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a b s t r a c t

The problem of predicting human behavior has been a great challenge for several disciplines including
computer science. In particular, web user browsing behavior has been studied from the machine learning
point of view, a field that has been coined web usage mining (WUM). However, current WUM techniques
can be negatively impacted by changes in web site structure and content (e.g. Web 2.0). The key reason
behind this issue may be that machine learning algorithms learn the observed behavior according to
a particular training set, but do not model the user behavior under different conditions. We propose
a simulation model that mimics human interaction with the web by recovering observed navigational
steps. This web usage model is inspired by a neurophysiology's stochastic description of decision making
and by the information utility of web page content. The proposed model corresponds to a high-
dimensional stochastic process based on the leaky competing accumulator (LCA) neural model. We solve
high-dimensional issues by considering a mesh-less symbolic interpolation. As a proof-of-concept we
test the web user simulation system on an academic web site by recovering most of the observed
behavior (73%). Therefore, our approach operationally describes web users that seem to react as observed
users confronted by changes in the web site interface.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Web usage mining (WUM) [52,55,41] corresponds to the study
of the web user activities on a web site and the analysis of their
information needs. For example usage profiling [53,32,31] is a
technique used for such purposes. It categorizes browsing into
patterns and consequently enables automatic web site customiza-
tion. Recommender systems and adaptive web sites [51,53,54] are
applications that benefit from WUM. Traditional data mining
techniques are oriented toward applying generic machine learning
algorithms to web data without considering the underlying
physical mechanism. Generic analytical methods offer the advan-
tage of rapid application, but at the cost of being limited and often
requiring assistance from an expert to evaluate results. Moreover,
natural phenomena described by well-grounded models are
known to be much more precise for predicting behavior. Web
browsing is a cognitive process that involves information foraging,
visual discrimination tasks and decision making among other
activities. Therefore, current cognitive science theory has been
proposed using a neurocomputing point of view for modeling such
tasks. We propose to describe the web user as a simple cognitive
agent that is confronted by the decision of which hyperlink to click

according to its own preferences. Neurocomputing is a young
discipline that mixes the computational domains with the neural
theory of brain processing. Solving the web user browsing beha-
vior problem could help in both psychology and web mining.
Furthermore, psychological science could benefit from web usage
logs since massive visits to a web site correspond to one of the
largest survey repositories of human behavior. The web mining
community benefits from more accurate models of behavior. This
study aims to explore this possibility by proposing an approxi-
mated model of browsing based on the neurophysiology of the
phenomena. Our present work is based on an adaptation of the
LCA (Leaky Competing Accumulator) model [50] for modeling web
user browsing behavior. The LCA model presents a stochastic
theory of decision making, and we use it [40,44] for deciding the
next browsing action (e.g. clicking a link). It is conceived of as
a neural-based mechanism using information accumulation and
affected by random noise. At this point, we model the perceived
information of each hyperlink as a random utility model [26]. This
simplifying assumption enables the usage of the information scent
utility for web users presented in [35], which is based on a text
measure like TF-IDF [27]. Each web user is modeled as a decision
maker that follows the LCA rule based on a TF-IDF vector
representing web page text content, making a decision about
which link to click, and repeating the process until leaving the
web site. The set of artificial web users (AWU) implementing the
previous model are simulated on a real web site. Each AWU is
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characterized by a set of parameters of the LCA and the text utility
model. The simulation implements several AWU visits to the web
site recording the resulting sequences of pages (sessions).
The AWU's parameters represent different web session clusters
that are fitted by the maximum likelihood of the time-dependent
stochastic model. However, the inherent high dimensionality of
the problem is an issue [5] that is proposed to be solved by using
special functions and symbolic representation. Once all the para-
meters are fitted, the system is ready to simulate web user
navigation. The rest of the paper is organized as follows. Section
2 describes related psychology of decision making. Section 3
presents the LCA model applied to web browsing and its proces-
sing. Section 4 describes the experimental setting for testing the
model and procedures. Section 5 shows the numerical results of
experiments. Section 6 states the main conclusions of this study.
Finally, Appendix A derives the principal mathematical tools used
in this study.

2. Neurocomputing of decision making

For more than 50 years, psychology has been studying the
dynamic of the decision-making phenomenon. Stone in 1960 [47]
stated a discrete stochastic model based on accumulation of
information evidence that stops at a given threshold or within a
time-out limit. A decision is made in favor of the alternative that
accumulates the most information evidence. Several phenomen-
ological studies have been inspired by the previous study using
discrete or continuous diffusion models [2,21,22,12,37,8,50,9].
Recently, experimental evidence of this kind of stochastic mechan-
ism has been performed at the neurophysiological level. Measured
neural spiking rates in such cortical regions as the lateral intrapar-
ietal area (LIP) have been identified as information accumulation
for visual discrimination tasks in macaque experiments [39]. Later,
micro-stimulation experiments in the LIP area confirmed the
assumption by observing the correct bias on final decisions of
the discrimination task [14]. Recent experiments confirm that the
parietal cortex processes the confidence [17] with which a deci-
sion is reached. However, several other cortex regions have been
studied as information accumulators. The frontal eye field (FEF)
[46] has been identified [45] as an area that performs recording,
processing and motor controlling for visual discrimination tasks.
The dorsolateral prefrontal cortex (DLPFC) has been identified [18]
as a storage structure for spatial object location and works as an
integration region. Other studies [15] based on neuro-imaging
techniques suggest that decision making based on visual informa-
tion corresponds to a complex set of overlapping systems working
in parallel. In the case of a facial recognition task, the brain regions
involved are the fusiform face area, the parahippocampal place
area, the DLPFC area, the anterior insula and the inferior frontal
gyrus. The mechanism of information accumulation as the neural
activity level is observed in several places but mainly in the DLPFC,
which fires the final decision. Stochastic diffusion processes based
on information accumulation are thereby supported by the experi-
mental fact

dXi ¼ ½Ii�κf ðXiÞ�λ∑
ja i

f ðXjÞ�dtþsdWi; i¼ 1;…;n ð1Þ

In this study we apply the leaky competing accumulator (LCA)
model [50] in order to describe the web user decision-making
mechanism. The LCA model is a multiple choice theory based on a
continuous stochastic process. This corresponds to a non-linear
diffusion process given by Eq. (1). Each variable Xi is interpreted as
an average spike-rate activity of a set of neurons accumulating
information in favor of the choice i. The system starts with no
choice determination at Xiðt ¼ þ0Þ ¼ þ0, and evolves according to

Eq. (1). Furthermore, as far as Xi are interpreted as biological
variables [50], their values should be restricted to being positive.
The decision is made in time t ¼ τ when a variable Xin crosses
a given threshold firing the decision in. This stopping-time process
[38] results in a joint probability density pðτ; inÞ of reaching
a decision for choice in in a time τ. However, since an analytic
solution for this stochastic process does not exist, numerical
approximations should be used for fitting parameters to observa-
tions. Furthermore, Eq. (1) representing a small increment dX after
a small dt time interval is thereby suitable to be simulated, but
only if its parameters are known. Another simple browsing model
has been developed from psychological theories. The SNIF-ACT
model [36] considers the web user as an agent that evaluates a
given utility function of each possible browsing action on a page. It
uses the ACT-R cognitive framework [1], which enables the
execution of a set of production navigational rules (or browsing
actions). Each of the rules is executed according to a random utility
probability [35], comprising a simulation environment for web
browsing. Other models like CoLiDeS [19] and MESA [30] also
incorporate a browsing simulation by rules with an attention value
or likelihood [20]. Furthermore, such models are not related to the
mechanism for the visual perception and cognition of web pages.

