known quantity, as is daily

demand at each destination. To ensure proper coordination

with downstream operations, daily deliveries are ideally

timed to arrive at their destinations at regular intervals.

Trucks typically make various trips per day, picking up logs

at origin points and transporting them directly to various desti-

nations. Loading and unloading operations at these points are

carried out by cranes and require approximately 20 minutes.

The fundamental decisions regarding log transport relate to

what route each truck should take on a given day so as to arrive

at delivery destinations on time and at the lowest possible trans-

port cost. The data available are the daily demand for products

at destination points, the production and availability of products

during the working day at origin points, the previously defined

road network connecting origin and destination points, and the

costs and times associated with product transport for the differ-

ent types of truck utilized.

Each type of truck has its particular characteristics, and due

to size and load restrictions not all vehicle types can use all of

the roads in the network. There are also constraints on the type
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of product transported. Some trucks, for example, are specially

designed to carry large logs. The problem considered in this

study assumes a fixed working day (12 hours), and the specific

decisions reflected in the solution are:

. The number of trucks of each type to be employed.

. Truck trip schedules that satisfy operating conditions and

demand requirements.
. Daily pickups at origin points and deliveries at destination

points.

Each trip is defined in terms of the product pickup at a point of

origin, the delivery destination and the departure and arrival times.

Nearly every forest company in Chile and various others in

Brazil, Venezuela, Argentina, Uruguay and South Africa have

implemented the ASICAM system, which was developed in

the mid-1990s by a group of researchers at the Department of

Industrial Engineering in the University of Chile led by Dr.

Rafael Epstein (Weintraub et al., 1996). This system is based

on a simulation framework using heuristics and can solve high-

dimensional problems involving up to 250 trucks and 700 trips

on a personal computer in a matter of minutes.

Since the first implementation of ASICAM, a number of

exact models have been developed for these types of problems

that can produce optimal solutions, or at least, solution bounds

and feasible suboptimal solutions. Equi et al. (1997), for

example, suggest a Lagrangian relaxation algorithm to solve a

problem similar to the one presented here below. Among its

main characteristics are that it approximates the solution of the

Lagrangian dual. Rönnqvist and Ryan (1995) offer an approxi-

mate column-generation approach implemented by a New

Zealand forest company for supporting real-time decisions.

In Palmgren et al. (2003), a column-generation model is

applied to a problem slightly different from the one studied

here. In their setup a truck can make various pickups at different

origins before making deliveries. Our proposal is similar to the

extent that we employ an integer programming model with a

restricted set of all possible columns; where we differ,

however, is in the method of selecting columns, for whereas

Palmgren et al. use a heuristic to generate a pool of available

columns, the columns we utilize are generated dynamically for

the linear relaxation solution of the integer model. Indeed, our

methodology is much closer to the ones devised by Desrosiers

et al. (1984) for solving a routing problem with time windows

applied to school bus routing and by Desrochers and Soumis

(1989) for urban transit crew scheduling.

In the remainder of this paper, Section 2 describes in detail

the solved problem and the proposed model while Section 3

reports the results of our computer experiments.

2. MODELING THE TRUCK ROUTING PROBLEM

The truck assignment problem as formulated mathematically

exhibits a structure that is amenable to the use of the

column-generation method. The basic unit in this type of

model consists of columns that are variables or matrix

columns in a master problem. Frequently these columns have

an intuitive interpretation that allows us to better visualize

the problem being modeled. In the present case, a column cor-

responds to a trip schedule or itinerary for a given truck’s

working day. The master problem represents the constraints

that link the itineraries of the various trucks, which are the sat-

isfaction of demand and the condition that more than one truck

cannot be simultaneously loaded at the same network point.

Each truck has a complete itinerary composed of a sequence

of visits to origins and destinations with their associated travel

times, and a column in the problem indicates the points visited

by each truck and the corresponding arrival and departure

times.

The formulation of the model begins with a restricted master

problem that includes a set of columns which are easy to gen-

erate and which guarantee the existence of a feasible solution.

