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1 Introduction

The use of implicit mechanisms of misconduct deterrence has been widely recognized and doc-

umented by economists (Milgrom, North, and Weingast, 1990; Greif, 1993), political scientists

(Ostrom, 1990; Fearon and Laitin, 1996), sociologists (Coleman, 1990; Raub and Weesie, 1990),

and legal scholars (Bernstein, 1992). Crucial to their use is the way in which trading partners

get informed about mischievous actions. As illustrated by Greif’s (2006) study of contract en-

forcement between medieval Maghribi traders, a close-knit community can quickly disseminate

information about its members’ behaviors and, as a result, can align their members’ incentives

by employing implicit, community-based sanctions that punish behaviors deemed unacceptable

or opportunistic.

The existence of implicit agreements in cohesive communities is also apparent in modern so-

cieties.1 In the automobile industry, for example, firms usually outsource large amounts of work

and suppliers are routinely called upon to make specific investments. Hold-up problems are over-

come by the threat of future business losses. As McMillan (1995) documents, one of the keys to

deter opportunistic behavior in vertical relationships is the existence of cohesive business associ-

ations, such as Japanese keiretsus or Korean chaebols, that facilitate information exchange about

parties’ previous performances.2 More generally, several authors have highlighted a community

cohesion as a pivotal ingredient to attain cooperation in trust-based transactions (Coleman,

1990; Greif, 1993; Rauch, 2001; Dixit, 2006). What are precisely the advantages, if any, a fully

cohesive community has over partially cohesive social networks when agreements are implicit is

not well understood.3

This paper provides a game theoretical rationale for the social optimality of fully cohesive

communities when the enforcement of agreements is implicit and social networks determine how

information is transmitted. Cohesive communities generate some degree of common knowledge

of transpired play within each component and, as a result, players can employ relatively harsh

1By cohesion or cohesiveness, we mean the level of clustering or cliquishness of a social network, as in Section
2.2.3 in Jackson (2008).

2McMillan (1995) observes that “the institutionalization of links among firms that is provided by the keiretsu
system arguably serve as ... an information-provision device.” He also notes that “by providing a mechanism for
keeping track of any opportunistic behavior ..., the keiretsu provides a disincentive to such behavior.”

3As the literature on repeated games has shown (Abreu et al., 1990; Kandori, 2002, 1992; Mailath and Samuel-
son, 2006), efficient play can be enforced under a variety of assumptions when players are patient enough. One
could therefore presume that when players are patient enough, the cohesiveness of the social network becomes
irrelevant.
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coordinated punishments. Since the availability of harsher punishments allows players to enforce

higher equilibrium payoffs, cohesive communities are optimal.

Section 2 introduces a repeated trust game played by N investors and one agent. At each

round t ≥ 1 one out of the N investors is randomly and uniformly selected to play a trust

game with the agent. More specifically, the investor decides whether or not to participate and,

if he participates, he also picks an action or investment level; then the agent chooses whether

to cooperate (or share the investment’s return with the agent) or to defect (or appropriate the

return in full). The equilibrium of the stage game is inefficient as the agent will defect after

an investment is already made and, anticipating this behavior, the investor will not participate.

The agent’s temptation to defect may be curtailed by the existence of community sanctions

governed by a social network of investors G. We assume that if the agent misbehaves when

facing investor i, then i and all his connections in G (i.e., all those who are directly linked to i)

become aware of that, and may act upon by changing their play in the continuation game. We

focus on perfect Bayesian equilibria that sustain cooperation on the path of play.

Section 3 presents our main results. In Theorem 1, we establish the Pareto optimality of

a social network of equally sized complete components (i.e., networks in which all players have

the same number of connections and if a player is connected to two other players, then all

three players are connected). Namely, a social network of equally sized complete components

G∗ can yield a higher expected payoff to each community member than any other network G in

which each investor has at most the same number of connections as in G∗. Hence, even when

each investor has the same number of connections in G∗ and G, equilibrium payoffs sustained

by appropriately designed trigger strategies in G∗ Pareto dominate any equilibrium in G. As

illustrated in Figure 1, this implies that when links are scarce and the number of connections

per player is exogenously given, the formation of a fully cohesive social network is really the

best that all game players can hope for.

The mechanism behind this result can be understood as follows. In a network in which two

investors are not directly connected but have a common connection, a defection by the agent

against one of them decreases the leverage the other investor has in the continuation game. After

such defection, the second investor is not aware of the first defection, and defecting against him

is profitable for the agent. A social network having an incomplete component allows the agent

to defect twice by incurring a rather small loss in continuation value. In contrast, in a network

of complete components, play within a component is common knowledge and punishments can
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Figure 1: Illustration of Theorem 1. Even when each investor has the same number of connec-
tions in each network, network (b) yields higher payoffs than all equilibria of network (a).

be immediately implemented leaving no room for further off-path defections. Consequently,

networks of complete components result in higher equilibrium payoffs.

Some simple but important corollaries can be deduced. In particular, Corollary 2 provides

conditions under which networks of complete components maximize total welfare given a fixed

number of links to be distributed among the investors. This result complements Theorem 1

by showing that cohesive communities maximize the total value that a community may create

even when links can be freely allocated among investors. We also prove in Corollary 3 that

given a subset V of investors that form a complete subnetwork (or clique) in G∗, it is possible to

construct equilibria in the game with monitoring technology G∗ such that no alternative network

in which players in V have (weakly) less connections can result in higher equilibrium payoffs for

investors in V . This result shows how a subgroup of players may favor the formation of a fully

cohesive subnetwork, even when the whole social network ends up being barely cohesive.

Our analysis and insights can be adapted to study alternative models of repeated interac-

tions in networks. Section 4 studies a model in which players are randomly matched to play

a (two-sided) prisoners’ dilemma. Before actually deciding whether to cooperate or to defect,

one of the matched players decides the size of the match. Our model is similar to Kandori’s

(1992) community enforcement model, with the added twist that we introduce a social network

of information transmission. As the community enforcement literature has forcefully argued,

a desirable property of a social norm is its robustness to players’ mistakes or trembles. An

equilibrium with high on-path payoffs but utterly fragile does not seem like an attractive way
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of organizing a community.

Motivated by these considerations, we introduce a family of equilibria, called contagion-free

equilibria, that keep punishments local. The idea here is to rule out fragile arrangements in which

any (unmodeled) mistake may cause a community breakdown. Theorem 2 shows that networks

of equally sized complete components are optimal, but the logic is slightly different from that of

Theorem 1. In the two-sided model of Section 4, the restriction to contagion-free equilibria in

networks of incomplete information implies a trade-off between high on-path investments and

off-path incentives. In networks of complete components that trade-off is absent: once on-path

incentives are satisfied, off-path incentives that keep punishments local are obtained for free.

Networks of complete components are therefore optimal.

In sum, this paper shows how networks of complete components minimize the costs of off-path

gaming in a family of repeated games where the monitoring technology is modeled as a network

of information transmission. Such off-path gaming arises as, following an off-path defection, a

player may find attractive to keep defecting when facing other players. These contagion effects

have received considerable attention in related previous works and play an important role in

our analysis. In the model studied in Sections 2 and 3, contagion is detrimental for incentives

and therefore the optimal network design should avoid it. In the two-sided model of Section 4,

an equilibrium involving contagion is normatively ruled out by our robustness criterion. In all

these cases, this paper presents tools to prove that the formation of fully cohesive communities

responds to the optimal network design.

We now contextualize our work. Cohesive networks play an important role in collective

action games (Chwe, 1999; Morris, 2000). While some degree of common knowledge is also

important to attain efficient coordination in those static games, our insights emphasize off-path

coordination as a vehicle to attain high equilibrium payoffs.

Important antecedents for this paper come from work on community enforcement by Kan-

dori (1992), Ellison (1994), Harrington (1995), and Okuno-Fujiwara and Postlewaite (1995).

These authors study repeated games in which players interact infrequently, but the sources of

information transmission are not captured by a social network. Our main application in Section

4 introduces a social network of information transmission in Kandori’s (1992) model and can be

seen as a natural extension of the community enforcement literature.