3. Artificial web user model

The cognitive process of web browsing is far more complex
than the model presented here. As seen in Section 2 information
seeking and processing becomes an important part of the percep-
tion process. The disposition of elements on a web page may also
influence the perception and motivation of each subject. Further-
more, an attention level for content does not depend only on
distractions within web pages or other windows, but also in the
complete environment in which the subject is immersed. Higher
levels of cognition are also involved, as continuous reasoning
about retrieved information could dynamically change the sub-
ject's intention memory. For example, on a web site like Wikipedia,
web user reasoning would have a more important effect on the
observed page sequence. Therefore, a reductionist scheme is pro-
posed based on assumptions for perception and higher level
cognition. We assume the existence of a basic set of law governing
the web user browsing dynamics. As it was exposed in Section 2, the
web user browsing was already described by psychology and our
aim is to propose a more fundamental starting point based on the
neurophysiology the phenomena. Using a set of assumption, we
aims to test the web navigational theory in the simplest context.
Further extension of the model could be derived to describe
navigation in complex web environment, but we propose a first
test for the main unperturbed phenomena as a way to state a
framework for web user simulation.

3.1. Assumptions

A web site is a service for visualizing information and actions
for visitors on web pages. Content is accessed and browsed by
means of hypermedia facilities, in which operations correspond
mainly to hyperlink clicking, back and forward buttons, URL short-
cuts and direct access from search engines. Other facilities influ-
encing web browsing behavior are the use of scroll bars, pop ups
and other information disposal. Considering all those operations in
a first approximation to the browsing problem would be a serious
complication. For the sake of simplicity we assume:

1. Simple content disposition: Information is distributed in a few
pages, and content is concisely presented on the visible portion
of the page without a need to scrolling.
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2. Simple content semantic: The web pages’ content does not
require higher order cognitive features to be understood.

3. Simple purpose web site: Web pages are created for a simple
purpose, thus mainly for information disposition.

4. Content mainly based on the text: The web site presents
information based on the text.

5. Single purpose visit: Web users visit the web site with a single
purpose in mind.

6. No time restriction: Time pressure is not considered for the
cognitive model of decision making.

7. No interruption: The browsing process is performed with full
concentration on the surfing task.

8. Simple task: The purpose of the visit is simple and does not
require higher levels of processing.

If information is distributed in a few short pages (assumption 1)
then web operation usage like scrolling and back and forward
buttons should be negligible. According to [48] 30% of all naviga-
tion action corresponds to the back button operation on a generic
web site, and other similar operations are less than 2%. If relevant
information is disposed on a few pages, then long sequences of
pages during browsing will be rare and so will the usage of the
back button. If pages can be processed in a very short time
(assumption 2), it means that no higher cognitive process is
involved in the dynamic of the browsing process. Furthermore,
we assume that most visitors are expert users of the web site,
since the service is for very precise informative purposes (assump-
tion 3). The information is supposed to be presented using text
(assumption 4), so natural language processing [27] is used for its
analysis. Each hyperlink points to whatever is presented in the text
(assumption 5), so web users are mainly motivated by what
appears in the web page content. If we consider that the session
set includes a large variety of visitors, the main statistical
significance of similar visit patterns mainly refers to the decision
making process. Furthermore, we assume that the process of
visual perception is averaged over similar paths, uncorrelated
with web user motivation, and can be considered as part of a
background noise. A similar assumption was stated in [47] that
considers other factors to be averaged to zero by the accumulation
process. However, this assumption is no longer valid on a web site
with intensive use of graphic and complex interfaces. A web site
based on the text and with few options will correspond to such an
assumption. Social motivation and long-term rational goals can be
understood as fixed characteristics of each web user that define its
current browsing behavior. Therefore, under the most simplistic
assumptions the main mechanism for the browsing process is
mainly influenced by mechanistic decision making.

3.2. Decision making model

We choose to study a class of models that describe neural
activity evolution by a set of stochastic equations (1). The variables
of the system are commonly interpreted with the averaged
potential spike-count rate of groups of neurons that occur in the
lateral intra-parietal area [50]. Vector dW ¼ ½dW1;…; dWn� corre-
sponds to independent Gaussian white noise. Langevin's interpre-
tation of this equation uses the analogy with Newton's equation,
where the time variation (“dX=dt” or acceleration) of the velocity (X)
is proportional to the forces F that are applied. Force components F
(X) are dependent on the spike rate X (velocity). The equation is
interpreted as variations dX that the state of the system X experi-
ences in a small time interval dt. The evolution is stochastic and then
described equivalently [38] by a probability density function ϕðX; tÞ
in a domain Ω (Fig. 1).

The dynamics of the stochastic variable X(t) are also affected by
a border condition and an initial distribution. Our model considers

starting the process at the origin Xðt ¼ 0Þ ¼ 0, in which case the
initial probability distribution is given by Dirac's delta function (2)).
The variable domain is a box Ω¼ fX ¼ ½X1;…;n�j airXirbig that
should contain 0. The process after a while will eventually reach the
border of the box and remain confined to it (see Fig. 1). Two kinds of
border condition are established, absorbent (Eq. (4)) and reflecting.
Absorbent boundaries ðΨ � ∂ΩÞ are related to process termination
reaching a decision determination. In such cases, the stochastic
process corresponds to a stopping-time problem. An approach to
finding the stopping-time probability corresponds to using the
complementary problem of never reaching the halting condition,
in which case corresponding boundary constraints should be
absorbed. The result is that the probability density of no decision
ϕðX; tÞ should tend toward zero as the absorbing boundary Ψ is
approached (see Eq. (4)). Therefore, the stopping-time condition
is now stated as a boundary condition. The probability P(T) of
reaching a decision in time t¼T will correspond to PðTÞ ¼ 1�R
ΩϕðX; t ¼ TÞ dX.
ϕðX ¼ x; t ¼ 0Þ ¼ δðxÞ ð2Þ

0rXiðtÞr1; ðai ¼ 0; bi ¼ 1Þ; 8 i; t40 ð3Þ

ϕðXAΨ ; tÞ ¼ 0; Ψ � ∂Ω; 8 t ð4Þ

JðX; tÞ � nðXÞjXAΔ ¼ 0; Δ� ∂Ω; n ? Δ; 8 t ð5Þ
The reflective boundary ðΔ� ∂ΩÞ constrains the system's further
evolution to the box Ω, if variable X cannot cross the boundary Δ,
then the orthogonal component of the probability flux JðX; tÞ must
vanish (Eq. (5)). The vector JðX; tÞ will be defined later using the
Fokker–Planck equation (12) for the density ϕðX; tÞ. The I values are
the forces that drive those equations (1). Furthermore, we consider
that those values are proportional to the probability P(i) of the
discrete choices ðIi ¼ βPðiÞÞ, which are usually modeled using the
Random Utility Model (RUM) [49]. Discrete choice preferences have
been studied in economics to describe the amount of demand for
discrete goods where consumers are considered rational as utility
maximizers. In this study we apply this concept to quantify the
subject's willingness to follow a hyperlink [24,25].

