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ABSTRACT

The problem of finding a shortest route in a network with
unregtricted costs 18 approached through solving an assigrment
problem associated to the network.

The upper bound on the mxmber of elementary calculations

required for the solution is 0(m® ). However, in most cases, the
actual number of computations is congiderably less and depends
on different network characteristics than Dynamic Programming
algorithms do. In examples of networks generated stochastically,

thie number was below O(mz' 5).

A parametric analysis ie presented. It is shown that if
after a shortest route is determined, the costs on all ares in-
cident into or out of a node are modified in any form, at most

O(mz) elementary calculations will determine a new optimal so-

lution. This feature, shared by Dynamic Programming algorithms
only for cases where all cost decrease, can be applied to prob-
lems such as the determination of the K-shortest routes and the

K-smallest assigrments, leading to upper bounds of 0(167:3) in
both cases.

INTRODUCTION

The problem of finding the shortest route in a network with
directed arcs and unrestricted costs on them has been usually
approached through dynamic programming techniques [1,5,12]j. &
less used approach is studied in this paper, where a shortest
route is determined by solving an assignment problem associated
with the network.
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The algorithm for finding the shortest route between nodes
1 and m in a network is based on the following notion: add an
artificial arc from node m to node 1 with a very high negative
cost. Obtain then, in the modified network, circuits with mini-
mum added cost. The optimal solution to this problem can be
determined by solving an assignment problem and will either de-
termine a shortest route, or prove the existence of negative
circuits.

To obtain such optimal solution, a modified version of an
algorithm presented in references [2,9] for finding minimum
cost flows in networks with linear, nonnegative costs is used.
Through this method, the shortest route problem is solved in a
number of elementary calculations with the usual upper bound of

0(m3). However, in most cases, the actual number of calecula-
tions will be considerably lower. Moreover, this number will
depend on network characteristics distinct from those which de-
termine the number of iterations in the Dynamic Programming
approach.

A parametric analysis of this algorithm is presented. It
is shown that if the cost in any arc (or all arcs incident to
or leaving a node) is varied in any direction, after a shortest

route has been determined, at most O(mz) additional elementary
calculations will be needed to determine a new optimal solution.
This feature is shared by Dynamic Programming algorithms only
for cases where all costs decrease.

This property can be applied, among others, to the deter-
mination of the K-loopless Shortest routes and K-smallest as-
signments. In both cases, the upper bound on the number of

elementary calculations is O(K-ma).
1. THE SHORTEST ROUTE AND THE ASSIGNMENT PROBLEMS
a) The Assignment Problem:

Consider a matrix D = (dij). We define as an assignment

in D any set of m independent cells, where a set of independent
cells is such that one cell is marked in each row and in each
column.

An assignment is said to be optimal if the summation of
costs dij of its marked cells is minimum among all assignments.

Finding an optimal assignment can alsc be expressed as the fol-
lowing linear programming problem:
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m
Z xi. =1
i=1 > 0
m lj =i
z xi. =1
=1
Min Z dij xi.
i,5 3

By unimodularity of the constraint matrix, one optimal solution
will correspond to integer, 0-1 values of the variables xij'

References [2,9] offer an algorithm to £ind minimum cost flows
in networks with linear, nonnegative costs. In this algorithm,
each iteration consists in driving as much flow as is feasible
between an origin and a destination node, along a path of mini-
mum incremental cost. Node weights are used to modify arc costs
in such a way that all shortest routes are determined over net-
works with nonnegative costs.

This algorithm can be specialized to the assignment problem
as follows:

Define Ui and Vj as the cost of rows i and columns j.

1) Set U, = 0 for all i, and V, = Min {(d..).
1 ] i ij
2) sSetd,,=4,, +U, -V..
1] 1] i J
3) RIE dij = 0, cell (ij) is admissible. Find N, the
maximum number of independent admissible cells and
mark them [4,p.55}. If N = m, we have an optimal
solution. Otherwise, go to 4.
4) Set Ui = 0 for all rows such that no cell in that

row is marked and label those rows. Set Ui =M

(vexry large) for all other rows. Set V, = M for
all 7 J
j.
5) If no unlabelled rows or columns exist, go to 2.
Otherwise, find the minimum value among all labelled
Ui and Vj. Label the corresponding row or column.