There is a growing literature studying repeated games on networks, with a particular focus
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on the social network as a determinant of transaction opportunities among players.4 Some

authors emphasize how heterogeneity in payoffs may make attractive the use of third party

sanctions (Bendor and Mookherjee, 1990), favoring the formation of cohesive networks (Haag and

Lagunoff, 2006; Lippert and Spagnolo, 2011). When players only observe their own interactions,

a social network of trading opportunities has also a key role spreading information about distant

interactions. In particular, as Mihm et al. (2009), Lippert and Spagnolo (2011) and Ali and Miller

(2013) illustrate, cohesive networks fasten information dissemination and quicken punishments.5

Jackson et al. (2012) study a repeated favor exchange model and show that equilibrium networks

satisfying renegotiation-proofness and contagion-freeness (which they term “robustness to social

contagion”) must consist of cliques joined in a tree-like form. In their perfect information game,

off-path behaviors take a very different form and therefore the forces behind our model and

theirs are different.6

Ahn and Suominen (2001) study a model similar to ours, in which the network of information

transmission is drawn at the beginning of each round. They do not study the problem of optimal

network design, nor do they explore how networks of complete components minimize the costs of

contagion. Wolitzky (2013) studies a repeated public provision game in which the social network

determines the monitoring technology. Wolitzky (2013) does not focus on the optimality of

networks of complete components, so our research question is different. As he does, we use some

lattice theory techniques to prove our results, but in our model once a player defects whether

or not defections keep occurring depends on the actions being implemented on the path of play.

Since such off-path behavior is arbitrary in our model, on-path actions are neither complements

nor substitutes in general networks.7 To prove our optimality results, we obtain estimates of

continuation values and derive relaxed incentive constraints.

4Other contributions to this topic include Raub and Weesie (1990), Bloch et al. (2008), Karlan et al. (2009),
Fainmesser (2012) and Nava and Piccione (2013).

5The precise meaning of cohesiveness in some of these papers is rather different from ours. Mihm et al. (2009)
show that enforcing cooperation requires triadic closure (Coleman, 1990), while Lippert and Spagnolo (2011)
highlight the existence of cycles to spread punishments and attain cooperation. The main result in Ali and Miller
(2013) shows that in networks of complete components, a contagion-equilibrium Pareto dominates all stationary
equilibria of networks having incomplete components.

6Double-defections do not arise in Jackson et al.’s (2012) model. As we show in Lemma 1, incentive constraints
deterring double-defections are key in networks of incomplete components.

7It is easy to construct examples of our model in which a player’s own maximal on-path action increases in
the neighbors’ actions and decreases as a function of the actions of more distant players.
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Figure 2: The game between investor it and the agent when the investor participates.

2 Set Up

2.1 The Environment

We consider a repeated game model in discrete time between N + 1 players, with N ≥ 2.

At each round t = 1, 2, . . . , an agent, hereinafter player 0, faces a randomly selected investor

it ∈ {1, . . . , N} and they play a trust game. A social network G of investors determines the

information transmission technology. Below we describe the details of the game.

2.1.1 Payoffs and Matching Technology

At the beginning of each round t ≥ 1, an investor it is randomly and uniformly selected from

the set {1, . . . , N}. Investor it and the agent may produce some surplus in round t by playing

a trust game as in Kreps (1996). First, the investor decides whether to participate or not (P or

NP ). If he chooses not to participate, then per-period payoffs are equal 0 and the game moves

on to round t + 1. If investor it participates, he chooses an action or investment a ∈ R+. This

action can be thought of as the investor choosing how much to trust the agent. After observing

the investor’s decision, the agent decides whether to cooperate (C) or to defect (D). Figure 2

illustrates the game when investor it participates.

Investors who are not selected get a per-period payoff equal to 0. Given a stream of per-

period payoffs (uti)t≥1 for player i ∈ {0, . . . , N}, his utility function equals
∑

t≥1 δ
t−1uti, where

δ ∈]0, 1[ is the common discount factor.

The following restrictions on payoffs are maintained throughout the paper.
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Condition 1

1. f, v, l, g > 0.

2. g is increasing, f is nondecreasing and v is increasing.

3. δ
1−δ [ 1

N f(0),max f ] ⊆ range(g), where range(g) is the range of g.

Restriction 1 says that for any investment level, the agent’s static best response is to defect.

As a result, the investor decides not to participate and both players’ payoffs equal 0. This

outcome is Pareto dominated by the outcome in which the investor participates and the agent

cooperates. Restriction 2 implies that when the agent cooperates, both players benefit from a

higher investment. Yet, the higher the investment, the larger the agent’s temptation to defect.

The third restriction is mainly technical and allows us to bound equilibrium investments in

the repeated game. It holds when f is bounded, g is continuous and unbounded, and g(0) ≤
δ

1−δ
1
N f(0).

2.1.2 Social Networks, Information Flows and Histories

There is a social network of investors that determines the monitoring technology. More formally,

a social network of investors is a symmetric matrix G ∈ {0, 1}n×n such that Gij = 1 if and only

if i and j are linked.8 We also write ij ∈ G whenever Gij = 1. We assume that Gii = 0. Denote

by N(i, G) = {j | ij ∈ G} the set of i’s neighbors in G and define the closed neighborhood of i

as N̄(i, G) = N(i, G) ∪ {i}. When there is no risk of confusion, we will simply write N(i) and

N̄(i) instead of N(i, G) and N̄(i, G).

Information flows among investors are as follows. Let it ∈ {1, . . . , N} be the investor chosen

at round t. If it plays NP , then the signal all investors receive is empty. If it chooses P , then all

investors j ∈ N(it) become aware of that and observe whether the agent cooperated or defected.

More formally, if investor it participates and the agent played xt ∈ {C,D}, then player j ∈ N(it)

receives a signal stj = (it, xt), while if j /∈ N̄(it) then j receives a signal stj = ∅. If it did not

participate, then all players j 6= i receive signal stj = ∅. Player it perfectly observes play during

round t. Players receive signals only about current interactions; in particular, we assume that

information does not travel any further. A history hti for investor i at the beginning of round

8By considering a symmetric matrix G, we assume that the network is undirected
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t will consist of all the signals (s1
i , . . . , s

t−1
i ) he has received during past play. We assume the

agent has perfect information and therefore his information sets are all singletons.

These monitoring assumptions capture the idea that the network determines the transactions

each investor can observe. One could also interpret these assumptions as saying that the victim

(and only the victim) of a mischievous action let all his connections know that the agent is a

miscreant. All these interpretations seem appropriate in applications, and we postpone further

discussion to Section 5.

2.1.3 Examples

Our model can be interpreted broadly and captures key aspects of several repeated interactions.

The agent can be seen as a firm that may or may not hold-up the specific investments made by

suppliers (investors), as in Williamson (1979). The social network represents all the business ties

among the different suppliers (Greif, 1993; McMillan, 1995; Uzzi, 1996). The game can also be

seen as a model in which consumers (investors) decide whether or not to buy experience goods

from a monopolist (agent) who may be tempted to sell low-quality goods. The social network

represents all sources of information on the monopolist performance (e.g. online feedback sys-

tems, word-of-mouth). The basic strategic structure of our repeated trust game also appears in

models of relational contracting, in which the employer (agent) may renege payments to workers

(investors).

2.2 Strategies That Sustain Cooperation

A pure strategy for investor i is a family of functions σi = (σti)t≥1 such that each σti maps private

histories hti = (s1
i , . . . , s

t−1
i ) to stage game actions in {NP} ∪ (P × R+). A strategy σ0 for the

agent maps game histories, including the decision of investor it to participate in period t, to

{C,D}. For any strategy profile σ = (σ0, σ1, . . . , σN ), let Pσ be the probability measure induced

over the set of histories by σ and let H̃ = H̃σ be the set of on-path histories, or histories that

have positive probability according to Pσ.

We focus on equilibrium strategies in which the investors trust the agent and the agent coop-

erates. We say that a strategy profile σ sustains cooperation if σ is a perfect Bayesian equilibrium

of the game and on the path of play, in all encounters, the selected investor participates and
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the agent cooperates. Let Σ(G) be the set of all strategies σ that sustain cooperation. For any

σ ∈ Σ(G) and given any history of selected investors (i1, . . . , it), we can define ασ(i1, . . . , it) ∈ R+

as the investment that player it chooses in round t on the path of play.

3 The Optimality of Networks of Complete Components

This section states and discusses our main results.

3.1 Main Results

This subsection presents results showing the optimality of fully cohesive networks. We first show

and discuss the Pareto optimality of fully cohesive networks in Theorem 1. We then derive some

corollaries and refinements of this result.

A network G has complete components if ik ∈ G whenever ij, jk ∈ G for some j. Analogously,

a network G has some incomplete component if there exists i, j, k, all different, such that ij, jk ∈

G but ik /∈ G. We will say that G is κ-regular, for some κ ∈ N, if N(i, G) = κ for all i.

Given G and a strategy profile σ, let ui(σ,G) be the expected sum of discounted payoffs for

player i when play evolves according to σ and the social network is G. We will say that G∗

Pareto dominates G if there exists σ∗ ∈ Σ(G∗) such that for all σ ∈ Σ(G), ui(σ
∗, G∗) ≥ ui(σ,G)

for all i = 0, 1, . . . , N with at least some strict inequality.