F ¼ I�ωX; ω¼ ½ωij� ð6Þ

Ψ ¼ fX ¼ ½Xi�AΩj( j Xj ¼ 1g ð7Þ

ωij ¼ λδijþκð1�δijÞ 8 i; j ð8Þ
The utility maximization problem regarding discrete random vari-
ables results in a class of extreme probability distributions, in which
the widely used model is the Logit model (Eq. (9)) and where
probabilities are adjusted using the known logistics regression [33].
The Logit probability distribution P(i) anticipates every possible

Fig. 1. A domain Ω for variable X with ai¼0 and bi¼1 for i¼ 1;2;3.
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choice on the page j and has a consumer utility Vj.

PðiÞ ¼ eVi

∑
jAC

eVj
ð9Þ

The utility function is proposed to be dependent on the text present
in links that the agent interprets and through which it makes the
decision. Hence the assumption is that each agent's link preference
is defined by its TF-IDF text vector μ [27]. The TF-IDF weight μk

component represents the importance to the web user of the word
k. Furthermore, an agent prefers to follow similar links to its vector
μ. The utility values (Eq. (10)) are given by the dot product between
the normalized TF-IDF vectors μ and Li that represents the TD-IDF
weight text vector associated with the link i.

ViðμÞ ¼
μ � Li
jμJLij

ð10Þ

The resulting stochastic model (Eq. (1)) is dependent on the
parameters fκ; λ; s;β;μg and the set of vectors fLig. The μ vector
must be considered as an intrinsic characteristic of each web user
that motivates them to seek some kind of content. Parameters Li are
input from web content, and the other κ; λ; s;β are considered
related to the neurophysiology of the subject. The possibility of
refining the model, by adding new force terms for better adjustment
of the theory to observations, is a main tool in the quest for
describing the nature. Furthermore, numeric manipulation can take
advantage of the force abstraction, and the boundary condition
could be expressed in the stochastic equation by means of fictitious
forces. A reflective condition can be approximated by a force field
that is negligible in the interior of the domain Ω and strong on the
reflective border directed into the interior of the box. An absorbing
boundary corresponds to a never-returning surface, thus forces are
null in the interior and stronger on the border pointing outside the
box. In one dimension this absorbing force is given by FA ¼ ð1�XÞ2N
with a large integer N. Indeed the reflective boundary in one
dimension can be replaced by a large positive force for Xo0, and
nearly zero for X40. In such a case a more formal representation of
the reflective force is given by FRðXÞ ¼ X2N , with a large integer N. In
Fig. 2 the boundary force FRþFA ¼ X2Nþð1�XÞ2N is presented for
several values of N. This force has a polynomial form, whose
advantage is to help in calculations involving integrals, since even
in the multivariate case integrals can be calculated exactly. Such a
force in the multivariate case in Eq. (11) replaces the boundary
condition as an additive term, and on the limit when N-1.

FBi ¼ X2N
i þð1�XiÞ2N ð11Þ

Therefore, numerical methods involving solving partial differential
equations require smooth initial and border conditions, so that this
approximation with N-1 introduces an easier way to solve the
problem. Initial conditions (2) become the only restriction that

needs to be imposed. The stochastic equation (1) can be solved in
terms of the probability-density function ϕðX ¼ x; tÞ of being in the
middle of the decision-making process at time t. There are two cases
depending upon whether the condition for choice determination
depends on crossing a threshold or not. The probability density of
never reaching a decision implies considering ϕðXAΨ ; tÞ ¼ 08 t,
corresponding to an absorbing condition. Therefore, the density
ϕðX; tÞ is described by a partial differential problem called the
Fokker–Planck [10] or the forward Kolmogorov equation [38].
The forward version was chosen for its continuity equation inter-
pretation and the use of fictitious forces for approximating an
absorbing border condition, which terminates the process.

∂ϕðX; tÞ
∂t

¼∇ � ½�ϕðX; tÞFðXÞþs2

2
∇ϕðX; tÞ� ¼ Lϕ ð12Þ

Eq. (12) describes the evolution in time of the density of being in the
middle of the decision-making process at time t. The dynamic is
now in the form of a Cauchy problem ∂ϕ=∂t ¼ Lϕ with the initial
condition ϕðX; t ¼ 0Þ ¼ϕ0ðXÞ. Operator L is linear in ϕ and based on
derivatives on variable X, meaning that any time-derivative of ϕ can
be obtained by a power of L. If the initial condition in t¼0 is known,
it can be propagated over time because any derivative is known
(Eq. (13)). This is the basis of the semi-group property of time
translation for density ϕðX; tÞ. Notice that border condition could be
included in the operator L by means of the force F just by adding a
fictitious term to it ðL ¼ LþFBÞ. The approximation will be better as
FB simulates border conditions. It will be shown later that reflective
conditions are easier to enforce approximately in the solution, but it
is not the case for absorbing conditions. In such cases, the propaga-
tion operator will include only the FA force:

ϕðX; tÞCetLϕ0ðXÞ ð13Þ
As seen, the probability P(T) of reaching a decision in time t¼T is the
complement of the previous probability PðtÞ ¼ 1�P0ðtÞ. The distri-
bution density of reaching a decision p(t) is given by the derivative
of P(t).The probability density of choosing i at time t is derived in the
appendix for Eq. (A.28) and corresponds to the following expression:

pði; tÞ ¼ �s2

2

Z 1

0
⋯
Z 1

0

∂ϕ
∂Xi

jXi ¼ 1 ∏
ka i

dXk ð14Þ

Eq. (12) has a well-known solution for the free case, i.e. without
considering the border condition. In such cases, the model is called
the Ornstein–Uhlenbeck (OU) process [34]. An exact solution of the
OU process is given in [10] which is revised in A.2 and in matrix
notation in Eqs. (15) and (16). The importance of having such a
solution is to have a basis for constructing an approximation to the
boundary problem:

ϕðX; tÞ ¼ ð2πÞ�n=2jΣðtÞj�1eðX� ItÞTΣðtÞðX� ItÞ ð15Þ

ΣðtÞ ¼ 1
s2ðe2ωt�1Þω ð16Þ

The perpendicular gradient ∇ϕ � n̂ of a solution can be nullified on
reflective border Δ by means of the technique of reflecting images
(e.g. [38]. The perpendicular gradient as part of the flux vector
(Eq. (A.29)) plays an important role on the reflective condition (5). If
the gradient vanishes then a term whose magnitude is ϕF remains
that quickly drops to 0 as the function evolves due to reflective
forces. (Note that F remains bounded in Δ.) As shown in A.4 the
reflective operator Un½:� does the work for any dimensions n of the
space Ω.

3.3. Fitting procedure

Observations are not performed on subjects with the same
purposes, which are mainly represented by vector μ. Recorded

F=+F=+

1

2

345F x 1 x 2 n x2n

x

F~0

1.0 0.5 0.5 1.0 1.5 2.0

5

10

15

20

25

30

Fig. 2. Boundary forces in 1-D.