Columns are then generated iteratively until the optimal

solution of the linear relaxation is found.

Various options exist for column selection. The first one is to

generate a set of all possible columns, that is, all possible trips

by a given type of truck in one day. In practice, however, this

would be very difficult because of the large number of

columns to be generated. This was demonstrated by preliminary

experiments with problems much smaller than those found in

real situations, in which the CPLEX package we used had not

found a feasible solution after several hours running time.

An alternative for coping with the large size of the set of all

possible columns is to establish some methodology such as a

heuristic that selects only a certain number of columns accord-

ing to user-defined rules, as in Palmgren et al. (2003).

In our case, we chose to solve the linear relaxation of the

integer model exactly via dynamic column generation, using

the Dantzig-Wolfe methodology for solving large-scale LP

problems described in Lasdon (1970). Under this approach,

each iteration solves a reduced master problem that includes

the initial columns plus all others generated up to that point.

Using the dual variables, the reduced costs are calculated for

the possible columns not yet generated. If a column is found

to have a negative reduced cost it is included in the reduced

master problem and the process is reiterated. At each iteration,

more than one column can be added to the master problem.

Once there are no more columns with negative reduced cost

outside the master problem, we have arrived at the optimal sol-

ution to its linear relaxation and can thus be sure that the vari-

ables corresponding to the columns not generated are all zero at

that optimum.

The following points summarize our method of solving the

proposed model:

Step 1: Construct a feasible reduced master problem.

Step 2: Solve the linear relaxation of the reduced master

problem.
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Step 3: Solve one or more subproblems to generate negative

reduced cost columns.

Step 4: If any negative reduced cost columns are found, add

them to the reduced master problem and return to

Step 2; otherwise, continue to Step 5.

Step 5: Once all the columns from previous iterations are added

as described in Step 4, the integrality of variables con-

dition is restored and the resulting model solved via a

branch-and-bound algorithm.

Note that the method does not solve the original integer model

exactly. To do so would mean implementing a branch-and-

price algorithm as given in Barnhart et al. (1998). However,

our computer experiments revealed that the gaps between the

linear relaxation solution (which, by contrast, is solved

exactly and therefore yields a lower bound for the objective

function value) and the integer solutions are around 1% or

less with good solution times. This implies that the method is

in fact quite suitable for practical applications where models

must be solved on a daily basis in limited time periods. For

the few cases with bigger gaps, a deep first branch-and-price

can produce a better solution in a reasonable time (without

exploring the entire tree).

In what follows we first detail the use of a space–time

network for defining the columns, and then present the

master problem and the column generation subproblems

utilized.

2.1 Space–Time Network

An important issue in modeling the problem is how to handle

the origin and destination points so that column generation

can be used to solve it. As noted in the introduction, average

actual truck loading and unloading times for any product are

about 20 minutes. Since each origin is defined as a loading

crane, the time period cannot be any less than that amount.

Given that in our setting, a truck always loads completely

when picking up products at origin points, the mere fact that

a truck is making a trip means it will be carrying a full load.

A truck schedule consists of a sequence of trips that satisfy

certain constraints and/or rules. The rules include the

following:

. Loading and unloading schedules must be followed and must

concord with product supply and demand, truck loading

capacity, quantities available for loading at origin points,

and time periods required for travel and loading and

unloading operations.
. A truck cannot deliver products it did not previously pick up.

If it visits a node, it must later leave it.
. Different product types cannot be mixed on a single trip.

So that the model reflects this reality, the actual origins in the

problem are replicated every 20 minutes, meaning that a truck-

load of logs can be loaded at that frequency. Thus, we define

supply points as [origin, time] pairs. In analogous fashion we

define demand points as [destination, time] pairs that refer to

moments when a product is needed at a given destination.

Two auxiliary nodes are also defined: Node 0, representing

the start of a trip, and Node N þ 1, denoting the end of it.

In this auxiliary space–time network each demand point is

connected by arcs to each supply point that has products in

stock which can be loaded by the type of truck available.