Theorem 1 Let G∗ be a κ-regular network of complete components. Let G be any other network

having some incomplete component such that |N(i, G)| ≤ |N(i, G∗)| for all i = 1, . . . , N . Then,

G∗ Pareto dominates G.

By showing that all game players prefer a network of equally sized complete components

over any other network in which no investor has more connections, this theorem provides a

concrete answer to the question of what makes fully cohesive communities attractive. At an

intuitive level, an incomplete network allows the agent to defect twice incurring a rather small

loss in continuation values. The deterrence of those defections imposes bounds on the on-path

investment levels. In contrast, in a social network of complete components, there is common
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knowledge of play within a given component and therefore connected investors can coordinate

their punishment leaving no room for off-path gaming.

The proof of Theorem 1 can be sketched as follows.9 We first derive an upper bound for

on-path investments and then show that such upper bound can be attained if and only if all

network components are complete. To derive the upper bound, consider first the network of

complete components G∗. By using trigger strategies –in which a defection against an investor

triggers no further participation by all other investors in the same component– a stationary

vector of investments a ∈ RN can be implemented provided

g(ai) ≤
δ

1− δ
1

N

∑
j∈N̄(i,G∗)

f(aj) (3.1)

for all i = 1, . . . , N . It is relatively simple to show that this system of inequalities has a largest

solution āG
∗ ∈ RN , which can be used to construct an equilibrium that Pareto dominates any

other equilibrium in G∗. At such a largest solution āG
∗
, equation (3.1) binds for all i = 1, . . . , N .

An important observation is that if σ ∈ Σ(G), on-path investments satisfy an equation

similar to (3.1), even when G has incomplete components. To see this, assume that σ implements

stationary actions a ∈ RN on the path of play. Since it is in the agent’s interest to cooperate

in each encounter, defecting against i and cooperating in subsequent encounters with players

outside N̄(i, G) cannot be optimal. This yields an inequality similar to that in (3.1) for the

on-path action vector a, with G taking the role of G∗ in the sum. As a result, there exists a

vector āG, with āG ≤ āG∗ , such that for any σ ∈ Σ(G) on-path investments are bounded above

by āG.

The crucial step in the proof, Lemma 1 stated and discussed below, is to prove that āG

cannot be implemented in network G. Theorem 1 then follows since āG
∗ ≥ āG and āG

∗
can be

implemented in G∗.

Lemma 1 If G has some incomplete component, then for any σ ∈ Σ(G),

P[ασ(i1, . . . , it) < āGit for some t ≥ 1] = 1.

The idea behind this lemma is the following. Suppose that some equilibrium σ implements

9All proofs appear in the Appendix.
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āG. Let ij, jk ∈ G but ik /∈ G. Following a defection against i, there is some positive probability

of an encounter with player k in the following round. Since j must punish any defection against

either i or k –otherwise the upper bounds āGi and āGk could not be attained– investor k loses

leverage in the continuation game following the defection against i. Following a defection against

i, the agent strictly prefers to defect once more when facing k. In particular, following a defection

against i, the agent gets a continuation payoff strictly greater than the payoff he would obtain

by cooperating in remaining encounters. The agent therefore prefers to defect when facing i and

no equilibrium can attain the upper bound āG.10

Introducing some additional restrictions on payoffs, we can derive some simple but important

corollaries that complement and sharpen Theorem 1.

Assumption 1 f attains its maximum, g is unbounded.

While this assumption is mainly technical, it is important for the results we will derive.

Under this assumption, we can define

δ̄ = min
{
δ | δ

1− δ
1

N
max f ≥ g

(
min

(
arg max f

))}
which belongs to ]0, 1[. An important consequence of this assumption is that when δ > δ̄, the

i-th component of the upper bound on equilibrium investments, āGi , depends on the network G

only through the degree |N̄(i, G)|. As shown in Lemma 4 in the Appendix, when δ > δ̄, the i-th

component of the upper bound āG is large enough so that it lies in the flat portion of f and

therefore it is entirely determined by the number of connections investor i has.

Corollary 1 Under Assumption 1, for any δ > δ̄, any network of complete components G∗

and any network G having some incomplete component with |N(i, G)| ≤ |N(i, G∗)| for all i =

1, . . . , N , G∗ Pareto dominates G.

In contrast to Theorem 1, this corollary allows us to compare networks that are not neces-

sarily regular, at least for the class of models in which Assumption 1 holds. It follows by noting

10Finding a Pareto optimal equilibrium given a network can be thought of as a vector maximization problem
subject to equilibrium constraints. Theorem 1 proceeds by relaxing some incentive constraints. Lemma 1 shows
that such relaxation is nontrivial in networks of incomplete components; in particular, Lemma 1 shows a family
of incentive constraints that are likely to bind in incomplete networks.
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that āG ≤ āG
∗

and that, as Lemma 1 shows, the upper bound can be attained only in network

G∗.

We will say that G∗ gives strictly more total welfare than G if there exists σ∗ ∈ Σ(G∗) such

that for all σ ∈ Σ(G),
∑N

i=0 ui(σ
∗, G∗) >

∑N
i=0 ui(σ,G).

Corollary 2 Under Assumption 1, for any δ > δ̄, any network of complete components G∗ and

any network G having some incomplete component with
∑N

i=1|N(i, G)| ≤
∑N

i=1|N(i, G∗)|, the

following hold:

i. If v ◦ g−1 is linear, then G∗ gives strictly more total welfare than G

ii. If v ◦ g−1 is strictly concave and G∗ is a network of equally sized (complete) components,

then G∗ gives strictly more total welfare than G

This result shows that networks of complete components maximize total utilitarian welfare

given an exogenously given number of links to be freely allocated among different investors.

The main novelty here is the restriction on v ◦ g−1.11 To understand its role in the result, note

first that under Assumption 1 and for δ > δ̄, āGi can be written as g−1
(
ϕ|N̄(i, G∗)|

)
where ϕ

is a parameter determined by f,N and δ. The map from the degree of each investor to his

equilibrium utility when the upper bound āG is implemented in the game is given (up to a

constant) by v ◦ g−1. The optimal assignment of links among the different investors depends

then on the shape of v ◦ g−1. When v ◦ g−1 is linear, networks of complete components are

optimal as the upper bound for on-path investments can be attained in those networks. The

strict concavity of v ◦ g−1 is a force towards equally sized neighborhoods which, as shown in

Lemma 1, must be complete to attain the upper bound on equilibrium investments.12

By identifying complete induced subnetworks, we can actually rank arbitrary graphs at

least from the perspective of the players belonging to the subnetwork. Recall that an induced

subnetwork G |V , where V ⊆ {1, . . . , N}, is a network among members of V with ij ∈ G |V iff

ij ∈ G for all i, j ∈ V . We will say that investors in V ⊆ {1, . . . , N} strictly prefer G∗ over G if

11Observe that v ◦ g−1 is concave provided v is concave and g is convex.
12In Appendix C we show that when v ◦ g−1 is “sufficiently convex”, the welfare maximizing network is a star.

While the upper bound on equilibrium investments cannot be implemented in a star, we show that the benefit of
having an extremely uneven distribution of links outweighs the implementation losses. In particular, Appendix C
shows conditions under which network (a) gives strictly more total welfare than networks (b) and (c) in Figure 3.
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Figure 3: As Corollary 3 shows, among all networks that have 4 links, network (a) is the most
preferred network by investor 3. Corollary 1 shows that network (b) Pareto dominates network
(c). Corollary 2 shows that network (b) gives strictly more total welfare than networks (a) and
(c) when v ◦ g−1 is linear.

there exists σ∗ ∈ Σ(G∗) such that for any σ∗ ∈ Σ(G∗), ui(σ
∗, G∗) ≥ ui(σ,G) for all i ∈ V with

strict inequality for some i ∈ V .

Corollary 3 Under Assumption 1, for any δ > δ̄, any V ⊆ {1, . . . , N}, any network G∗ such

that G∗ |V is complete, and any network G such that |N(i, G)| ≤ |N(i, G∗)| for all i ∈ V and

G |V is incomplete, investors in V strictly prefer G∗ over G.

This result shows that it may be in the interest of a subgroup of investors to push for the

formation of a fully cohesive subnetwork, even when the whole social network ends up being

not cohesive at all. The crucial observation to derive this corollary is that the upper bound on

investments can only be implemented in networks of complete components. Assumption 1 and

the restriction to δ > δ̄ are important, as the upper bound can be implemented in V regardless

of whether the connections outside V result in complete components. An immediate implication

of this Corollary is that given an exogenous number of links to be assigned among the different

investors, the best that an investor can hope for is to be the center of a star. Figure 3 illustrates

the corollaries.