P.E. Román, J.D. Velásquez / Neurocomputing 131 (2014) 300–311 303



sessions represent a distribution of subjects according to a set of
intentions. Using a kind of representative value I as a partial
solution could be a way for finding the calibration of the model.
Maximum likelihood is a well-known technique for stochastic
model calibration. The likelihood of observing the probable avail-
able data is maximized using variables as the unknown para-
meters, subject to the restrictions of the theoretical model. The
solution is interpreted to be optimal in the sense of being the most
probable according to the observation. The calculation for obtain-
ing a kind of average I vector is based on the observed data. For a
given possible choice i, a distribution (in k) of the number nik of
observed selections measures the time spent for deciding tik.
In this context the log-likelihood is given by Eq. (17), where
pði; tjIÞ is the probability of choice in Eq. (A.34) (expanded in
(18)) for a given value of I. The value of (18) is positive since ϕZ0
on Ω and ϕ¼ 0 on Ψ , in which case the derivatives are negative.
The constraint stated in (19) considers β¼ 1 and I to be a
probability:

max
I;κ;λ;s;ϕ

S¼∑
ik
nik log ðpði; tikjIÞÞ ð17Þ

pði; tjIÞ ¼ �s2

2

Z 1

0
⋯
Z 1

0

∂ϕ
∂Xj

����
Xj ¼ 1

∏
ka j

dXk ð18Þ

∑
k
Ik ¼ 1; Ik40; s40; κ40; λ40 ð19Þ

Considering the probability density spanned by polynomial func-
tion to a degree of approximation of D, the power of variables Xi

drops to 0 quickly with D since variables XiAð0;1Þ have positive
values less than 1

ϕðX; tÞ �

∑
D

d ¼ 0
∑

½∑
i
ki ¼ d�

ake
�αkt ∏

n

j ¼ 1
Hkj

ffiffiffiffiffiffi
Djj

p ½RX�j
s

� ½RI�j
s
ffiffiffiffiffiffi
Djj

p
 !

ð20Þ

The previous expression relies on a combinatorial partition of the
integer d represented by the integer vector k¼ ½k1;…; kn�. There-
fore, probability can be calculated by replacing in (18) resulting in
the following equations:

pði; j; t IÞ �
��
�s2

2
∑
D

d ¼ 0
∑

½∑
i
ki ¼ d�

ake
�αkt ∂

∂Xj
½Skl ðj;Xj;D; I; sÞ�Xj ¼ 1 ð21Þ

Skl ðj;Xj;D; I; sÞ

¼
Z 1

0
⋯
Z 1

0
∏
n

l ¼ 1
Hkl

ffiffiffiffiffiffi
Dll

p
½RX�l
s

� ½RI�l
s
ffiffiffiffiffiffi
Dll

p
 ! !

∏
ka j

dXk ð22Þ

Despite the presence of a polynomial on the integral (22) it is
difficult to obtain an explicit expression for Skl ðj;Xj;D; I; sÞ. It turns
out much more unmanageable to calculate this integral by using
a partition on the set Ψ . Indeed, the number of points in the grid is
exponential over the number of dimensions of Ψ . Symbolic
integration (e.g. [7]) can manage very efficiently the computation
of Skl ðj;Xj;D; I; sÞ. A first observation is that the multivariate
integrated function is a polynomial on variables fX; I; ag and a
rational function on fD; sg. Therefore, integrals over variable X are
straightforwardly calculated and evaluated by symbolic integra-
tion. This observation is important since it drastically reduces the
computational complexity of the inference algorithm. Further-
more, derivatives of Skl ðj;Xj;D; I; sÞ on I, s, κ, and λ can be directly
extracted after symbolic processing. In this way, traditional non-
linear optimization methods can be used on this system using the
resulting evaluation of the function S. Symbolic processing uses
fictitious forces (11) for emulating the border conditions. Such
forces are polynomial functions on variable X when the propagator

operator (Eq. (23)) can be approximated to any order in t
symbolically. Such an operator performs the evolution of a system
that fulfills an equation ∂ϕ=∂t ¼ Lϕ according to Eq. (24)

UðtÞ ¼ etL ð23Þ

Uðt′ÞϕðX; tÞ ¼ϕðX; tþt′Þ ð24Þ
Approximating boundary conditions and using the propagator
operator generates a symbolic solution for a time t from poly-
nomial approximation. The likelihood problem does not depend
on the ak parameter being simpler to implement, since it does not
depend on a discretization scheme over a high-dimensional space.
This is a very important observation. The number of variables jakj
is nearly exponential on the number of partitions of d (degree of
the polynomial). For example, if the number of variable X is 20 and
the maximal degree of the polynomial is 8 then the number of
variable jfakgj is 3, 108, 105. This fact introduces a limit into the
degree of the polynomial versus the available computational
capabilities. Nevertheless, once an initial solution is selected,
it will consist of a polynomial objective function of degree equal
to d and with a number of variables jfIigj. An approximation of the
initial solution can be realized with the solution (A.26) trans-
formed with the linear operator defined in (A.36), this procedure
ensuring a solution that fulfills the perpendicular gradient on Δ
and on t ¼ ε� þ0 accumulated near X¼0. Variables XiAð0;1Þ
ensure that the power tends toward 0 as the exponent increases,
after which the polynomial approximation of such a solution
makes sense. In this sense the exponential can be replaced by a
truncated Taylor series to the degree D. In this case the Hermite
polynomials have a linear relation to the monomials in variables
Xi. A matrix-inversion problem is stated for finding variables ak in
order that ϕ approximates a solution (A.26) to degree D. This
notably simplifies the application of the operator etL since now ϕ is
spanned by means of the sum of eigenfunctions of the L operator
resulting in the exponential of the series. It is important to
consider the normalization of this function on the initial state. It
is important to notice that the number of reflections on a multi-
variate set is exponential, so a careless implementation of the
operator (A.36) could result in more computer time. However,
there is a simple solution using an iterative method just as in the
induction demonstration, by applying one reflection by coordinate
each time. The resulting algorithm executes in a number of steps
that depend linearly on the number of dimensions. This approx-
imation has the cost of not exactly accomplishing the border
condition. The part corresponding to the reflective border Ψ will
contribute as an additional probability mass to the total distribu-
tion. However, the part corresponding to the absorbing border will
quickly vanish since it is on the border. Also as we consider the
solution (A.26) in t ¼ ε� þ0 the extra mass on the absorbent
border will be negligible as t-0. A more important error source
corresponds to the positive contribution that ϕ adds to the
orthogonal flux on the border Δ. Evolution on the domain Ω with
the propagator operator etL implies that any mass near or on the
border Δ will go to zero as time passes. Nevertheless, such an
initial non-compliance of reflective border condition implies an
additional mass effect for the total probability. A multiplicative
parameter on ϕ should help to adjust the difference.

3.4. Simulation procedure

Monte Carlo techniques become part of the standard treatment
of a high-dimensional problem. Nevertheless, even such methods
lose a high degree of accuracy value when a high number of
dimensions are involved. More accurate methods like quasi-Monte
Carlo techniques [23] and exact simulation [13] are envisaged
for embracing the computational complexity. The stated diffusion
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model of the decision-making class is suitable for simulation by
exact simulation due to its specific properties. Simulation is used
mainly as a side-validation technique for obtaining numeric
bounds for the accuracy value of the calibration and for experi-
menting with the conditions of the model. Exact simulation (e.g.
[3,4]) uses Ito-integrated stochastic equations (e.g. [34]) for
simulation by means of small time steps. Hopefully the transfor-
mation R (A.1) has the following property R¼ R† ¼ R�1 that
implies that the transformed random white noise RdW continues
to be a random white noise vector. The R transformation is
detailed in the (A.1) and can be applied over the stochastic
equation (1). Furthermore, simulation for a stochastic equation (1)
can be derived from exact simulation of the OU process including
border conditions. For a point in the interior of Ω, whose time
increment is sufficiently small to not reach the boundaries, then the
stochastic evolution of the vector X is given by (25). The solution is
obtained by common Ito stochastic integration [34].