Arcs also connect each supply point to each demand point

whose requirements can be satisfied by that origin’s available

products. The definitions of the arcs also take into account

travel, loading and unloading times. In precise terms, there is

an arc connecting a supply point to a demand point if the

product is one of those available at the origin and the destina-

tion can be reached within its demand time. Similarly, a

demand point is connected to a supply point if the former

can be reached from the latter in the corresponding travel

time. Arcs also connect Auxiliary Node 0 to all supply points

and all demand points to Auxiliary Node N þ 1.

The original problem of physical points in a logistical

network with associated operation times is thus transformed

into a space–time network problem in which each node rep-

resents a supply point or a demand point. Feasible daily truck

schedules then correspond to paths in the network between

auxiliary nodes 0 and N þ 1.

The schedules and travel time data are handled implicitly by

the auxiliary network. Since the supply points each have a

single crane they can only handle one loading operation at a

time. Demand points, on the other hand, can unload more

than one truck simultaneously as long as they have the necess-

ary cranes. Trucks travel loaded from origins to destinations

and return to the origins empty. Figure 1 illustrates the

network for our problem.

We now describe in detail the master problem, obtained

from the space–time network just described.

2.2 The Master Problem

As was explained in the preceding subsection, the auxiliary

network there introduced represents the itinerary of a truck as

the path between Node 0 and Node N þ 1. Observe that if

there are multiple types of trucks, there is an auxiliary

network for each type. Every such itinerary is associated with

Figure 1. Space–time network for problem: tij is the travel time between

origin i and destination j. Trucks travel loaded from origins to destinations

(full arcs) and return to the origins empty (dotted arcs).
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a column in the master problem. Once a certain number of itin-

eraries have been generated, it must be decided which of them

will be assigned to a given truck (note that not all of them have

to be assigned). This is done using binary variables Xip in the

master problem that take the following values:

Xip ¼
1 if truck type i executes trip schedule p

0 otherwise

�

The master problem [P] then becomes

½P� min
Pn
i¼1

Pmi

p¼1

CipXip

s:t:
Pn
i¼1

Pmi

p¼1

aipoXip � 1 o ¼ 1; 2; . . . :nO

ð2:1Þ

Pn
i¼1

Pmi

p¼1

bipdXip � Ddad d ¼ 1; 2; . . . :nD

Xip [ f0; 1g 8 i; p

ð2:2Þ

where

p schedule ( p ¼ 1. . ..mi),

n number of different truck types,

mi number of schedules for each truck type i (i¼ 1,. . .,n),

nO number of supply points,

nD number of demand points,

Ddad demand at destination d,

Cip cost of schedule p for truck type i,

aipo 1 if truck type i on schedule p passes through point o and

0 otherwise,

bipd amount delivered at point d by truck type i on schedule p.

The bipd parameter indicating the product amounts delivered at

destination points is measured in truckloads. It may take on as

many different values as there are different types of trucks

capable of delivering logs in a given problem. If in fact there

is more than one type, their capacities are normalized and a

“base truckload” is defined as the capacity of the smallest avail-

able vehicle.

The master problem then consists of minimizing total trip

cost, assuming the costs of each trip are known and included

explicitly in its objective function. The problem has two con-

straint blocks: those numbered (2.1), which ensure compliance

with supply at supply points and the condition that only one

truck can load at a given origin at any time; and those in

(2.2), which constrain the model to satisfy customer demand.

Various additional conditions mentioned earlier must also

be satisfied in the process of deriving a solution to the

problem. They include, among others, satisfying machine

capacity at loading points, travel times, and loading and unload-

ing times. These restrictions are treated in the column gener-

ation subproblem to be described below.

2.3 The Column Generation Subproblem

The column generation subproblem attempts to find the lowest

reduced cost schedule, or one or more negative reduced cost

schedules, while satisfying the imposed constraints and/or

rules. The subproblem can be stated as a shortest path

problem in the auxiliary network defined above. The costs

associated with the arcs are defined in such a way that the

cost of a route is the reduced cost of the column associated

with that route for the basic solution to the linear relaxation

of the master problem just solved.