3.2 Some Variations

In this subsection, we explore how our results can be extended to accommodate alternative

modeling assumptions.
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Figure 4: The game between investor it and the agent. We assume that l, g > 0.

3.2.1 On The Continuous Actions Assumption

We now explore a model in which the scale of the project cannot be chosen by the investor.

The only decision that the investor it makes is whether or not to participate. If the investor

participates, the agent decides whether to cooperate or to defect. Figure 4 illustrates the stage

game. The monitoring technology is also determined by a social network G of investors such

that if it decides to participate in round t, then all of it’s neighbors become aware of that and

observe the behavior of the agent in period t. No further information is transmitted.

We import the definition of strategies that sustain cooperation from Section 2. We say that

a strategy profile σ sustains cooperation if it is a perfect Bayesian equilibrium and on the path

of play all investors participate and the agent cooperates.

Proposition 1 Let σ be any strategy profile sustaining cooperation in network G. Let G∗ be

any network of complete component such that N(i, G) ≤ N(i, G∗) for all i. Then, there exists a

strategy profile σ∗ sustaining cooperation in network G∗.

This result shows that if a strategy profile can sustain cooperation in a network having an

incomplete component, then it is possible to construct strategies –indeed trigger strategies– that

sustain cooperation in a network of complete components. As in Theorem 1, Proposition 1 shows

that forming a network of complete components is the best that game players can hope for. The

logic behind both results is the same: in networks of complete components there is less room

for off-path gaming. Yet, Proposition 1 is weaker as it is still possible that, given an exogenous

number of links, networks G and G∗ result in the same equilibrium payoffs.13

13This model is studied in Balmaceda and Escobar (2011), where conditions are shown under which networks
of complete components are (strictly) optimal.
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3.2.2 On The Random Matching Assumption

In our model, trading opportunities arise randomly and uniformly. In this subsection, we explore

how our results can be extended to allow for alternative matching assumptions.

Suppose first that the (it)t≥1 follows a Markov chain with transition matrix P defined on

{1, . . . , N}. (We obtain the model in Section 2 by setting P (i, j) = 1
N .) We assume that

P (i, j) > 0 for all i, j and assume that i1 is drawn from the ergodic distribution of P . All the

other details of the game remain unchanged. The key to extend the results in Section 3 is to

keep the symmetry in the model. In the random matching model, investors are selected with

the same frequency and, more subtly, the intensity with which each link is used does not depend

on the identity of the linked players. Arbitrary transition matrices can introduce persistence

among some subset of investors, implying that the formation of some connections can be more

valuable than others as they can be used more intensely. Those asymmetries are ruled out by

the following strong restriction.

Assumption 2 There exists λ > 0, such that for all i 6= j, P (i, i) = λ and P (i, j) = 1−λ
N−1 .

This assumption implies that conditional on the investor in t + 1 being different from the

investor selected in t+1, the investor in t+1 is uniformly selected from {1, . . . , N}\{it}. Under

Assumption 2, Theorem 1 applies without modifications.

We can also consider models in which the social network G not only determines information

flows but also how trading opportunities arise. For example, suppose that after player i has been

selected in round t, each of his neighbors is equally likely to be selected while investors who are

not connected to i have a lower probability of being chosen in round t + 1. More formally, we

assume that given G the transition matrix takes the form

P (i, j;G) =

p(|N̄(i, G)|) if j ∈ N̄(i, G)

q(|N̄(i, G)|) if j /∈ N̄(i, G)

for all i, j, where p > q > 0 and for all n ≥ 1, np(n) + (N − n)q(n) = 1. This model has as a

special case a quisi-random walk on a network, in which given it, it+1 is uniformly drawn from

N̄(it, G) with probability λ, and uniformly drawn from {1, . . . , N} with probability (1−λ). We

can derive the transition matrix by setting p(n) = 1−λ
N + λ

n and q(n) = 1−λ
N for all n ≥ 1.
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In this model, we assume that δ
1−δ [minn=2,...,N p(n)f(0),max f ] ⊆ range(g) instead of Re-

striction 3 in Condition 1.

Proposition 2 Let G∗ and G be κ-regular networks. Assume that G∗ has complete components,

but G has some incomplete component. Then, G∗ Pareto dominates G.

The logic behind this result is similar to that of Theorem 1. The fact that in a social

network of complete components it is more likely to keep trading within a neighborhood of a

player reinforces the attractiveness of those networks as punishments are even more severe.

4 Application: Contagion-Free Community Enforcement

We now consider a community enforcement model similar to that studied by Kandori (1992).

In our model, players are randomly matched to play a prisoners’ dilemma game, and a social

network determines the monitoring technology. By restricting attention to contagion-free equi-

libria, in which mistakes have local but not global consequences on continuation play, we show

how the tools and insights introduced in previous sections can be applied to other models of

repeated interaction. In particular, we argue that social networks of complete components are

optimal.

4.1 The Game

There are N ≥ 2 players. At each round t ≥ 1, two players are randomly chosen to play a game.

More precisely, a pair (it, jt) is randomly and uniformly chosen from {(i, j) | j 6= i} and both it

and jt simultaneously decide whether to participate (P) or not (NP). If one of them does not

participate, they obtain a per-period payoff equal to 0 and the game moves to round t + 1. If

both participate, player it chooses an action a ≥ 0 and, after such action is observed by jt, they

play the following stage game:

C D

C v(a) l(a)

D v(a) + g(a) f(a)
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The game is symmetric and the bimatrix shows the payoffs for the row player. We assume that

0 < l(a) < f(a) < v(a) < v(a) + g(a) for all a ∈ R+ and therefore the stage game is a prisoners

dilemma. As in Section 2, we restrict payoffs so that v and g are increasing, v is bounded, g is

unbounded and continuous, and g(0) ≤ δ
1−δ

2
N(N−1)v(0).

There is a social network G of players that determines the monitoring technology. If

the match in round t is (it, jt) and one of them does not participate, then all players k /∈

{it, jt} receive a signal stk = ∅. If both players participate, the outcome of the game is

ot = (it, jt, atit,jt , x
t
it , x

t
jt) ∈ {1, . . . , N}

2 × R+ × {C,D}2, then players l ∈ N(k), for each

k ∈ {it, jt}, receive a signal stl = (it, jt, xt−k), where −k ∈ {it, jt} \ {k}, indicating the matched

players and the action chosen by player k’s rival; players k /∈ N̄(i)∪ N̄(j) receive a signal stk = ∅.

Players (it, jt) observe play during round t perfectly.

Under this monitoring technology, if players i and j play the prisoners dilemma in round

t, but player i defects, then all of j’s neighbors will observe that defection. Intuitively, when i

defects, he can hide his mischievous action from his connections, players in N(i). We note that

none of our qualitative results would be altered if we assumed that a defection by i would be

observed by players in N(i) ∪ N̄(j).

4.2 Strategies and Contagion-Freeness

A strategy σi for player i is a function mapping private histories into stage game strategies.

Given a strategy profile σ = (σi)
N
i=1, we denote by H̃σ the set of all on-path histories. For an

arbitrary history h, we write h′ %σ h if h′ follows history h when play evolves according to the

strategy profile σ. We will say that σ sustains cooperation if σ is a perfect Bayesian equilibrium

and on the path of play, all players participate and cooperate. Let Σ = Σ(G) be the set of

perfect Bayesian equilibria σ that sustain cooperation.

As it is clear from the definition, if an equilibrium σ ∈ Σ sustains cooperation it is entirely

possible that after an off-path defection, players optimally defect when facing players in the

continuation game. We illustrate such contagion in the following example.

Example 1 (Cooperation and Contagion) We assume that for all i, N(i, G) = ∅. The

model then becomes closely related to Kandori’s (1992) community enforcement and his con-

struction of equilibrium strategies can be adapted to our set up as follows. Fix ā ∈ R+. We
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construct a strategy σ∗i for each player i by introducing a state variable ωti ∈ {G,B} evolving

according to ω1
i = G and ωti = G if and only if ωt−1

i = G and player i’s private history shows

that play during round t− 1 had both players participating and cooperating given an action ā. If

ωti = G, player i participates, chooses ā and cooperates (if put in that subgame), while if ωti = B

player i participates, chooses ā and defects (regardless of what action was actually implemented).

On the path of play, player i’s incentives to cooperate arise as any defection is eventually

spread to all the members of the community. That contagion implies that the community breaks

down, continuation payoffs are low and thus defections on the path of play can be deterred.