If it is a row, go to 6. It it is a column, go to 7.
6) Set Vj = Min (Vj, u, + dij). If column j contains

a marked cell, go to &', j = 1,m,
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6') Let (kj) be the marked cell in column j. If there
exists a column r such that:
i) ¢Cell (kr) is admissible,
ii) Column r has no marked cell and
iiiy wv_ > v,
r J
then, erase the mark from cell (kj) and place it on
cell (kr}. If such a cell does not exist, do nothing.
Go to 5.
7) Let Zj be the set of marked cells in column j, then

Zj is either empty or it contains one cell, say dkj'

In the first case, no value changes. If dkj £ Zj’

k

Step 6' is a slight modification to the original algorithm,
which reduces the number of iterations required to reach opti-~
mality [10].

If we consider Steps 2 through 7 as an iteration, it is
clear that the number of elementary calculations per iteration

set U = Min (Uk, Vj). Go to 5.

. 2 . T . .

is of order m . Since at each iteration the number of indepen-
dent cells is increased by at least one, the number of itera-
tions is at most m. Thus, the total number of elementary

calculations has an upper bound of order m3.

We prove now an important property of the above algorithm.
Theorem 1: C(Consider a matrixz D = (dij) and an optimal assign-
ment S in D. Let D = (dij) be the cost matrix assoeciated with

the final, optimal solution S.
If for any row r (or columm g) all values d gy Jd=1,0.,m

(d; 0> © = 1,.,m are modified, at most 0(m%) additional elemen-

tary calculations will be required to determine an optimal

golution.

Proof: Suppose all values drj of row r are modified to

d" .=d . +K ., ~@wm<K kA <o, Since all transformations
rj I} r2 r)

throughout the algorithm are additive, the modified values in

the final matrix will be:

d i3 = gij i#r i=1,..,m
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Obviously, S may no longer be optimal solution for the
modified cost matrix D'.

Let (rp} be the marked cell corresponding to row r in S.
Let d' = min {d'.}

If &' < 0, take 4', .
-rv -rj -rj -rv

Ifudlei>] O takelid s
-rv =]

[}
(21
+
[+8
J

j=1,..,m

i=1,..,m

Note that an additive transformation in all cells of a row or
column (arcs incident into or out of a node) does not alter the
solution of the optimal assignment.

Consider the new matrix D': We have (m-1) independent
admissible cells in rows i # r. In row r, all values grj > 0,

j = 1,.,m(dual feasibility), while one of these values at
least, has a value 0. If cell (rp) corresponds to one of these
values, S is also optimal for the modified cost matrix D'.
Otherwise, since the algorithm determines at least one added

independent cell per iteration, at most 0(m2) elementary calcu-
lations will be required to determine a new optimal solution.

The same argument follows for the case when costs are
modified in a column.

b} Relation to the Shortest Route Problem:

Consider now a network E of m nodes and n directed arcs.
Arcs will be referred to as elements ek of E, or as elements

(ij), indicating their corresponding nodes. ILet dij be the
cost of arc (ij}, where the values dij are considered bounded

and unconstrained in sign. We can then construct a cost matrix
D={d,.), where d,, = 0 for i = 1,..,m and
ij ii

dkr = M' (very large) for nonexistent arcs (kr).

We define a circuit in E as a set of nodes and arcs
i, {ij),j,--,(ki),i, such that no intermediate node or arc is
repeated. A circuit will be called negative if the summation
of costs of arcs in the circuit is negative.

A set of disjoint circuits or eircuii-get is defined by
the fact that for each node there exists one and only one inci-
dent and outgoing arc. Nodes not belonging to a physical cir-
cuit are related to a self-loop.
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A route from node 1 to node m in E will be defined as a
sequence of nodes and ares: 1,(1i},i,..,r,{rm),m such that no
node is repeated.

A shortest route 5 from 1 to m will be such that

d,. is minimum among all routes from node 1 to m.
(ij)es

Lemma 1: There exists a one to one correspondence between as-
signments in D and eircuit-sets in E.

By Lemma 1, determining an optimal assignment in D is
equivalent to finding an optimal circuit-set in E.

We can solve then the shortest route problem as an assign-
ment one:

We first inspect for the existence of negative circuits in
E, by determining an optimal assignment in D. An all~diagonal
optimal solution will indicate that no negative circuits exist.
(This solution corresponds to a set of self-loops in E).

If this is the case, we add an artificial arc from node m
to node 1, with a very high negative cost
(@, =-M || < < |M'|,) and solve the modified assignment

problem.

Lemma 2: If no negative circuits exist in E, an optimal cirecuit-
set in the modified network, with dﬁl = - M, will consist of

self-loops and, if a directed path exists from node 1 to m, one
eireuit S, which includes the are (ml) and a shortest route from
1 to m. If no directed path exists, the circuit-set will con-
sist of one self-loop for each node.

