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Abstract In this paper we consider the problem of

allocating personal TV advertisements to viewers. The

problem’s input consists of ad requests and viewers. Each

ad is associated with a length, a payment, a requested

number of viewers, a requested number of allocations per

viewer and a target population profile. Each viewer is

associated with a profile and an estimated viewing capacity

which is uncertain. The goal is to maximize the revenue

obtained from the allocation of ads to viewers for multiple

periods while satisfying the ad constraints. First, we present

the integer programming (IP) models of the problem and

several heuristics for the deterministic version of the

problem where the viewers’ viewing capacities are known

in advance. We compare the performances of the proposed

algorithms to those of the state-of-the-art IP solver. Later,

we discuss the multi-period uncertain problem and, based

on the best heuristic for the deterministic version, present

heuristics for low and high uncertainty. Through compu-

tational experiments, we evaluate our heuristics. For the

deterministic version, our best heuristic attains 98 % of

the possible revenue and for the multi-period uncertain

version our heuristics performances are very high, even in

cases of high uncertainty, compared to the revenue

obtained by the deterministic version.

Keywords TV advertisements � Personalization �
Allocation � Heuristics � Uncertainty

1 Introduction

Recent technological advances, such as the penetration of

digital TV standards and proliferation of diverse devices to

watch TV anywhere, make it possible to personalize the

TV experience [6]. This move toward a higher degree of

personalization in the TV medium, which had not changed

for decades, has created an opportunity also for personal-

ized advertisement.

Personal advertisements are better for the advertisers,

the service suppliers and even the viewers. The advertisers

spend their budget efficiently by choosing the target pop-

ulation with a high resolution, i.e. a single viewer, and

controlling the manner and the format of exposure. The

service suppliers, i.e. the media companies and the opera-

tors, can request a higher price for these advertisements

and thus increase their revenues [10, 16]. Moreover,

viewers will also benefit from this change since they will

be able to watch ads more relevant to them.

According to Nielsen [22, 24], $67B was spent on TV

advertisement in the US in 2010 and the time spent

watching TV has been consistently increasing, e.g. during

the first quarter of 2010, on average, each viewer watched

158 h per month. These trends and changes are the moti-

vations for our research.

Though personalized data for a specific end-user,

namely a viewer, using the current technology and infra-

structure is possible [6], the issue of personal TV adver-

tisement is still an open problem for which, to date, no

adequate solution has been proposed. Personalization of

ads requires making more complicated advertisement
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decisions: the selection of the advertisement campaigns

that will be broadcast needs to be compounded with the

decisions of how these ads will be assigned to individual

users. A service supplier company will aim to maximize its

revenues through these binary decisions, i.e. select an ad

campaign or not and assign an ad to a viewer or not. We

refer to this optimization problem with binary variables as

the personal TV Ads Allocation problem (and for short the

Ads Allocation problem).

We note that these problems can be quite large, since

TV broadcast markets involve millions of viewers that are

exposed to hundreds, if not more, of different possible ad

campaigns in any given period. In addition, since it is

difficult to accurately estimate how much TV individual

users will view in a given period, it is reasonable to assume

that there is uncertainty in the personal TV Ads Allocation

problem. Both the size and the presence of uncertainty

make this a very challenging problem to solve.

Many studies concern the problem of selecting personal

advertisements most suitable to each individual viewer, e.g.

[15, 18, 20, 34], and many others focus on how to deliver

them, e.g. [6, 20]. Our research supplements these studies,

using their results as input with the goal of optimizing the

allocation of ads. In this work, we propose algorithmic

solutions and do not deal with the hardware or infrastruc-

ture problems.

Throughout this research, we assume that the infra-

structure is similar to the framework of the iMedia system,

which is designed for personal advertisement in the inter-

active TV environment [6, 30]. Based on this framework,

the entire process of the personalized advertisement is as

follows. In every sequence of time periods, e.g. a month,

some set of advertisement requests will be given. In some

centralized computing centers a subset of ads will be

selected. These ads will be allocated to viewers and play-

lists of ads will be generated to each viewer for all the time

periods. Then, advertisement contracts will be signed with

the advertisers according to the allocations. The playlists

will be delivered and stored in the set-top-box (STB) units

with which each viewer is equipped, as is common today.