Kandori (1992) shows conditions under which the strategy profile σ∗ = (σ∗i )
N
i=1 constitutes a

sequential equilibrium.14

As this example shows, even when players cannot monitor how other players interact and

any two players rarely meet each other, a large community can still align players’ incentives

to attain widespread cooperation as an equilibrium outcome. A problematic aspect of these

equilibrium strategies is that they are very fragile as any mistake causes a complete community

break down. As Kandori (1992) forcefully argues, when evaluating the merits of a social norm

one should also consider its robustness to mistakes. An arrangement in which small trembles

have incommensurate impact on continuation play seems inappropriate. Our focus therefore will

be on equilibria that are immune to mistakes.

We present two preliminary definitions. Let h′ and h̄′ be two histories of the same length

T . We say that h′ and h̄′ coincidentally select players if for all τ ∈ {1, . . . , T} and all i, j ∈

{1, . . . , N}, (iτ , jτ ) = (i, j) in h′ if and only if (iτ , jτ ) = (i, j) in h̄. We will say that h′ and

h̄′ have equivalent outcomes at (i, j), with i 6= j, if for all τ ∈ {1, . . . , T}, for all a ≥ 0 and all

x, y ∈ {C,D}, oτ = (i, j, a, x, y) in h′ iff oτ = (i, j, a, x, y) in h̄′.

A strategy profile σ ∈ Σ is contagion-free if for all h ∈ H̃σ, with h = (i1, j1a1,

C, C, . . . , iT , jTaT , C, C), any h̄ = (i1, j1a1, C, C, . . . , iT−1, jT−1, aT−1, C, C, iT , jTaT , xT
iT
, xT

jT
),

with (xT
iT
, xT

jT
) ∈ {(C,D), (D,C)} and dT 6= cT ∈ {iT , jT } such that xT

dT
= D, and all continu-

ation histories h′ %σ h and h̄′ %σ h̄, if h′ and h̄′ coincidentally select investors, then h′ and h̄′

have equivalent outcomes at (i, j) /∈
(
{dT } × N̄(cT )

)
∪
(
N̄(cT ) × {dT }

)
. Let Σcf = Σcf (G) be

the set of all contagion-free strategy profiles.

14Off-path incentives are subtle as once a defection occurs a player may want to cooperate in order to slow
down contagion. Ellison (1994) shows that introducing a public randomization device, Kandori’s (1992) sufficient
conditions can be significantly improved.
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Contagion-free strategies restrict off-path play following a defection to remain unchanged in

matches involving players unaware of the defection. This normative prescription is motivated

by the observation that (unmodeled) mistakes may occur, but those mistakes should have a

moderate impact on the whole community.15 While after a single defection play among unaware

players remain unchanged, a second defection may unchain a sequence of defections and cause

a complete community breakdown. Alternative robustness requirements could be explored too.

For example, one may actually want to impose equilibrium robustness to a larger number of

mistakes. In particular, while players could make an arbitrary number of mistakes, contagion-

free equilibria are robust only to a single mistake. As our Theorem 2 shows, optimal networks

are robust to an arbitrary number of mistakes.16

4.3 The Optimality of Networks of Complete Components

We say that G∗ Pareto dominates G if there exists σ∗ ∈ Σcf (G∗) such that for all σ ∈ Σcf (G),

ui(σ
∗, G∗) ≥ ui(σ,G) for all i = 1, . . . , N with at least some inequality strict.

The following result shows that κ-regular networks Pareto dominate any other network in

which players have weakly less connection.

Theorem 2 Let G∗ be a κ-regular network of complete components. Let G be any other network

such that |N(i, G)| ≤ |N(i, G∗)| for all i = 1, . . . , N . Then, G∗ Pareto dominates G.

To intuitively understand this result, it is perhaps instructive to compare the networks in

Figure 5. Suppose that in network (a), players 1 and 2 coordinate their punishment by refusing

trade in all rounds following a defection against one of them. The advantage of having players

1 and 2 coordinating their punishments is that the deterrence power of link 12 is used to the

maximum and therefore relatively high investments can be implemented. On the other hand, the

costs of using link 12 to the maximum is that when player 2 is punishing, say because 4 defected

against 1, player 3 looses leverage in the continuation game. In a contagion-free equilibrium,

when players 3 and 4 are matched following the defection by 4 against 1, they must be playing

15 In a contagion-free equilibrium, a player’s incentives remain unchanged if he believes there was a single
defection. Yet, this is different from belief-free equilibria (Ely and Välimäki, 2002; Ely et al., 2005) as in a
contagion-free equilibrium if a player believes two or more defections occurred his behavior could be modified.

16In general, the contagion-free restriction has costs in terms of equilibrium payoffs. In Example 1, contagion-
freeness implies that cooperation can rely only on the punishment available in the match. Under contagion-
strategies, in contrast, punishments are more severe as the whole community breaks down.
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Figure 5: The network on the left is Pareto dominated by the network on the right.

as if no defection against 1 had occurred. In particular, on the path of play, player 2 cannot

be called upon to punish a defection by player 4 against 3. In network (a), the cost of having

players 1 and 2 coordinating their punishments is that player 2 cannot be called upon to punish

a defection against 3. In contrast, in network (b), when link 12 is used to the maximum, player 2

can also be called upon to punish a defection against 3. This is so because it is socially desirable

to include player 3 in the punishment following a defection against 1. Therefore, each link in

the subnetwork consisting of players 1, 2, and 3 can be used to its maximum extent and on-path

investments in network (b) are larger than those that can be implemented in network (a).

As the above discussion suggests, under the optimal equilibrium of network G∗ (or network

(b) in Figure 5), when one group observes one of its members was cheated, the whole group

reacts by refusing trade against the miscreant in all subsequent rounds (even if the miscreant

belongs to the same group). Consistent with our focus on contagion-free equilibrium, all other

interactions are kept as if no defection had occurred.

Theorem 2 allows us to rationalize the existence of ethnic groups engaging in cooperative

relationships. Fearon and Laitin (1996) provide evidence of cooperation between individuals

from different ethnicities. They construct a random matching repeated prisoners dilemma in

which players belong to cohesive ethnic groups and show conditions for cooperation. Theorem

2 suggests that such cohesive ethnic groups play a pivotal role in maximizing the gains from

trade when individuals are randomly matched. The existence of different groups identified by

ethnicity can be seen as an optimal societal response to enhance cooperative attitudes in the

population.
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The proof of Theorem 2 is similar to that of Theorem 1. We derive a family of incentive

compatibility inequalities and show that any solution to that system of inequalities is bounded

above by the largest solution of the system. The argument is completed by showing that no

contagion-free equilibria can implement the largest solution in a network G having some incom-

plete component, while the largest solution can be implemented in network G∗.

5 Concluding Remarks

This paper studies the emergence of cooperation and trust in a repeated game model in which

information flows are governed by the community architecture. We argue that networks of

complete components allow players to coordinate their moves, reduce the scope for off-path

gaming, and therefore result in high equilibrium payoffs. In contrast, social networks in which

some components are not complete leave room for off-path behaviors that are detrimental for

incentives and should be avoided.

These basic principles seem new to the literature, show up in a variety of set-ups (one- and

two-sided incentive problems, discrete and continuous actions), and provide justification for the

commonly discussed optimality of cohesive networks. In our theory, ethnic groups (Fearon and

Laitin, 1996) and cohesive business associations (Greif, 1993; McMillan, 1995; Uzzi, 1996) can

be seen as providing the required common knowledge to attain high cooperation in trust-based

transactions.

It is possible to consider more general monitoring assumptions in our baseline model of Sec-

tion 2. For example, news could propagate through the network, perhaps with noise.17 Social

networks of complete components need not be optimal in such richer set-up. However, we can

obtain Theorem 1 and all the corollaries of Section 3 by restricting attention to contagion-free

equilibria, as in Section 4. An interesting question for further research is to make explicit the

trade-off between on-path investments and robustness in repeated games of imperfect informa-

tion on networks.18

17Alternatively, investors could observe neighbors’ investments, and those investments could be used to provide
information about more distant interactions.

18This question can be addressed either in the model of Section 2 under the assumption that news propagate
through the network, or in the community enforcement model of Section 4.
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Appendix

This Appendix consists of three parts. Appendix A presents proofs for Section 3. Appendix B

presents proofs for Section 4. Finally, Appendix C presents a result that complements Corollary

2. In particular, some conditions are provided under which a star maximizes total welfare.

A Proofs for Section 3

Proof of Theorem 1. The proof is organized as follows. In Lemma 2, we derive necessary

conditions for implementability and then, in Lemma 3, we show that those necessary conditions

have a larger solution. Lemma 1, showing that in networks having some incomplete component

the upper bound cannot be attained, is then proven. We then complete the proof of the Theorem.