By Theorem 1, only 0(m2) additional elementary calculations
will be required to determine the new optimal assignment, which
either corresponds to a shortest route or shows that none exists.

The algorithm and the corresponding proofs are detailed in
[11].

c) Comparison of the Assignment Algorithm
to the Dynamic Programming Approach:

The literature offers different algorithms to determine a
shortest route in a network with unrestricted costs, all of which

have an upper hound of 0(m3) elementary calculations.



SHORTEST ROUTES &7

The effective number of calculations, however, is usually
lower, depending for each'algorithm, on the structure of the
network.

It is of interest then to establish the determining factors
for the actual number of iterations in each algorithm, in order
to evaluate which one is preferable for a given problem.

In the usual Dynamic Programming approach [1], the number
of iterations required will depend on the length of the shortest
route, or the distribution of negative circuits, should they
exist,

In contrast, the number of required iterations for the pre-
sented algorithm will depend essentially on the correlation in
the values dij among the different columns of D: In case of

total correlation, where, for example, the costs dij are in-

creasing with the number of the row in each column, the algo-
rithm will obtain only one added independent cell in each
iteration. In case of no correlation among the columns, the
number of iterations decreases considerably [10].
Computational experience showed that in this case the re-

quired number of iterations was consistently of order (m)%,
regardiess of other variations in the network structure.
We present two illustrative cases.

Networks of 15 to 80 nodes were built randomly from
a (0,1) uniform and a (0,1) normal distributions.

Two parameters were considered:
i) d, the density of arcs in the network.
ii) p, the % of negative cost arcs.

The effect of varying both parameters did not significantly
affect the number of iterations required to reach optimality.
(This number increased with d, and decreased with p).

Results corresponding to 10 example runs of each case are
Presented in Table 1.

Average Number of Iteration, 10 Ex.

No. of Nodes Uniform Dist. Normal (0,l1) Dist.
d=50%, p=10% d=100%, p=50%
15 3 3.3
30 4.3 4.7
50 5.2 4.9
80 6.8 5.8

Table 1
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As can be seen from Table 1, the number of iterations re-

L
quired was, in all cases, below (m) 2.
The following two examples show how, for given networks,
the number of iterations will differ according to the approach
used.

Network 1: di i+l <0 i=1,m-1, all other costs nonnegative.
f

2: 4, ., >d, ., i=1,m- j=
Network d1+1,3 1,4 i=1,m-1 j=1,m

d1 oy 0, all other costs nonnegative.
r

In Network 1, the length of the shortest route is (m-1),
whereas only one iteration will be required if the Assignment
Algorithm is used. These values are reversed in Network 2.

One additional advantage of the presented algorithm is
that it can determine, with no modifications, a shortest route

i X : i 2
in networks with nonnegative costs in 0{m ) elementary calcu-
lations [11].

2. PARAMETRIC ANALYSIS

Let S be an optimal soclution corresponding to a cost matrix
D = (dij).

If values dij corresponding to either a row or a column are
modified in any direction, a new optimal solution 5' can be de-

termined in at most O(mz) elementary calculations. (Theorem 1).
This feature is not shared by Dynamic Programming algo-
rithms, which attain a similar efficiency only for the case when

the costs in arcs are decreased, [7]. This advantage of the
proposed algorithm can be used either directly or in implementing
some algorithms.

As direct applications we have:

i) The obvious case where, after an optimal solution S
to the shortest route (assignment) problem has been
determined, one (or a small number) of values di'
are modified.

ii) Case where, after a shortest route S in a network E
(matrix D) has been determined a node is to be added
or deleted.

If a node is to be deleted, we simply eliminate the row
and column in D corresponding to that node. There remain at
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least (m-2) independent marked cells in a (m-1) x (m-1) matrix.

2 A P . .
Hence, at most O(m”) additional elementary calculations will be
required to determine the new optimal solution.

If a node (m+l) is to be added, with costs (di,m+l'dm+1,j)'
i,j=1,..,m, a small addition to the algorithm is needed:
A vector of values U' = (ui'), i=1,..,m, is kept, where
ui' = Z uik, uik being the cost of row i in iteration k. After
k

obtaining the initial optimal solution for the m node network,
we add a (m+l) row and column corresponding to the cost values

3 : ] ~— v
of the (m+l) nede. By assigning values di,m+1 di,m+1 + us e

the {(m+l) column is updated to all additive transformations
performed through the iterations. The {(m+l) row is updated
similarly. After performing, if needed, row or column additions,

to preserve nonnegativity, at most O(mz) elementary calculations
will determine the new optimal solution.
As examples of implementation of Algorithms we have:

i) Minimum Flow Cost in Networks with Linear Costs.