During the time periods, viewers will watch TV and on

commercial breaks, each STB will air ads based on the

viewer’s playlist. At the end of each time period, each STB

will send an ads’ viewing report back to the centralized

computing center, detailing the actual airing of the ads

from the viewer’s playlist. Reallocation and modifications

of the playlists will be permitted in the next periods. At the

end of all the planned time periods the billing process will

be activated according to the signed contracts.

There are diverse devices to watch TV anywhere any-

time. The most important and promising one for the

coming years, in addition to the traditional TV device,

seems to be the mobile device, i.e. Mobile TV. First, there

seems to be a delay in the current TV medium moving

toward personalization, probably due to infrastructure

issues. The TV’s current infrastructure is based on a

broadcast distribution system, which makes the delivery of

personalized content problematic [30]. Delivery of per-

sonalized content to a specific end-user with the current

mobile technologies and infrastructure as well as person-

alized content via Mobile TV services, e.g. [8, 29], is

possible. Second, the mobile phone, as the most personal

medium people have [27], is perfect for personalized

advertising. Third, according to some media researches

[14, 25] Mobile TV is predicted to be the largest ad

revenue generator in the upcoming years with expected

revenues of billions of dollars. The same selected frame-

work, i.e. iMedia, is relevant for Mobile TV with some

modifications. The viewer’ ads playlist will not be stored

locally but will be delivered to the viewers via the network

on demand, i.e. on commercial breaks.

The rest of this paper is organized as follows. In Sect. 2

we provide an overview of personal advertisement in the TV

medium versus the Internet medium, in addition to related

work on similar deterministic and uncertain allocation

problems. We formally describe the certain, i.e. determin-

istic, problem and the uncertain problem with the IP models

in Sect. 3. Our proposed heuristic solutions are presented in

Sect. 4. The description of the evaluation method and the

results of our experiments are presented in Sect. 5. Finally,

we summarize and present our conclusions in Sect. 6.

2 Related work

In this section, we present the differences between one of

the most known mediums in which personalization is

applied, i.e. the Internet, and the TV medium, which is the

medium under discussion in this paper. Later, we present

some related work concerning allocation and packing with

and without uncertainty.

2.1 Personal ads: TV versus internet

Though personal advertisement is already the most com-

mon method applied in the Internet medium (e.g. Google

AdWords [13]), it is still not the main method used in the

Mobile or TV mediums. One of the reasons for the delay of

its application in the TV medium is probably the current

infrastructure, which is based on a broadcast distribution

system making the delivery of personalized content prob-

lematic [30]. But, in addition to the technical issues, there

are several key points that distinguish personalized ads for

the Internet from those for the TV. In the following para-

graphs we will present some of these key points.
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The method of exposure is different. On the Internet, the

viewer receives his required data (e.g. the required web

page, the search results) and concurrently is exposed to the

ads which appear beside it. However, on TV the ads are in

the forefront, i.e. the only content on the screen. Thus, if a

viewer chooses to ignore the Internet ads, he can do so and

continue to consume the content, whereas a TV viewer

cannot since he is inevitably exposed to the ads (unless he

actively chooses to turn off the TV or to zap). This dif-

ference is the motivation to the multi-viewing constraint

described later.

The pricing method is different, mainly due to the

methods of exposure. For instance, certain pricing methods

on the Internet are based on PPC (pay per click), such that

if the viewer clicks on the ad, a payment is made. In

contrast, on TV the pricing method is based on GRP (gross

rating point), which is a measure of the advertising impact

calculated as factors of the target population size and

exposure frequency. Furthermore, the production costs for

creating the ads are different. Whereby TV ad production

costs may reach millions of dollars, Internet ad production

costs are much cheaper or may incur no cost, e.g.

AdWords. This fact is the motivation to the global-viewing

constraint described later.

There are also differences in the ads allocation con-

straints. While the main constraints in the Internet medium

are relevancy (e.g. keywords) and budget, in the personal

TV ads there are additional constraints, such as multi-,

global- and conflict-viewing. In this paper we focus on

multi- and global-viewing constraints, which represent the

number of times each viewer needs to view the ad and

the total number of viewers who need to view the ad. The

motivation for such constraints, in addition to the exposure

method, pricing method and production costs, stems from

basic advertisement theories. Common theories on con-

cepts such as ads recall or efficiency of ads are based on the

behavior of an individual, i.e. a single viewer. Our solu-

tions enable advertisers to implement their advertisement

campaigns taking into account the advertising theories and

thus lead to better results for the campaigns.