Lemma 2 Let σ ∈ Σ(G), (i1, . . . , iT ) ∈ {1, . . . , N}T be any selection of randomly chosen in-

vestors, and aT be the action chosen by iT on the path of play. Then,

g(aT ) ≤
∞∑

t=T+1

δt−T
∑

j∈N̄(iT )

1

N
Eσ

[
f(atit) | i

1, . . . , iT , it = j
]
. (A.1)

To prove this lemma, denote by V (C) (resp. V (D)) the continuation value accruing to

the agent by cooperating (resp. defecting) against investor iT at the on path history selecting

(i1, . . . , iT ). Then,

g(aT ) ≤ V (C)− V (D).

Now, since σ sustains cooperation

V (C) =

∞∑
t=T+1

δt−TEσ[f(atit) | i
1, . . . , iT ] =

∞∑
t=T+1

δt−T
N∑
j=1

1

N
Eσ[f(atit) | i

1, . . . , iT , it = j].

Now, after a defection against iT , it is still feasible for the agent to cooperate when facing players

i /∈ N̄(iT ). Thus, following a defection against iT , the agent can secure a total discounted payoff

V (D) ≥
∞∑

t=T+1

δt−T
∑

j /∈N̄(iT )

1

N
Eσ[f(atit) | i

1, . . . , iT , it = j].
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It follows that

g(aT ) ≤
∞∑

t=T+1

δt−TEσ[f(atit) | i
1, . . . , iT ]−

∞∑
t=T+1

δt−T
∑

j /∈N̄(iT )

1

N
Eσ[f(atit) | i

1, . . . , iT , it = j]

=
∞∑

t=T+1

δt−T
∑
j∈N̄(i)

1

N
Eσ

[
f(atit) | i

1, . . . , iT , it = j
]
.

This completes the proof of the lemma.

Consider now the set

A =
{
α | α :

∞⋃
t=1

{1, . . . , N}t → R+

}
.

For any σ ∈ Σ(G), we can generate the same distribution over on path actions by using a

particular element ᾱ = ᾱσ ∈ A. Inspired by this observation and the incentive constraint (A.1),

we define T G : A → A by

(
T G(α)

)
(i1, . . . , iT ) = g−1

( ∞∑
t=T+1

δt−T
∑

j∈N̄(iT )

1

N
E
[
f(α(i1, . . . , iT , iT+1, . . . , it)) | i1, . . . , iT , it = j

])
.

We observe that this quantity is well defined as

( ∞∑
t=T+1

δt−T
∑

j∈N̄(iT )

1

N
E
[
f(α(i1, . . . , iT , iT+1, . . . , it)) | i1, . . . , iT , it = j

])
∈ δ

1− δ
[

1

N
min f,max f ]

⊆ range(g).

Lemma 3 For any network G, there exists āG ∈ RN+ which is the largest solution to the equation

a = Φ(a,G), with

Φi(a,G) = g−1
( δ

1− δ
1

N

∑
j∈N̄(i,G)

f(aj)
)
.

Moreover, any solution α ∈ A to the system α ≤ T G(α) satisfies

α(i1, . . . , iT ) ≤ āGiT

for all (it)Tt=1 ∈ {1, . . . , N}T and for all T . Letting G and G∗ be as in the statement of Theorem

1, āG ≤ āG∗.
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To prove this lemma, take Ā = maxa≥0 g
−1( δ

1−δf(a)) and note that for any α, T G(α)(i1, . . . , iT ) ≤

Ā for all (i1, . . . , iT ) ∈ {1, . . . , N}T and all T . Define A∗ = A ∩ {α | α(i1, . . . , iT ) ≤ Ā}. In

order to find solutions to the system α ≤ T G(α), it is enough to restrict the domain and range

of T G to A∗ and, abusing notation, we write T G : A∗ → A∗. Let α∗ ∈ A∗ be the largest element

in A∗ defined as α∗(i1, . . . , iT ) = Ā for all (i1, . . . iT ). Since T G is increasing, Tarski’s fixed

point theorem implies the existence of a largest fixed point ᾱ ∈ A, which can be computed as

the limit point of the sequence ((T G)n(α∗))n≥1. Observing that (T G)n(α∗)(i1, . . . , iT ) is only

a function of iT (and not of the vector (i1, . . . , iT−1)), we can actually represent the sequence

((T G)n(α∗)) ⊆ A∗ as a sequence of vectors (αn)n≥1 ⊆ RN with (T G)n(α∗)(i1, . . . , iT ) = αn
iT

.

Denote āG = limn→∞ α
n. By construction, the sequence (αn) satisfies αn = Φ(αn−1, G) with α1

an upper bound for the set of fixed points of Φ(·, G). As a result, āG is the largest fixed point

of the increasing function Φ(·, G). Since āG actually represents the largest fixed point of T G, it

readily follows that for any α ≤ T G(α), α(i1, . . . , iT ) ≤ āG
iT

for all (i1, . . . , iT ).

To see the last part of the lemma, just note that āG and āG
∗

can be computed by iterative

applications of Φ(·, G) and Φ(·, G∗). Starting both iterative procedures from a common upper

bound Ā, denote by ān and ā∗n the corresponding sequences. It follows that in each round of

iteration, ān ≤ ā∗n. The result follows by passing to the limit.

Having established some properties of the system of incentive constraints, we now prove

Lemma 1, restated below.

Lemma 1 If G has some incomplete component, then for any σ ∈ Σ(G),

P[ασ(i1, . . . , it) < āGit for some t ≥ 1] = 1.

To prove Lemma 1, let σ ∈ Σ(G). Observe that if āGi is played on-path by player i, for all i,

then a defection against some i must entail a loss in continuation values equal to

V (C)− V (D) =
δ

1− δ
1

N

∑
j∈N̄(i,G)

f(āGj ).

Since V (C) = δ
1−δ

1
N

∑N
j=1 f(āGj ), we deduce that the continuation value after a defection against

i equals

V (D) =
δ

1− δ
1

N

∑
j /∈N̄(i,G)

f(āGj ).
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Now, decompose the continuation value V (D) following the defection against i as payoffs accru-

ing from encounters with investors j ∈ N̄(i, G), v̄, and payoffs accruing from encounters with

investors j /∈ N̄(i, G), v̂. By definition V (D) = v̄ + v̂. Since agents’ payoffs are nonngative,

v̄ ≥ 0. Moreover, following a defection against i, it is feasible for the agent to cooperate in all

remaining encounters against j /∈ N̄(i, G) and therefore v̂ ≥ δ
1−δ

1
N

∑
j /∈N̄(i,G) f(āGj ). It follows

that v̄ = 0 and v̂ = δ
1−δ

1
N

∑
j /∈N̄(i,G) f(āGj ). Moreover, following a defection against i, continua-

tion play must be such that (i) all investors j ∈ N̄(i, G) do not participate, and (ii) there is no

contagion: investors j /∈ N̄(i, G) keep investing according to āGj and the agent cooperates in all

those encounters.

Now, assume that G is not of complete components and let i and k be within distance 2.

Consider a defection against i in t = 1 and consider the incentives the agent faces if he meets k

in t = 2. From the previous paragraph, the path of play in encounters j /∈ N̄(i) should involve

cooperation. Following an argument similar to that in the proof of Lemma 2, we derive the

incentive constraint for cooperation when facing k after a defection against i

g(āGk ) ≤ δ

1− δ
1

N

( ∑
j /∈N̄(i)

f(āGj )−
∑

j /∈N̄(i)∪N̄(k)

f(āGj )
)

Since i and k are within distance 2, it follows that
∑

j /∈N̄(i) f(āGj ) −
∑

j /∈N̄(i)∪N̄(k) f(āGj ) <∑
j∈N̄(k) f(āGj ) and therefore āGk < Φk(ā

G), yielding a contradiction and concluding the proof.

To finally prove Theorem 1, let σ ∈ Σ(G), construct ασ(i1, . . . , iT ) as the action implemented

by σ on the path of play given the sequence (i1, . . . , iT ). Note that ασ(i1, . . . , iT ) ≤ āG
iT

from

Lemma 2, where the inequality is strict for some history due to Lemma 1. Noting that āG
∗

can

actually be implemented using trigger strategies in G∗ and āG ≤ āG∗ , the result follows since v

is strictly increasing and f is nondecreasing.

Proof of Corollary 2. To prove this result, we build upon the arguments presented in the

proof of Theorem 1. We first show that under Assumption 1, the upper bound for equilibrium

paths assumes a simple form.

Lemma 4 Under Assumption 1, for all δ > δ̄, and all G

āGi = g−1
( δ

1− δ
|N̄(i, G)|

N
f̄
)
.
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where f̄ = max{f(a) | a ≥ 0}.