The master problem set out in the preceding paragraphs

functions with a dynamic column generator. The columns are

added to the master problem as they are generated. The dual

variables obtained by solving the linear relaxation of the

problem are used to construct the objective function of the sub-

problem corresponding to the reduced cost of the column with

respect to the current basic solution of the master problem. The

dual variables are classified into two groups: the po, which are

associated with the supply constraints (2.1), and the ld, corre-

sponding to the demand constraints (2.2).

As already mentioned, our sub-problem consists in finding a

shortest path in the auxiliary network. This network is a topo-

logically ordered acyclic network in which the first node is the

departure base and the last one is the arrival base. A topological

order of a directed graph G(V,E) is a labeling of its nodes such

that for every one of its arcs (u,v), ord(u) , ord(v) (see Cormen

et al., 1990, Sec 22.4). In the present case the digraph is

obtained by ordering the supply and demand points according

to their associated times, with the former preceding the latter

for nodes whose time is the same. Within each group of

points the order is arbitrary; in our implementation, the nodes

were ordered by origin or destination label. Under these con-

ditions the problem of the shortest route between auxiliary

nodes 0 and N þ 1 can be solved in linear time as a function

of the number of arcs in the network even though the cost of

an arc may be negative. This is of particular interest in our

case, where the cost of an arc in the auxiliary network is the

difference between the real cost of the trip defined by that

arc less the value of the dual variable corresponding to

the master problem constraint associated with the arc destina-

tion point. Once the topological order ord is defined, the

algorithm applied to determine the column of lowest reduced

cost is as follows (see Cormen et al., 1990, Sec 24.2):

Step 1: Initialize labels:

For each supply point o, define d[o] ¼ cost(0, o) – dual[o],

pred[o] ¼ 0;

For each demand point d, define d[d] ¼ 1, pred[d] ¼ 1

Step 2: For each network node u, following the topological

order ord:

For each node v such that there exists an arc (u, v):

if d[v] . d[u] þ cost(u,v) – dual[v]; then

d[v] ¼ d[u] þ cost(u,v) – dual[v];

pred[v] ¼ u;
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where dual[v] is the dual variable associated with the node v

constraint. Thus, if v is a supply point 0 then dual[v] ¼ po,

whereas if it is a demand point, dual[v] ¼ ld. The d[v]

labels correspond to the upper bounds of the cost of the

optimal route between Auxiliary Node 0 and node v for the

entire process. At the end of the process each d[v] denotes

the length of the optimal route from the Auxiliary Node 0 to

node v. The pred[v] labels refer to the nodes preceding the v

nodes on the optimal route from 0 to v. With this information

we can readily determine the minimum cost route from node

0 to node N þ 1 and, for each demand point v, the minimum

cost route from node 0 to node N þ 1 for which v is the last des-

tination point visited.

Different policies were tried for generating columns at each

iteration. Specifically, a single column for each type of truck

and one column ending at each demand point were generated.

In the former case, either the column with the most negative

reduced costs or the first column found with negative reduced

cost could be chosen. On the basis of preliminary experimental

results we opted for the latter case, that is, the generation of a

column with negative reduced cost ending at each demand

point.

3. COMPUTER EXPERIMENTS

To evaluate the performance of our model and the proposed

solution we conducted a series of computer experiments with

instances of varying sizes and degrees of difficulty. In this

section we describe these tests and the results obtained.

The generation and solution of the models was implemented

in C þþ using the ILOG CPLEX 9.1 library to solve both

the linear and the integer problems. We used the barrier

method for solving the LPs during the column generation

phase. For the final IP we stopped the branch-and-bound

once the gap between the best integer solution known and the

best bound was less than 0.1%, or after 1,500 CPU seconds.

The remaining solver parameters were at their default values.

The programs were compiled by GCC 3.3.6. All experimenting

was executed on an AMD Athlon 64 PC with 1 GB of RAM

running SUSE Linux 10.1.

3.1 Description of Instances

The characteristics of the solved instances are summarized in

Table 1 below. Four groups of instances of similar size were

generated, with five different networks (origins and desti-

nations) generated for each group and 10 instances with differ-

ent demands for each network.