2.2 Allocation and packing problems

The Ads Allocation problem is closely related to several

basic problems in Computer Science such as the General

Assignment Problem (GAP) and the Multiple Knapsack

Problem (MKP). In this section, we briefly summarize the

definitions of such problems, the state-of-the-art results and

the similarities and differences from the Ads Allocation

problem.

In GAP [17] there are m machines (viewers) and n jobs

(ads). Each machine has a given capacity and each job has

a required capacity and a cost incurred for being assigned

to a machine. The objective is to minimize the costs of

assigning the jobs, where each job needs to be assigned to

exactly one machine. In [31] a 2-Approximation algorithm

was presented. GAP is similar to the Ads Allocation

problem with respect to the allocation task but it is dif-

ferent due to the job properties, the objective and the

constraints. In GAP the jobs’ size and cost properties

depend on the machines to which they are assigned while

in the Ads Allocation problem they are independent. The

objective is to minimize the cost of assigning all jobs in

contrast to maximizing revenues by assigning a subset of

ads. In addition, the constraints are different. In GAP all

jobs can be assigned to all of the machines, whereas in the

Ads Allocation problem assignment restrictions exist.

Moreover, in GAP each job must be assigned once, while

in the Ads Allocation problem, if an ad is assigned it must

be assigned multiple times, i.e. to several viewers.

In the Multiple Knapsack Problem (MKP) there are

assignment profits instead of costs, where the capacity and

the profit from jobs are independent of the machines to

which they are assigned and the objective is to maximize

the assignment profits. There is also an option to choose

which jobs to assign and which not. In [7] multiple results

on MKP were presented. Using the result for GAP from

[31], a 2-Approximation algorithm was provided. In addi-

tion, the problem was proven to be a special case of GAP

which is not APX-hard (nor FPTAS) and a polynomial-

time approximation scheme (PTAS) was presented. The

MKP problem is more similar to the Ads Allocation

compared to GAP. The objective and the job properties are

the same, though there are assignment restrictions and

multi-assignment constraints in the Ads Allocation

problem.

The Multiple Knapsack Problem with Assignment

Restrictions (MKAR) is an extension of MKP which was

discussed in [9, 26]. In addition to the constraints in MKP

there are assignment restrictions such that each job can be

assigned to a subset of machines. In [9] this problem was

considered with the objective of maximizing the total

assigned capacity. A 2-Approximation algorithm was pro-

posed using heuristics and linear programming rounding

methods. The MKAR problem is different from the Ads

Allocation problem since it maximizes weights and not

revenues and each item should be assigned to no more than

one machine. Another version of the MKAR problem was

discussed in [26] where the objective was to maximize the

total revenue. A 2-Approximation algorithm was proposed

using linear programming and rounding methods. This

version of the MKAR is different from the Ads Allocation

problem since, again, there are no multi-assignment

constraints.

The generalized multi-assignment problem is another

generalization of GAP with multi-assignment constraints.
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The job’s capacity and the cost are dependent on the

machine to which they are assigned, the objective is to

minimize the costs, and all the jobs must be assigned. The

only differences from GAP are the multiple assignment

constraints of each job. This problem was discussed in [28]

where Lagrangian dual-based branch-and-bound algo-

rithms were proposed. The goal in [28] was to find an exact

solution, i.e. the optimal solution. The generalized multi-

assignment problem is similar to the Ads Allocation

problem in reference to the multiple assignment constraints

but it is different with respect to other aspects: it lacks

assignment restrictions, the jobs’ capacity and the profit are

dependent on the machines to which they are assigned and

all the jobs must be assigned. Moreover, since the goal in

[28] was to search for the optimal solution, and because it

is an NP-hard problem it can be used only for small

instances as demonstrated in [28] under the computational

results section.

2.3 Allocation under uncertainty

In the following paragraphs, we will briefly describe the

three major techniques that can be used to address opti-

mization problems with uncertainty [4] in the context of

our problem. The techniques are:

• chance constrained optimization,

• stochastic optimization, and

• robust optimization.