XðtÞ ¼ e�ωtXð0ÞþMðω; tÞIþsKðw; tÞZ ð25Þ

The random vector Z has each component behaving as normal
variables Zi �Nð0;1Þ. Such a vector equation includes a matrix ω
whose components are ωij ¼ ðκ�βÞδijþβ. ω which can be diag-
onalized ω¼ RDR using the orthogonal transformation
Rij ¼ ð1= ffiffiffi

n
p Þ½ cos ð2πkj=nÞþ sin ð2πkj=nÞ�, where ½D�ij ¼ ðκ�βÞδij if

ian and Dnj ¼ ðκþðn�1ÞβÞδnj. Functions over the matrix ω are
defined over each diagonal element as FðωÞ ¼ RFðDÞR, where
½FðDÞ�ij ¼ FðDiiÞδij. Furthermore, the exponential function on (25) is
an nxn square matrix defined as before and the rest of the terms are
described

Mðω; tÞ ¼ ð1�e�ωtÞω�1 ð26Þ

Kðω; tÞ ¼ ½12 ð1�e�2ωtÞω�1�1=2 ð27Þ

Such a term reflects consistency on t¼0 with Eq. (25), since
Mðω;0Þ ¼ 0 and Kðω;0Þ ¼ 0. Despite the apparent complexity of
matrix function, processing such matrices by computer program is
straightforward. Indeed they depend on the matrix ω, which is
diagonalizable as seen in (A.1). Therefore, any C1 function of ω is
computed on each eigenvalue of the diagonal form and transformed
back using R. An efficient and accurate algorithm for simulating the
web user is described in Algorithm 1.

Algorithm 1. Simulation of the stochastic equation (1).

4. Experimental setting

As a “proof-of-concept”, we choose our academic web site
(http://www.dii.uchile.cl). It fulfils most of the requirements

stated in Section 3.1. It mainly presents the department of
industrial engineering and academic programs, whose content is
mainly based on the text. Web users who visit this web site have
simple motivations such as looking for specific academic program
information. Web users are considered stochastic agents [42,43].
Those agents are supposed to follow the LCA stochastic model
dynamics (Eq. (1)), and maintain an internal state Xi with some
white noise dWi. The available choices lie in the links on a web
page, including the probability of leaving the web site. Agents
make decisions according to their internal preferences using a
utilitarian scheme. Collected data from a real web server contains
the behavior of a variety of different users. A parameter inference
should be performed on the distribution of the μ vectors to
discover the web user's preferences. A web user is considered
memoryless, making decisions without considering the previous
pages visited, but having a purpose driven by μ. A special link
corresponding to the decision of leaving the web site is presented
on every page, with a fixed probability transition analogous to the
random surfer teleportation operation [6]. Each artificial user ends
up following a trail ððp1; t1Þ;…; ðpL; tLÞÞ of pages fpog with the
visitor's time durations on the site ftog, until the moment the user
decides to leave the L step. As was mentioned, the parameters of
the decision model are separated into two, the evidence vector (I)
and the neural tissue constant ðκ; λ;β; sÞ. An assumption was
performed considering the simulation for a fixed evidence vector,
built on the base of a μ preference text vector that contains the
web site's most important word. This was achieved by cutting the
higher 10% of the TF-IDF terms and the lower 5% of the values of
the whole site. The resulting simpler stochastic model has only
four scalar parameters. In this research we used five sub-sites
belonging to the Industrial Engineering Department. The main
departmental site, three sub-sites from the masters degree pro-
gram, and a project web site contain nearly 1000 web pages. Each
one has its own characteristics in terms of content and structure
and there is no homogeneity in relation to the process of web
construction. Only one uses a content management system which
allows for standardizing the addition of content, but in the others
the insertion is manual. The main topics addressed on these web
sites include general information about the Industrial Engineering
Department, faculty, staff, descriptions of the undergraduate and
post-graduate programs and news and information about upcom-
ing events and conferences, among others. This web site has the
characteristic of having a lower degree of complexity and minimal
changes to the web site when compared with others. Those
characteristics make sessions simpler and ideal for the study of
WUM. Real sessions are retrieved and stored in the web log format

in order to test sessionization. The web site contains nearly 17,000
stemmed terms. Furthermore, the content is much more dynamic
than the structure. Changes in the content reach on average nearly
347,000 changes in term frequency per month. This corresponds to

Data: Vector X ¼ ½Xi� is initialized near +0 and t; h with a small value. Vector I ¼ ½Ii� is calculated from web page content.
Result: Return the next hyperlink in that the AWU will follow.
while XðtþkhÞ is not close to the absorbing Ψ do
Evaluation : e�ωðtþkhÞ; Mðω; tþkhÞ and Kðω; tþkhÞ according to ð26Þandð27Þ;
Exact simulation : XðtþkhÞ ¼ e�ωðtþkhÞXðtÞþMðω; tþkhÞIþsKðw; tþkhÞZ; where Z is a generated vector of normal Nð0;1Þcomponents;
if XðtþkhÞ is close to reflective Δ then
jSet XðtþkhÞ ¼ Xn to be the point on the straight line on the border of the neighbor of Δ;
end
Set k¼ kþ1;

���������������
end
Return the decision time is τ¼ tþkh and the decision reached is in ¼ ArgMaxfXig;
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the updates that are performed on daily news over the entire site.
Each page has on average 193 different terms. It was decided to
use the WebSPHINX Java library for implementing a crawler. This
system periodically (every day at 6:00 and 12:00P.M.) recursively
inspects all pages from the web site, extracting hyperlinks to other
pages and the text content. Text was filtered eliminating stop
words and realizing a stemming process [27]. As a result of the
processing of one page the following data is obtained. A Unix
timestamp corresponding to a unique time value of the retrieval of
the next object. A URL and page Title serves as unique identifier of
the web page. A set of hyperlinks gives the structure of the web
site. Finally, a set of stemmed words corresponding to a list of each
term was found on the page with its corresponding number of
appearances. The number of hyperlinks changes over a month.
The average number of hyperlinks on the web site is 4058 with an
average change per month of �109 (2.7%) which means that the
number of hyperlinks was decreasing. The number of pages also
changes, with an average per month of 691 different pages with
a change of �15 pages per month (2.2%). Those pages correspond
to the sub-sites where the agreement allows for investigating web
user sessions. All those data are stored in a relational database.
This storage works with the following idea that there exist
permanent pieces of information that are stored only once. Such
data are keywords that at some moment will reach more than
20,000 terms but after that the growth of the table will be
negligible. The same phenomenon occurs with pages represented
by a URL and hyperlink. On the other hand, other attributes like
the number of appearances and the time validity change periodi-
cally. Such dynamic properties are stored on tables with the
postfix “detection”. In this way it was possible to store the whole
history of changes on the web site.

5. Experimental results

The calibration was verified using a Monte Carlo simulation
iteration where changes in parameter were tested and best
matching with the time distribution of sessions was used. The
following results were obtained:

1. λ: 0.4
2. κ: 0.2
3. s: 0.03

The distribution obtained matched the asymptote linear para-
meter (Fig. 3) within 10% of error. Those parameters were then
fixed for performing the calibration of the evidence vector. The
symbolic-based algorithm was stated and a single vector was
fitted. An interesting fact is that I is very similar to the vector
obtained by the most important word on the web site. A 40% error
rate was identified in the session distribution simulation. The
process took nearly 10 h. A vector distribution was obtained after
clustering the session by using the longest common subsequence
distance for clustering. The clustering process was stopped when
10 clusters were detected. The same process of calibration as
before was performed using this method on each cluster and
subset of visited pages. The results were astonishing, in that nearly
8.3% of error in the simulated session distribution was obtained.
As we have seen, session length follows a typical distribution [16].
The simulated “average web user” follows a distribution of session
length similar to the empirical distribution. The relative error is
8.1%, less than 1% of error in log scale. Distribution error remains
more or less constant for sessions with a capacity of less than
15 pages consisting of 0.3% of error (Fig. 4). It is not surprising that
the leaving-site probability chosen was equal to the sum that was

Fig. 3. The distribution of time duration of a session in log–log scale.