Several parameters are represented in Table 1 as indicated

by the following column headings: OR, the origins in the

real problem, each of which correspond to 36 supply points

in the associated time-space network; DR, the destinations in

the real problem; DP, the demand points defined by a

destination and a time, each point corresponding to a node in

the time-space network; Each DP, the range of truckloads

delivered for each demand point; and Total, the number of

truckloads moved in the given instance.The characteristics of

the trucks used to construct the instances are summarized in

Table 2 below. The parameters represented in the table are indi-

cated by the following column headings: CTL, the cost per

travel hour of a fully loaded truck; CTE, the cost per travel

hour of an empty truck; CWT, the penalty assigned per hour

of waiting by a truck at a network node; CNT, the cost of

adding a truck to the fleet (equals the cost of the arcs emanating

from auxiliary node 0); and LC, the number of load units a

given type of truck can carry (demand at destinations is

measured in truck load units). For some supply and demand

combinations we generated several instances with different

combinations of trucks.

To begin the iterations between the master problem and the

subproblem, we must first obtain an initial feasible set of

columns to be introduced into the model. The mechanisms

for selecting this initial set of columns range from heuristics

to simple inspection. After some preliminary experimentation

we chose a set consisting of some of the columns for which

the truck makes a single loaded trip over the planning

horizon plus some other columns for which it makes two

such trips. There is a trade-off between the quality of the

final integer solutions obtained and the time required to find

them, which depends on the number of initial columns.

Fewer initial columns usually means shorter solution times

but larger integer gaps, while more initial columns yields

better integer solutions but potentially much longer solution

TABLE 2.

Transport costs and load capacity of trucks

Costs per hour
Load capacity

Truck type CTL CTE CWT CNT LC

1 1,000 900 90 18,000 1

2 900 800 90 20,400 1

3 1,600 1,400 120 22,800 2

4 1,400 1,200 120 25,200 2

TABLE 1.

Description of instances

Description

Nodes Truckloads
Travel

time

(min)Instances OR DR DP

Each

DP Total

A 12 6 30 3–7 111–160 40–120

B 12 6 30 6–11 180–160 40–120

C 12 6 30 9–15 251–315 40–120

D 20 6 30 12–20 395–493 40–120
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times. Also, a balance between one-trip and two-trip columns

can generate better integer solutions.

Table 3 exemplifies this tradeoff behavior for two instances

and various combinations of initial columns. The first two

columns in the table indicate the maximum number of each

type of column included for each demand point in the initial

master problem. For each instance we report the relative gap

between the linear relaxation solution and the final integer sol-

ution as well as the total execution time.

The results given in the table for two instances in particular

(A1-7 and B4-1) show that there is a relationship between the

starting set of columns and final solution quality and time. A

possible conclusion from this data might be that gaps

improve if the initial master problem contains many columns.

The experiments with these and other instances led us to

adopt a best strategy for generating the initial set of columns.

For each demand point and truck type we included as many

one-trip columns satisfying this demand as the number of

trucks needed to carry the amount required at that point. We

also included twice this number of two-trip columns ending

at the same demand point.

As described above, the solution process generates many

columns in each iteration. For each truck type and demand

point, the column ending there with minimum reduced cost is

generated. If this reduced cost is negative, the column is

included in the master problem.

3.2 Results Obtained

Tables 4 and 5 below present the results of the experiments con-

ducted. Table 4 reports minimum, maximum and average sol-

ution times for each group of instances. The solution times

for column generation (linear relaxation solution) and the

final integer model solution are given in seconds. Also shown

are the gaps between the integer and LP solutions. Table 5 dis-

plays the same solution times expressed as percentages of total

time, together with the total number of schedules generated and

the number used in the final solution.

TABLE 4.