To see why this lemma holds, define ã as ãi = g−1
(

δ
1−δ

|N̄(i,G)|
N f̄

)
and note that āGi ≤ ãi for

all i. Since ãi ≥ min(arg max f) for all i, Φi(ã) = g−1( δ
1−δ

|N̄(i,G)|
N f̄) = ãi. Therefore, for all

δ > δ̄, ã is a fixed point of Φi. Since āG is the largest fixed point, ãi ≤ āGi for all i and we

conclude that ã = āG. This completes the proof of the Lemma.

Let ρ =
∑N

i=1|N̄(i, G∗)|. From Lemma 1, for any σ ∈ Σ(G)

ασ(i1, . . . , it) ≤ g−1
( δ

1− δ
N̄(it, G)

N
f̄
)

with at least some inequality strict. Taking expectations and summing

N∑
i=1

ui(σ,G) <

N∑
i=1

v ◦ g−1
( δ

1− δ
N̄(it, G)

N
f̄
)
.

Further, since G∗ has complete components, we can implement āG
∗

on the path of play. As a

result, there exists σ∗ ∈ Σ(G∗) such that

N∑
i=1

ui(σ
∗, G∗) =

N∑
i=1

v ◦ g−1
( δ

1− δ
N̄(i, G∗)

N
f̄
)
.

Now, when v ◦ g−1 is linear, the result is obvious. When v ◦ g−1 is strictly concave, consider

the relaxed problem

max
(n1,...,nN )

N∑
i=1

v ◦ g−1
( δ

1− δ
ni + 1

N
f̄
)
.

subject to

ni ∈ {1, 2, . . . , N},
N∑
i=1

ni ≤ 2(ρ−N).

This problem can be thought of as the problem of assigning a total of 2(ρ−N) pennies between

N persons with the purpose of maximizing average utility. Since v◦g−1 is strictly concave and all

components of G∗ are of the same size γ ≥ 2, this problem has a single solution n∗i = γ−1 for all

i. Noting that (ni)
N
i=1 and (n∗i )

N
i=1 defined as ni = |N(i, G)| and n∗i = |N(i, G∗)| = 2(ρ−N)/N
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are, respectively, feasible and optimal for the maximization above, it follows that

N∑
i=1

v ◦ g−1
( δ

1− δ
N̄(i, G)

N
f̄
)
≤

N∑
i=1

v ◦ g−1
( δ

1− δ
N̄(i, G∗)

N
f̄
)
.

Proof of Corollary 3. Given G∗, construct the following strategy σ∗i for each investor

i. Player i ∈ V invests āG
∗

i on the path of play, any defection against some j ∈ V triggers no

further participation; after successive defections against a subset of investors S ⊆ N(i, G∗) \ V

player i keeps participating and investing an amount ā
G∗\S
i .19 Player i ∈ ∪j∈VN(j,G∗) \ V

participates and invests an amount η > 0 so that g(η) ≤ δ
1−δ

1
N f(η); any defection observed by i

triggers no further participation. Finally, a player i /∈ ∪j∈VN(j,G∗)\V participates and chooses

action ã such that g(ã) ≤ δ
1−δ

max f
N , ignores defections against j 6= i, and no further participates

following a defection against i.

We will show that there is a sequential best reply for the agent, σ∗0, such that σ∗ ∈ Σ(G∗).

First, note that following a defection against i ∈ V , all players in N̄(i, G∗) do not participate

in all subsequent rounds, while players in ∪j 6=i,j∈VN(j,G∗) \ N̄(i, G∗) keep choosing η and it is

in the interest of the agent to cooperate in all those encounters. A defection against i ∈ V is

deterred, therefore, provided

g(āG
∗

i ) ≤ δ

1− δ
|N̄(i, G∗)|

N
f̄.

which holds with equality. Now, consider a defection against i ∈ N(j,G∗)\V with j ∈ V . Follow-

ing a defection against i, i does not participate in all subsequent rounds, players k ∈ N(i, G∗)∩V

participate and invest ā
G∗\{i}
k , while players in ∪j∈V N̄(j,G∗) \ N̄(i, G∗) keep participating and

investing according to āG
∗
. A defection against i does not trigger further defections and, since

g(η) < δ
1−δ

1
N f̄ , it is in the interest of the agent to cooperate when facing i. To characterize σ∗0

after further deviations, observe that the construction of strategies (σ∗i )
N
i=1 ensures that after

any number of defections, it is in the interest of the agent to cooperate in remaining encounters.

We conclude that σ∗ ∈ Σ(G∗) implements āG
∗

i for all i ∈ V on the path of play.

Finally, if G is such that G |V has some incomplete component, then the argument in Lemma

1 shows that no equilibrium can implement āGi for all i ∈ V in network G. The result follows

noting that āG
∗

i ≥ āGi can be implemented for all i ∈ V in G∗.

19G∗ \ S denotes the network in which all links to players in S are deleted.
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Proof of Proposition 1. Let a strategy profile σ sustains cooperation in network G. Fol-

lowing a defection, a feasible (but not necessarily optimal) strategy for the agent is to cooperate

in remaining encounters and therefore the incentive condition for cooperation on the path of

play implies g ≤ δ
1−δ

N̄(i,G)
N for all i. Since network G∗ is denser than network G, g ≤ δ

1−δ
N̄(i,G∗)

N

for all i. This condition is necessary and sufficient for trigger strategies to sustain cooperation

in network G∗.

Proof of Proposition 2. We proceed as in the proof of Theorem 1. Denote P t(i, j;G) =

PG[it = j | i0 = i] and derive a set of necessary conditions for a stationary profile a ∈ RN to be

implementable on the path of play

g(ai) ≤
∞∑
t=1

∑
j∈N̄(i,G)

δtP t(i, j;G)f(aj)

This system of inequalities has a largest solution āG. We claim that āG ≤ āG
∗
. To derive this

result, it will be enough to establish the following lemma.

Lemma 5 For all t ≥ 1, all i and all j,

max
G
{P t(i, j;G) | i ∈ N̄(j,G), G a κ-regular network }

is attained at a network G∗ such that N̄(i, G∗) = N̄(j,G∗).

We will prove this lemma by induction. The result is obvious if t = 1. Assume the result

holds for t ≥ 1, and let us prove it for t+ 1. Take j ∈ N̄(i, G) and write

P t+1(i, j;G) = p(κ+ 1)
∑

k∈N̄(j,G)

P t(i, k;G) + q(κ+ 1)
∑

k/∈N̄(j,G)

P t(i, k;G).

Using the induction hypothesis, we see that to maximize the first sum it is enough to form a

network G∗ in which N̄(j,G∗) = N̄(i, G∗). This proves the lemma.

Lemma 5 implies that āG ≤ āG∗ . Lemma 1 concludes the result.
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B A Proof for Section 4

Proof of Theorem 2. The proof of this result is similar to that of Theorem 1. We first derive

an upper bound for on-path actions and then prove that the upper bound can be attained only

in networks of complete components.

Lemma 6 Let σ ∈ Σcf (G), (i1, j1 . . . , iT , jT ) ∈ {1, . . . , N}2T be any selection of randomly

chosen investors, and aT
iT ,jT

be the action chosen by iT in round T on the path of play. Then,

g(aTiT ,jT ) ≤
∞∑

t=T+1

δt−T
∑

k∈N̄(jT ), k 6=iT

{ 1

N(N − 1)
Eσ

[
v(atit,jt) | i

1, j1 . . . , iT , jT , it = iT , jt = k
]

+
1

N(N − 1)
Eσ

[
v(atit,jt) | i

1, j1 . . . , iT , jT , it = k, jt = iT
]}

and

g(aTiT ,jT ) ≤
∞∑

t=T+1

δt−T
∑

k∈N̄(iT ), k 6=jT

{ 1

N(N − 1)
Eσ

[
v(atit,jt) | i

1, j1 . . . , iT , jT , it = jT , jt = k
]

+
1

N(N − 1)
Eσ

[
v(atit,jt) | i

1, j1 . . . , iT , jT , it = k, jt = jT
]}
.

To see why this claim holds, consider the incentives player iT has to cooperate right after

action aT
iT ,jT

has been made. The payoff to player iT from interactions with players outside

N̄(jT ) does not depend on whether he cooperates or defects. The only loss player iT may suffer

in continuation values after a defection is the loss in payoffs from players who are neighbors of

jT , and such a loss is bounded above by the right hand side of the first inequality. The second

inequality is the incentive constraint for player jT to cooperate.