Fig. 4. The empirical (squares) vs. simulated (triangles) distribution of session
length in log scale.

Fig. 5. The distribution of visits per page on simulated vs. experimental sessions.
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empirically calculated. However, several other parameter variations
were carried out that did not succumb to such degrees of adjust-
ment. Therefore, this is a relevant result. Fig. 5 compares the visited
page frequencies of the simulated behavior with the experimental
behavior, with nearly 5% of error and 50% of variance. The time
behavior of the model is revealed to have the same power law
shape as with real sessions (Fig. 6). The regression results obtained
from the distribution of the μ text-preference vector show that
most probably (maximal P(u)) have the following word highly
ranked. Three vectors were selected within the upper 70% of
probability. A sample set of the words obtained by this method is
presented:

1. Management, Engineering, Enterprise, Society. Interpretation:
related to the industrial engineering field.

2. Mgpp, Council, Bank, Description. Interpretation: Word related to
a master's degree in public politics (Mgpp).

3. Capital, Market, Sustainability, Characterization. Interpretation:
Word related to economics.

Those results show great accuracy in describing the interest of real
visitors to the web site of the Industrial Engineering Department
of the University of Chile. It was known that traditional machine
learning results in 50% effectiveness for rebuilding the distribution
of sessions [53]. The effectiveness of this method is nearly 80%.
The most important testing of the model is related to future
behavior based on past training. The effectiveness of this method
in the two months following calibration was about 73% of the
simulated visit match in observed distributions This number
exceeds traditional web mining algorithms, which actually also
predict with higher accuracy, but only for the next step knowing
the previous visited pages in a session [11]. The difference is that
our model predicts entire distributions of visits while traditional
methods predict only one step.

6. Conclusions and further work

This effort was proposed to study and apply a psychologically
based theory of decision making to WUM in order to describe
user's sessions. The mechanism used for such purposes was the
LCA (Eq. (1)) model of decision making. It is adapted to predict the
next page in a session by obtaining the sequence of visited pages.
This corresponds to a stochastic simulation scheme that is handled

by Monte Carlo techniques. Once the model is calibrated, it is
possible to obtain the distribution of navigation trails using Monte
Carlo techniques. As a sub-product of the calibration mechanism it
results in the dispersion of the web user's keyword interest. With
both tools it is possible to build an automatic mechanism for
giving the best recommendation to web users in order to enhance
the web site experience. We enforce some assumption in order to
reduce the model's complexity. This appears to limit the applic-
ability of the method, but our aim is to propose a basis for further
generalization. As long as the basic rules are verified then more
complex models can be built on top of it. Two main concerns
should be addressed in more general web sites. First, web sites
based on multimedia contents should be processed using current
techniques of concept extraction. The proposed future work
consists in checking the model in multimedia based web sites.
The other concern relates to web sites requiring web user's higher
level cognition for web browsing. A common example corresponds
to the web site with learning services. Simulating navigation on
this kind of web sites will require a more sophisticated AI
implementation. However, many advancement in psychology
could be used to explore in this direction like using more complete
version of the ACT-R model [1,36,35]. However, the presented
model is not simple and presents a challenge by itself. New
techniques for solving such a model and data pre-processing
algorithms are presented. The simulation topic is relevant for
further experimentation on web site configuration. Mathematical
analysis of the system is performed based on exact solutions to the
unconstrained problem. Finally new perspectives are identified
since human behavior modeling on the web could be applied to
other human activities. The naturally high number of dimensions
for the differential problem (typically 20) and non-standard
border conditions results in algorithmic issues. Differential pro-
blems are commonly solved by a discrete mesh on the domain.
Therefore, with such a number of dimensions, a mesh can be easily
compounded of 10020 ¼ 1040 cells which is computationally
intractable. In spite of the intricate mathematical description, the
model is based on physiological principles of decision making
validated experimentally. This characteristic suffices for develop-
ing the presented model on behalf of adjusting the theoretical
dynamics to the observed fact. An approach based on symbolic
processing and an exact polynomial solution of the unconstrained
problem were proposed to avoid a dimensional explosion. The
propagator operator Uðt′Þ ¼ et′L transforms solutions on time t of
the LCA equationwith the border condition, to another time tþt′.
This operator was constructed on the basis of the LCA differential
operator L and can be applied to an initial condition in order to
recover the dynamics in any t. Using an exact polynomial solution
of the unconstrained problem to approximate a delta on t ¼ ε and
nearly ensuring the border condition, it could be propagated
obtaining a solution in any t. Since solution functions are based
on Hermite's polynomials, all derivation and integration could be
performed exactly and symbolically. In this sense, the high
dimensionality of the problem has no further influence on the
symbolic problem. A maximum likelihood problem for calibrating
the model's parameters is envisaged. However, distribution func-
tions are managed symbolically in the optimization process to
avoid the dimensionality problem. Again, polynomial functions are
an advantage for the needed operation at the moment of finding
the optimum since derivatives can be evaluated exactly. An
I vector could be inferred using this technique, representing an
average likelihood for text preference. However, web users should
represent a distribution of different preferences. In this case the
inference expands to a distribution of such a vector P(I). Clustering
methods help in this direction predefining a compound distribu-
tion of preference based on multivariate normal distributions.
Such an approximation results in a discrete and limited number of

Fig. 6. The ranked time spent on a session in log scale.
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variables. Once the parameters are fitted, the simulation of web
users can be performed. Simulations are based on an exact
solution for the Ornstein–Uhlenbeck stochastic equation instead
of using an approximated method based on a stochastic Taylor
theorem. This generates a more precise path and faster conver-
gence for distributions. The resulting system is expected to work in
a slightly modified version of the web site predicting the distribu-
tion of visits to the web site. This assumption is based on the
theory that it is independent of the visited web site. This method is
dependent on the correct calibration of the parameters. Simula-
tions are in fact more sensible to the μ parameter vector repre-
senting the web user preferences in a bag-of-word space.
However, as far the web site content is well known by its
administrator, it is possible to correct by hand topics weight in
order to adjust this parameter to known user profiles. We propose
as a future work to perform simulation experiments with
μ profiles provided by expert. Since the simulation successfully
predicts navigation changes, changes on a web site can then be
investigated for optimizing measures of web site usability. Such a
possibility drastically changes the concept of an adaptive web site
since it is possible to predict the impact of a change based on
historical visits. Before this advancement, suggestions were per-
formed and validated only after introducing them on the web site
using trial and error. Navigational improvement is now based on
an optimization method where adjustment errors can be
predicted.
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Appendix A. Mathematical tools

A.1. Interaction matrix factorization

The partial differential equation (12) is linear when f iðXÞ ¼ Xi.
Parameters are also assumed to fulfill [50] λi ¼ λ and κi ¼ κ:

∂ϕ
∂t

¼ �∇ � ðIϕ�ωXϕÞþ1
2
s2∇2ϕ ðA:1Þ

ω¼

κ λ ⋯ λ
λ κ ⋱ ⋮
⋮ ⋱ ⋱ λ
λ ⋯ λ κ

0
BBB@

1
CCCA ðA:2Þ

The matrix ω is a Toeplitz matrix (e.g. [29]) and must be analyzed
in order to study the solution of Eq. (A.1). Further generalization of
the matrix ω would consist in having equal element bands in the
matrix, which is in agreement with Decision Field Theory [8].
Neuronal connections belonging to the same band are interpreted
as having the same distance, whereas the ω matrix represents
interactions between activation levels over distance effects. There-
fore, the proposed matrix (A.2) corresponds to a circulant matrix,
whose diagonal form is known (e.g. [28]). Considering that the
determinant detðω�x 1Þ is a polynomial in x, its roots are
eigenvalues. Such a polynomial factorizes easily observing that
adding each remaining column j�1 multiplied by θj where θn ¼ 1
the determinant can be factorized according to (A.3) with
κþλ∑k ¼ 1θ

k�x. Note that this transformation is equivalent to a

discrete Fourier transform:

detðω�x 1Þ ¼

θ0 κþλ ∑
n�1

k ¼ 1
θk�x

 !
λ ⋯ λ

θ1 κþλ ∑
n�1

k ¼ 1
θk�x

 !
κ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ λ

θðn�1Þ κþλ ∑
n�1

k ¼ 1
θk�x

 !
λ ⋯ λ κ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ðA:3Þ

Since the determinant is linear by column an eigenvalue can be
identified by factorizing x¼ κþλ∑n�1

k ¼ 1θ
k ¼ κþλðθn�θÞ=ðθ�1Þ ¼

κ�λ and considering θn ¼ 1. The same occurs with column l41
and adding any other column multiplied by θl, considering
θ¼ e2πi=n.

Theorem 1. The eigenvalues of ω are xl ¼ κþλ∑n�1
k ¼ 1θ

kl that are
reduced to two cases (Eq. (A.4)):

xl ¼
κ�λ; lon

κþðn�1Þλ; l¼ n

(
ðA:4Þ

Eigenvectors can be identified from S1 ¼ ðω�ðκ�λÞ1Þ ¼ ½1�ij and
S2 ¼ ðω�ðκþðn�1ÞλÞ1Þ. The first matrix S1 spawns a degenerate
space with ðn�1Þ dimension for the eigenvalue κ�λ. Vectors
v¼ ½vi� belonging to this space must fulfill ∑ivi ¼ 0. They can be
expanded in terms of the complex root of the unity feð2πi=nÞkjg.
The second matrix S2 has a unique null vector consisting of all
components equal to one. Nevertheless, it is necessary to find an
orthogonal real vector basis. The proposed complex basis (root of
the unity) is orthogonal, because it corresponds to a discrete
Fourier transform (see [28]). Moreover, the null vector of S2 is
orthogonal with them and corresponds to taking j¼n. However,
considering only the real component cos ð2πkj=nÞ it does not reach
an orthogonal relationship. Several orthogonalization procedures
can be chosen (e.g. Gram–Schmidt), but using a complex rotation
eiη and taking the real part shows it to be a sufficient condition for
imposing orthogonality. In this case using rotation with an angle of
�π=4, a real orthogonal basis can be found

Rkj ¼ Re
1ffiffiffi
n

p eð2πkj=nÞ� iπ=4
� �

ðA:5Þ

The orthogonality is recovered from discrete Fourier identities. The
demonstration follows in the next lines. The Discrete Fourier
Transformation (DFT) matrix is defined by

A¼ 1ffiffiffi
n

p eð2πi=nÞkj
� �

kjA f1⋯ng

and properties of this matrix are listed

A¼ AT ðA:6Þ

A�1 ¼ An ðA:7Þ

AAn

jk ¼ ∑
n

l

1
n
eð2πi=nÞðj�kÞl

¼
∑
n

l

1
n
¼ 1; j¼ k

1
n
e2πiðnþ1Þðj�kÞ=n�e2πiðj�kÞ=n

e2πiðj�kÞ=n�1
¼ 0; jak

8>>><
>>>:

ðA:8Þ

A2 ¼ ∑
n

l

1
n
eð2πi=nÞðjþkÞl
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¼
∑
n

l

1
n
¼ 1; jþkAfn;2ng

1
n
e2πiðnþ1Þðj�kÞ=n�e2πiðj�kÞ=n

e2πiðj�kÞ=n�1
¼ 0; jþk=2fn;2ng

8>>><
>>>:

ðA:9Þ

A3 ¼ An ðA:10Þ

A4 ¼ 1 ðA:11Þ
The demonstration of the inverse DFT (A.8) uses the geometric
series results. In the same way (A.9) results in a matrix filled with
zeros unless the band kþ j¼ n and the corner k¼ j¼ n is filled with
one. The cube (A.10) is obtained using the square. Using those
properties and considering the real matrix R¼ 1ffiffi

2
p ðeiηAþðeiηAÞnÞ,

it is possible to set η in order to recover R2 ¼ 1 obtaining real
orthogonal Eigenvectors of the matrix ω:

R2 ¼ 1
2 ðe2iηA2þ2AAnþe�2iηðA2ÞnÞ

¼ 1
2 ððe2iηþe�2iηÞA2þ2Þ ðA:12Þ

If e2iηþe�2iη ¼ 0

Then η¼ �π=4

R¼ 1ffiffiffi
2

p Affiffi
i

p þ
ffiffi
i

p
An

� �

¼ 1ffiffiffiffiffiffi
2n

p cos
2πkj
n

� �
þ sin

2πkj
n

� �� �
ijA f1⋯ng

ðA:13Þ

Finally the following theorem holds.

Theorem 2. The matrix ω has the following diagonal representation:

ω¼ RDR ðA:14Þ

Rkj ¼
1ffiffiffiffiffiffi
2n

p cos
2πkj
n

� �
þ sin

2πkj
n

� �� �
ijA f1⋯ng

ðA:15Þ

Dkj ¼
κ�λ; k¼ jon

κþðn�1Þλ; k¼ j¼ n

0 otherwise

8><
>: ðA:16Þ

A.2. Exact solution to the Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process has been largely studied in
statistical physics (e.g. [10]) for diffusion in fluids. A canonical set
of transformations allows for reducing this equation to a simple
diffusion form. Using the transformation X-RðX� ItÞ, with R as
defined in (A.14), the Fokker–Planck equation is reduced to the
separable equation:

∂ϕ
∂t

¼ ∑
n

i ¼ 1

∂
∂Xi

λiXiϕþs2 2
∂ϕ
∂Xi

� ��
ðA:17Þ

ϕðX; tÞ ¼ ∏
n

i ¼ 1
ϕiðXi; tÞ ðA:18Þ

∂ϕi

∂t
¼ ∂
∂Xi

λiXiϕiþs2 2
∂ϕi

∂Xi

� ��
ðA:19Þ

Considering separating variables as in Eq. (A.18) produces n one-
dimensional equations as shown in (A.19). Changing variables by
Xi←eλi tXi, the equation changes to (A.20). Such an expression is a
1-D diffusion equation with a time-dependent diffusion coefficient
ðs2=2λ2i e2λi tÞ:
∂ϕi

∂t
¼ s2=2λ2i e

2λi t∂
2ϕi

∂X2
i

ðA:20Þ

In such a case time can be changed in order to obtain a classical
diffusion equation. Such a transformation considers a time trans-
formation, whose derivative reproduces the time-varying coeffi-
cient from the following equation:

dt
dT

¼ 1

s2=2λ2i e2λi t
ðA:21Þ

TðtÞ ¼ s2

2λi
ðe2λi t�1Þ ðA:22Þ

Using this transformation (A.22) for time, the resulting equation is
a simple diffusion in (A.23), which has the well-known heat kernel
as a solution shown in (A.24)

∂ϕ
∂T

¼ ∂2ϕi

∂X2
i

ðA:23Þ

ϕiðXi; TÞ ¼
e�X2

i =4Tffiffiffiffiffiffiffiffiffi
4πT

p ðA:24Þ

The solution of the original equation is reconstructed by applying
all the performed transformations backward. The solution (A.25)
obtained is a kernel for the unconstrained Ornstein–Uhlenbeck
equation, on t-0 whose solution tends to be Dirac's delta δ.
Eqs. (A.26) and (A.27) show the same solution in a covariant form,
where j � j is the determinant. In this case, function over ω is
obtained by applying it over its diagonal element and then
transforming it back using R.