In chance constrained optimization the distribution of

the uncertain data is assumed to be known. This informa-

tion is used to express the constraints such that they have to

be satisfied with a given probability. In order to use chance

constrained optimization for the Ads Allocation problem

we would have to know the probability distribution of the

viewers’ viewing capacity, which in itself is a very chal-

lenging problem. Thus we did not use this technique.

Stochastic optimization, in turn, typically uses discrete

scenarios to describe the uncertainty, essentially repeating

the problem in each scenario. This approach usually leads

to massive optimization problems and the main challenge

becomes a computational-algorithmic issue. However,

given that the deterministic version of the problem is

already NP-hard, we opted to take a different approach.

In robust optimization there is a value range for each

uncertain data and the worst value is considered, i.e. the

lower or the upper bound of the range depending on the

case. This technique is simple to implement by changing

each uncertain data to the worst value, i.e. changing the

problem instance into the worst case instance. Though

solving the worst case instance guarantees that the solution

will be feasible in any case, the achieved objective value

may be low. In this paper, we propose several algorithms

that are inspired by this technique. These algorithms

require information only about the range variation of the

viewing capacity and lead to a problem that is comparable

in size to the original deterministic version.

Robust optimization for linear programming (LP) prob-

lems under uncertainty was discussed in [2, 3, 19]. Ben-Tal

and Nemirovski [2, 3] showed that LP problems can be very

sensitive to uncertainty. Even with small uncertainty of

0.1 % of the constraints, the ‘‘nominal’’ LP solution can

become infeasible. They described a new LP modeling

methodology, replacing the original LP model with a

‘‘Robust Counterpart’’ that takes into account the uncer-

tainty. Experiments were conducted on a large set of LP

problems and the loss never exceeded 1 % of the optimal

solution. Lin et al. [19] extended Ben-Tal and Nemirovski’s

work to mixed-integer linear optimization problems (MILP).

We also followed some robust principles while adapting

them to our problem and its specific constraints.

Toktas et al. [33] considered GAP with uncertain

resource capacities and penalty for violations. The resource

capacities were given with a distribution and samples of the

problem were generated and solved with different deter-

ministic heuristics. Their problem is similar to the Ads

Allocation problem where the uncertainty is the viewers’

viewing capacities but is different due to the special con-

straints of the Ads Allocation problem. In addition, the Ads

Allocation problem has hard constraints while [33] allowed

penalized violations. We did not use the sampling method

due to the size of the realistic problem instances and the

all-or-nothing constraints that result in high sensitivity of

the solution. However, some of the proposed algorithms

used a specific sampling of the problem, i.e. the worst case,

as part of the robust techniques.

3 Problem definition

In this section, we formally present the Ads Allocation

problem, i.e. selecting a subset of possible ads that can be

properly assigned to viewers in order to maximize profit

during a planning horizon of several periods and consid-

ering uncertainty regarding the viewer’s capacity. We

describe the problem notation and main components in

Sect. 3.1, introduce the formulation of the problem in

Sect. 3.2 and present the uncertainty model in Sect. 3.3.

3.1 Problem notation

The problem contains two types of entities: ads and

viewers. We consider that in this problem there is a set of n

ads, i.e. Ads ¼ fa1; a2; . . .; ang; where each ad, ai, has the

following properties: a revenue it generates if allocated, pi,

a length, li, a required rating, ri, and a required frequency,
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fi. Finally, each ad has a profile, P(ai), defining the target

population for the ad. The ad frequency corresponds to the

number of times the same viewer should view the ad in

order to be considered assigned to that viewer. The ad

rating indicates the required number of different viewers to

whom the ad must be assigned in order to be considered

allocated and be paid. The target population defines the set

of viewers that are relevant for the ad.

The problem also considers a set of m viewers, i.e.

Viewers ¼ fv1; v2; . . .; vmg where each viewer, vj, has an

estimated viewing capacity for a period of time, cj. The

actual viewing capacity of viewer vj is uncertain but

bounded, i.e. the viewing capacity value belongs to the

range [cj(1 - uj), cj(1 ? uj)] for some uncertainty factor

0 B uj B 1 which assumed to be known, e.g. based on

observations of viewers’ past activity. Viewers also have a

profile, P(vj), describing the categories to which the viewer

vj belongs.