Using arguments similar to those in the proof of Theorem 1, we deduce that for any network

G, there exists a largest solution āG ∈ RN×N+ , of the system of equations

aij = Φij(a), ∀i 6= j

aii = 0, ∀i
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with

Φij(a) = g−1
( δ

1− δ
1

N(N − 1)
min

{ ∑
k∈N̄(j), k 6=i

(
v(aik)+v(aki)

)
,

∑
k∈N̄(i), k 6=j

(
v(ajk)+v(akj)

)})
, i 6= j

such that for any σ ∈ Σcf (G) and at any on-path history

atit,jt ≤ ā
G
itjt .

Moreover, āGij = āGji for all i 6= j and, for G and G∗ as in the statement of Theorem 2, āG ≤ āG∗ .

It is also not hard to see that if there exists i such that N(i, G) < κ, then āG < āG
∗
,20 and

Theorem 2 follows. It is therefore enough to assume that G is κ-regular, in which case āG = āG
∗
.

Denote by ασ(i1, j1, . . . , it, jt) the action chosen by it on the path of play given selected investors

(i1, j1, . . . , it, jt).

Lemma 7 Let G be any κ-regular network having some incomplete component, then for any

σ ∈ Σ(G),

P[ασ(i1, j1 . . . , it, jt) < āGit,jt for some t ≥ 1] = 1.

To prove this result, suppose there exists σ ∈ Σcf (G) implementing āG on the path of

play, but G is a κ-regular network that has some component which is not complete. Let i, k

be such that dist(i, k;G) = 2 and, since |N(i)| ≥ 2, we can find a player j ∈ N(i) such

that N(i) ∩ N(k) \ {j} 6= ∅. Since σ ∈ Σcf (G) implements āG on the play-path, after a

defection by j against i in round t = 1, all players l ∈ N̄(i, G) \ {j} do not participate in all

subsequent rounds when facing j. Define h = (i, j, āGij , C, C), h′ = (i, j, āGij , C, C, k, j, ā
G
kj , C, C),

h̄ = (i, j, āGij , C,D), and h̄′ = (i, j, āGij , C,D, k, j, ā
G
kj , C,D). Note that h ∈ H̃σ and h′ �σ h.

Since h̄ and h̄′ coincidentally select investors but they do not have equivalent outcomes at (k, j),

h̄′ �σ h̄. We will therefore derive a contradiction by showing that h̄′ �σ h̄.

Consider agent j’s incentives at history (i, j, āGij , C,D, k, j, ā
G
kj) and let V C and V D be agent

j’s total expected discounted sum of payoff after cooperation and defection, respectively. At the

largest solution to the system of incentive constraints, all the on-path incentives constraints bind.

Since σ is contagion-free, V C = v(āGjk) + δ
1−δ

2
N(N−1)

∑
l /∈N̄(i),l 6=j v(āGjl). After playing D, agent

20To see this property, write the fixed point equation characterizing āG as a = Φ(a,G). Since N(i, G) < κ for
some i, āG = Φ(āG, G) < Φ(āG, G∗) and therefore āG

∗
= sup{a | a ≤ Φ(a,G∗)} > āG.
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j can secure his on-path payoff in all subsequent encounters against agents not in N̄(i) ∪ N̄(k).

Such strategy is feasible as, after such second defection, all players l /∈ N̄(i) ∪ N̄(k) will have

observed no off path behavior. In particular,

V D ≥ v(āGjk) + g(āGjk) +
δ

1− δ
2

N(N − 1)

∑
l /∈N̄(i)∪N̄(k),l 6=j

v(āGjl).

As σ is contagion-free, V C ≥ V D and therefore

δ

1− δ
2

N(N − 1)

( ∑
l /∈N̄(i),l 6=j

v(āGjl)−
∑

l /∈N̄(i)∪N̄(k),l 6=j

v(āGjl)
)
≥ g(āGjk).

Noting that N(i) ∩N(k) \ {j} 6= ∅, it follows that

g(āGjk) <
δ

1− δ
2

N(N − 1)

∑
l∈N̄(k), l 6=j

v(āGjl)

and therefore āG is not the largest solution to the system of incentive constraints. This is a

contradiction and completes the proof of the Lemma.

To conclude the proof of the Theorem, just note that in a network of complete components

G∗, trigger strategies can implement the largest solution āG
∗

and are contagion-free.

C Welfare Maximizing Networks

In Section 3 we showed conditions under which networks of complete components maximize total

welfare. In this Appendix, we show that when v ◦ g−1 is sufficiently convex, a star maximizes

total welfare. Intuitively, when v ◦ g−1 is sufficiently convex, the map from the number of links

to the utility each player has when the upper bound is attained favors the formation of unequal

neighborhoods. While in a star the upper bound cannot be attained, we show that the loss is

small compared to the asymmetry gains.

Proposition 3 Under Assumption 1, let δ > δ̄, write ∆(x) = v ◦ g−1( δ
1−δ

x+1
N max f) − v ◦

g−1( δ
1−δ

x
N max f) and assume that

a. ∆(x+ 1) + ∆(1) ≥ 2∆(x) for all x ≥ 1; and
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b. ∆(x) ≥ (x− 2)∆(1) + ∆(2) + v ◦ g−1( δ
1−δ

3
N max f) for all x ≥ 3.

Let G∗ be a star formed by E links, with N − 1 ≥ E ≥ 3 and G be any network formed by E

links which is not a star. Then, G∗ gives strictly higher total welfare than G.

Proof. Define u(x) = v ◦ g−1( δ
1−δ

x+1
N max f). Observe first that in the star G∗, the strategy

profile σ∗ described in the proof of Corollary 3 yields total welfare which is bounded below by

u(E) + (N − 1)u(0). Now, consider the maximization problem

W̄ = max
G

N∑
i=1

u(|N(i, G)|) (C.1)

subject to
N∑
i=1

|N(i, G)| ≤ 2E, and |
{
i | |N(i, G)| ≥ 2}| ≥ 2.

Since G is a star iff {i | |N(i, G)| ≥ 2} = 1, problem (C.1) yields an upper bound for total

equilibrium welfare over all networks G different from a star and having less than E links. Let

Ḡ be optimal for (C.1) and define I = {i | |N(i, Ḡ)| ≥ 2}. Assume first that |I| ≥ 4 and

let i∗ = arg maxi|N(i, Ḡ)|. Observe that if ij ∈ Ḡ, then ji∗, ii∗ ∈ Ḡ as otherwise it would be

worthwhile to delete link ij and connect i∗ to some l such that N(l, Ḡ) = ∅. Indeed, such new

network is feasible (as |I| ≥ 4) and yields strictly higher welfare provided

(
u(|N(i∗, Ḡ)|+ 1) + u(1) + u(|N(i, Ḡ)| − 1) + u(|N(j, Ḡ)| − 1)

)
−
(
u(|N(i∗, Ḡ)|) + u(0) + u(|N(i, Ḡ)|) + u(|N(j, Ḡ)|)

)
≥ 0.

Since ∆(x) = u(x)− u(x− 1), this inequality can be written

∆(|N(i∗, Ḡ)|+ 1) + ∆(1) ≥ ∆(|N(i, Ḡ)|) + ∆(|N(j, Ḡ)|).

As ∆ is increasing, the inequality holds as ∆(x+1)+∆(1) ≥ 2∆(x). It then follows that |I| ≤ 3.

Consider first the case |I| = 3 and let I = {i∗, j1, j2}. We claim that N(jn, Ḡ) = {i∗, j3−n} as

otherwise, and following the construction above, deleting jnl, with l /∈ I, to form i∗m, with

N(m, Ḡ) = ∅, would be worthwhile. If |I| = 3, the value of (C.1) equals

W̄ = u(E − 1) + (E − 3)u(1) + 2u(2) + (N − E + 1)u(0).
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Now, assume |I| = 2 and let I = {i∗, j}. Observe that |N(j, Ḡ)| = 2 as otherwise we could

remove one of the nodes connected to j and form a new link to increase the objective function.

If j ∈ N(i∗, Ḡ), then it is relatively easy to see that the objective function at Ḡ is less than or

equal to u(E − 1) + (E − 3)u(1) + 2u(2) + (N − E + 1)u(0) and therefore j /∈ N(i∗, Ḡ). Take

l,m ∈ N(j, Ḡ) and note that deleting jm and connecting j to i∗, deleting lj and connecting l so

that in the new network the distance between l and i∗ equals 2, one can increase the objective.

We deduce that |I| = 3 and no equilibrium in a network which is not a star can give total payoffs

above

W̄ = u(E − 1) + (E − 3)u(1) + 2u(2) + (N − E + 1)u(0).

By assumption ∆(E) ≥ (E − 2)(u(1)− u(0)) + ∆(2) + u(2) and thus

u(E) + (N − 1)u(0) ≥ u(E − 1) + (E − 3)u(1) + 2u(2) + (N − E + 1)u(0)

proving the result.
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