Execution time and gap between solutions

Instances

Column generation (sec) Integer model (sec)
Total time

Gap (%)

Min Max Average Min Max Average Average Min Max Average

A1 2.46 37.95 12.02 0.15 819.72 32.82 44.83 0.00 7.12 0.43

A2 1.90 30.23 9.86 0.18 248.42 9.46 19.32 0.00 5.33 0.19

A3 3.47 42.64 12.52 0.16 466.18 46.09 58.61 0.00 9.58 1.37

A4 3.24 20.38 9.76 0.17 113.69 8.72 18.48 0.00 5.08 0.32

A5 4.44 43.64 12.54 0.23 542.13 42.97 55.52 0.00 11.09 0.86

B1 4.75 33.55 14.60 0.24 1,022.61 66.04 80.65 0.00 2.69 0.29

B2 4.98 36.88 16.59 0.26 382.10 38.39 54.98 0.00 2.22 0.27

B3 4.94 37.93 12.23 0.21 62.17 5.08 17.31 0.00 2.62 0.09

B4 4.39 43.75 14.60 0.24 1,021.64 80.52 95.12 0.00 2.16 0.27

B5 4.95 38.37 14.97 0.25 856.17 49.82 64.79 0.00 2.51 0.21

C1 8.45 27.04 17.46 0.44 2.71 1.16 18.62 0.00 0.08 0.02

C2 6.37 28.36 17.49 0.25 9.86 2.24 19.73 0.00 0.05 0.01

C3 8.68 49.98 19.10 0.37 18.35 4.21 23.30 0.00 0.10 0.01

C4 7.50 50.04 21.66 0.29 527.57 38.75 60.41 0.00 0.10 0.01

C5 7.40 36.76 22.27 0.31 327.38 75.45 97.72 0.00 0.39 0.09

D1 14.91 103.43 39.23 0.49 69.54 12.71 51.98 0.00 0.05 0.01

D2 17.35 64.58 37.53 0.52 1,103.85 145.75 183.28 0.00 0.42 0.05

D3 16.78 71.12 35.26 0.65 315.04 22.54 57.80 0.00 0.01 0.01

D4 16.78 64.87 40.36 0.65 1,301.61 127.38 167.74 0.00 0.51 0.06

D5 17.70 117.74 53.74 0.38 262.39 58.86 112.60 0.00 0.10 0.01

TABLE 3.

Solution times and gaps depending on the initial set of columns

Number of initial

columns Instance A1-7 Instance B4-1

One-trip two-trip Gap (%) Time (sec) Gap (%) Time (sec)

20 20 9.0 127 1.2 82

20 50 6.1 117 1.2 139

50 20 3.3 91 1.8 12

50 50 2.2 211 1.4 99

All 0 1.9 267 2.6 42

20 All� 0.0 398 1.7 112

All� All� 0.0 426 0.2 271

�All columns that could be generated.
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As is apparent in Table 4, solving the column generation

problem at the root node takes less than 2 minutes for all

instances. The difficulty of solving each IP problem varies

greatly depending on the instance. However, Table 5 shows

that on average, just 20% of total time is spent solving the

integer model. Note in particular that about 40% of the

instances were solved at the root node and the time limit was

reached for only 5 instances.

4. CONCLUSIONS

This study addressed the operational problem faced by Chilean

forest companies when deciding how to transport their products

to customers. The solution proposed was obtained by construct-

ing an integer programming model solved by column gener-

ation in which each column represented the daily trips made

by a truck between origins and destinations.

A number of ways exist to generate columns or trip sche-

dules using the model constructed. We utilized a dynamic pro-

gramming column generator to provide new routes at each

iteration of the problem. Our model chose few routes at each

iteration in an auxiliary network generated using the dual vari-

ables of the master problem.

The model was tested for various instances representing real

situations faced by forest companies of different sizes. The

results showed that the feasible integer solutions were reason-

ably close to the continuous optimal solution, thus confirming

that our model would be usable in real situations. In most test

instances, relative gaps of 2% or less were found with execution

times that were low enough for practical use in actual appli-

cations that require daily trip scheduling.

An interesting task for further exploration would be to

combine this model with one for daily harvest planning so as

to integrate the two decision-making processes. Attempting

such an integration using metaheuristics could possibly lead

to significantly suboptimal solutions.
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