With no loss of generality we can consider the total flow
F going from node 0 to a node Z. This problem can be golved
through an algorithm which, for each feasible flow £, finds the
path of minimum additional cost between 0 and Z, and assigns as
much flow as is possible through that path. If costs are un—
restricted in sign, a basic assumption of the algorithm proposed
in reference [2,9) is not satisfied and shortest routes will
have to be determined over networks with unrestricted costs.

If the number Kt of arcs which simultaneously hlock a
shortest route as the flow increases through it is small, which
is usually the case, the presented algorithm can be advantageous.
As arcs become blocked, their cost goes to infinity for the de-
termination of the next shortest route, while all other costs

remain equal. By Theorem 1, at most Kt-O(mz) elementary calcu-
lations will determine the new shortest route.

ii) The K-Smallest Assignments.

This problem can be solved by the following general scheme
[6]: 1 1 1
0) Determine an optimal solution X = (x1 e s X ), with-

out fixing any values of the variables. Place this
solution in a tentative list of solutions L.
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1) (k-1) smallest assignments have been determined. Re-
move the least costly solution in L. This correasponds

to the kth smallest assignment and is denoted as xk-xk
is characterized by those variables at value 1, and
those which are fixed, some of them at value zero.

2) 1If k =K, terminate. Otherwise, go to 3.

3) Determine additional solutions for L.

Suppose Xk was determined by fixing the values of the
variables xl,..,xs at level one, others at level O.

We leave these variables fixed and create (m-s) new
assignment problems, by fixing the remaining variables

in xk as follows:

k
(1) % g =1-x, =0
; k - B k
(m-5) ¥4l T Xgpp reor X = Xy =1 *n

The optimal solutions of these problems are determined
and placed in L. Go to 1.
It is clear that Step 3 involves the determining number
of iterations. Let Qk be the cost matrix corresponding to the

optimal assignment xk,
By using the algorithm presented above, each optimization
i, i=1,..,(ms) involves the following steps:

Consider Dk(i), the cost matrix corresponding to optimization i.
k (v . .
(D (1) = Qk). In order to perform optimization (i+l), only the

following alterations in Dk(i) are required to obtain Dk(i+1):

k

1) xs+i-1 goes from 0 to 1.
k 2 .

2) xs+i is fixed at 0.

1) is satisfied by fixing x to 1 and eliminating

s+i~-1
the row and column corresponding to that variable
in Dk(i+l). This involves no additional calculations.
2) requires modifying the cost corresponding to variable

k AP k,.
X.,i to infinity for D (i+l).
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Then, from Theorem 1, at most 0(m2) elementary calcula-
tions will be required to solve each additional optimization.

If the matrices Qk are not preserved (storage requirements),
they will have to be recreated when needed. This will require

P . 8 2
an additional number of iterations of order K O{m"). Hence,
the total number of calculations required to determine the

K-smallest assignment will be 2 0(Km3). This value improves

the bound of 0(Km4) obtained when a different algorithm is used
to solve each assignment optimization [8].

iii) The K-Shortest Loopless Paths in a Network.
This problem is approached in the same form as the above.

Step 3 in this case is considered in the following way:

Let xk be the k shortest route, consisting of arcs

k k
Xy re e Xy and nodes y_ = 0,Y11--aYP = Z.

For each node Ys in the kth shortest route, consider all
subpaths of shortest routes 1 through k, which coincide with

the kth up to node Y- This determines a set C of shortest
routes.
We define the set (ai) as composed of the arcs leaving

. . k
node y; in the set of routes C. Obviously, arc xi+1_£(ai).

Then, each optimization i, 1 = 0,..,p~1, consists of finding
the shortest route from node Y; to Z, without going through

nodes Y reer¥; 4 (for i = 0, no node is excluded), and excluding
arcs in the set (ai).

We note that from one optimization problem to the next, the
only modification involving calculations consists of driving the
cost of some arcs leaving the node Yy to infinity. Then, by

Theorem 1, the above algorithm will require at most O(mz) ele-
mentary calculations to determine each succeeding shortest route.
Since at most m such optimization are needed for each shortest
route, the K-loopless shortest routes can be determined in at

most 0(Km3) elementary calculations, as obtained also in [6]
through a Dynamic Programming approach. Both these results re-

duce the value 0(Km4) given in [13].
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