Theorem 3. LCA equation free particle solution are

ϕ¼ ∏
n

i ¼ 1
½ð2πs2λiðe2λ1t�1ÞÞ�1=2e½RðX� ItÞ�2i =2s2λiðe2λi t �1Þ� ðA:25Þ

ϕðX; tÞ ¼ ð2πÞ�n=2jΣðtÞj�1eðX� ItÞTΣðtÞðX� ItÞ ðA:26Þ

ΣðtÞ ¼ 1
s2ðe2ωt�1Þω ðA:27Þ

Another interesting aspect about solutions of the Fokker–Planck
equation is the fact that any derivative of them is also a solution.
This comes simply from the assumption that the operator L is not
dependent on the variable t. In such cases, iterated derivatives on
t generate Hermite polynomials multiplied by the Gaussian.

A.3. Time probability of choosing an option

pðtÞ ¼ ∂ð1�pðtÞÞ
∂t

¼ �
Z
Ω

∂ϕðX; tÞ
∂t

dX

¼
Z
Ω
∇ � J dX ¼ ∮∂Ω J � dS ðA:28Þ

Ji ¼ϕFi�s2 2
∂ϕ
∂Xi

�
ðA:29Þ

The Fokker–Planck equation is used in its continuity form
∂ϕ=∂tþ∇ � J ¼ 0 according to the flux expression (A.29). Stokes'
theorem is used in the integration domainΩ of Fig. 1. The boundary
of the Ω region can be decomposed into several separated sets
(Eqs. (A.31) and (A.32)) according to ∂Ω¼ ð⋃iΔiÞ⋃ð⋃iΨ iÞ. The
surface integral can be separated on each subset:

pðtÞ ¼∑
k
∮Δk

J � dSþ∑
k
∮Ψ k

J � dS ðA:30Þ

Δk ¼ fX ¼ ½Xi�jXk ¼ 0g ðA:31Þ

Ψ k ¼ fX ¼ ½Xi�jXk ¼ 1g ðA:32Þ
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However, in each plane Δi the orthogonal flux vanishes according to
the reflective boundary condition (5). Only the term corresponding
to the Ψj set from Eq. (A.30) remains. The probability density pði; tÞ
of making the decision i in time t can be identified by restricting
Eq. (A.30). Total probability decomposition (A.33) is identified with
flux throughout each plane's absorbent boundary:

pðtÞ ¼∑
i
pði; tÞ ðA:33Þ

In the case that the decision is i, all terms with ka i vanish, since no
flux flows overΨk, inwhich case this probability is given by the total
flux over the surface Ψi.

Theorem 4.

pði; tÞ ¼ �s2

2

Z 1

0
⋯
Z 1

0

∂ϕ
∂Xi

����
Xi ¼ 1

∏
ka i

dXk ðA:34Þ

The expression (A.34) is derived using the border condition ϕ¼ 0
on Ψ .

A.4. The reflective operator

Every linear operator that commutes with the operator L in the
Fokker–Planck equation (13) transforms a solution into another.
This fact is used by well-known methods in partial differential
equations to generate solutions that accomplish a border condi-
tion. If the probability density ϕaðx; tÞ of a 1-D Brownian motion
that starts on t¼0 at a40 is given, then the density of the system
constrained by a reflecting barrier on x¼0 is given by

ϕR
a ¼

1
c
ϕaðx; tÞþϕ�að�x; tÞ	 
 ðA:35Þ

The border condition for reflection on x¼0 is ðdϕR
a=dxÞjx ¼ 0 ¼ 0,

which means that no probability flux crosses the barrier x¼0.
In this sense, ϕa

R satisfies both the border condition and the
diffusion equation. Nevertheless, normalization is satisfied since
both terms in (A.35) are normalized and then need to be divided
by c¼ Rx40½ϕaðx; tÞþϕ�að�x; tÞ� dx. Such a term is independent of
t since dc=dt by the diffusion equation integrates a derivative that
cancels on borders f0;1g. This result can be generalized to several
dimensions. The important point in the previous derivation was
the cancelation of derivatives on the barrier x¼0. Furthermore, a
transformation U1ðxÞ ¼ �x was applied over the parameter a and
variable x in order to change the sign of the derivative for canceling
on the barrier. The operator U1 is linear since it belongs to the
reflection group. In several dimensions, the whole reflection group
over reflective planes needs to be considered for enabling the
perpendicular gradient cancelation on planes Δi ¼ fXARn j Xi ¼ 0g.
The reflection group is constructed by using representation of linear
transformation Qi(X), where ½QiðXÞ�i ¼ �Xi and ½QiðXÞ�ja i ¼ Xj. The
closure is then built by composition. The complete group consists of
the set R¼ fQi1…Qig j iaa ib; aab; g ¼ 1;…;ng. Some properties
are well known, 8 A;BAR, then A2 ¼ 1 and AB¼BA.

Theorem 5. If ϕðX; tÞ satisfies the diffusion equation on Rn, then
a solution ϕRðX; tÞ that fulfills reflecting conditions on all planes Δi

(or ð∂Un½ϕðX; tÞ�=∂XiÞjXi ¼ 0 8 i) can be constructed as

Un½ϕðX; tÞ� ¼ ∑
Q AR

ϕðQX; tÞ ðA:36Þ

The demonstration of such a construction is by induction on n,
since it holds for n¼1. And using the reduction QXjXi ¼ 0 ¼
Q ′XjXi ¼ 0, where Q ′ is a product of all components of Q except
Qi. Moreover, if when restricted to Δi some terms of this sum
(A.36) reduce the dimension by one, then induction can be
applied. For each element Q that contains a Qi when restricted to

Δi, it is equivalent to Q ′ so Q ¼ Q ′Qi. In such cases,

∂ϕðQX; tÞ
∂Xi

�����
Xi ¼ 0

¼ �∂ϕðQ ′X; tÞ
∂Xi

�����
Xi ¼ 0

and both terms cancel in (A.36) because Q ′AR. On the other hand,
if a term Q ′ does not contain Qi then there exists a term
Q ¼ Q ′QiAR that will cancel. Furthermore, the function
Un½ϕðX; tÞ� satisfies reflection conditions on Δ as ð∂Un½ϕRðX; tÞ�=
∂XiÞjXAΔi

¼ 0, and it is a solution of the diffusion equation due to
invariance to transformation X-QX, because Q2 ¼ 1. Operator Un

is linear as long as it is a linear combination of linear reflection
operators.
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