The estimated viewers’ viewing times can be based on

viewing statistics. Such statistics are already available for

some defined viewer groups. For example, according to

BARB [1], in 2010 the average weekly viewing per person

in Great Britain was 28:13 (h/min). According to Nielsen

[23], in 2009–2010 the average American watched 35:34 of

TV per week, kids aged 2–11 watched 25:48 of TV per

week on average and adults over 65 watched 48:54 of TV

per week. These statistics are averages of specific viewer

groups, but similar statistics can be calculated for smaller

viewer groups and even for the individual viewer based on

observations of the viewer’s past activity (taking into

account privacy issues).

The profiles P(ai) and P(vj) contain values of the

personalized categories. For example, we could consider

categories of {age, gender, location} where each of

them could take one of a finite set of values, e.g. age can

take values from {11-30, 31-50, ?50}. In addition, we

allow the ad profile vector to take the value All in every

category (or a combination of values, e.g. 11–30 and

31–50). This allows a flexible and realistic definition of

the ad’s target population. An ad can only be allocated to

a viewer if the viewer is part of the target population of

the ad, that is if the viewer’s profile belongs to the ad’s

profile. In this case we state that ad ai is relevant to

viewer vj and use Relevant(ai, vj) to denote this. In other

words,

Relevantðai; vjÞ ¼
1 if PðvjÞ � PðaiÞ
0 if PðvjÞ 6� PðaiÞ

�
ð1Þ

The goal of the Ads Allocation problem is to maximize

the profit from a valid assignment of ads to viewers. A

valid assignment which will lead to a payment should be

personal, i.e. an allocation that suits the ad’s target

population and viewers’ profiles, satisfies the ad rating

and frequency requirements, and does not exceed the

viewers’ viewing capacities. Any violation of the ads

constraints will result in no payment for the specific

allocation of the ad to the viewer or even for all the

allocations of the ad.

The ads selected by the problem should be viewed over

a planning horizon of T periods. In each period (for

instance a week) each viewer exhibits an actual viewing

capacity, denoted by wjt for viewer vj in period t, that

would deviate by up to uj % from the estimated capacity.

The allocation of ads to viewers can then be adjusted to

better accommodate the viewing requirements that remain,

by adding new ads if possible.

There are two decisions in the Ads Allocation problem:

(a) whether to select ad ai or not, denoted by the binary

variable yi, and (b) whether to assign ad ai to viewer vj,

denoted by binary variable xij. We summarize the notations

used in this problem in Table 1. An examples of a viewer

instance and ad instance follows.

Example 1 Viewer instance: the profile P(vj) = [age: 31–

50, gender: Male], and viewing capacity estimation of

cj = 1,200 s per period with the uncertainty factor

uj = 10 %.

Example 2 Ad instance: the target population profile P(vi)

= [age: All, gender: Female], length of li = 30 s, rating of

ri = 3,000 viewers, payment of pi = $10,000 for all 3,000

viewers and frequency of fi = 10 times per viewer.

Table 1 Notation summary

Ads fa1; a2; . . .; ang

P(ai) Profile of ad ai target population

pi Revenue of ad ai

li Length of ad ai

ri Rating of ad ai

fi Frequency of ad ai

Viewers fv1; v2; . . .; vmg

P(vj) Profile of viewer vj

cj Expected viewing capacity of viewer vj during one period

uj The uncertainty factor regarding viewer’s viewing capacity

Additional parameters

T Number of time periods

Relevant(ai, vj) Equals 1 if relevant, i.e. 1, PðvjÞ � PðaiÞ

Decision variables

yi Equals 1 iff ad ai is selected for allocation, else 0

xij Equals 1 iff ad ai is allocated to viewer vj, else 0
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3.2 Problem formulation

If we assume that we know the actual viewing capacities of

all viewers in every time period, say wjt and the planning

horizon is from T0 until T, we can formulate the deter-

ministic Ads Allocation problem as follows:

max
Xn

i¼1

pi � yi

s:t:
Xn

i¼1

li � fi � xij�
XT

t¼T0

wjt 8j ¼ 1; . . .;m

Xm

j¼1

xij ¼ ri � yi 8i ¼ 1; . . .; n

xij�Relevantðai; vjÞ 8i ¼ 1; . . .; n; j ¼ 1; . . .;m

xij 2 f0; 1g 8i ¼ 1; . . .; n; j ¼ 1; . . .;m

yi 2 f0; 1g 8i ¼ 1; . . .; n

ð2Þ

This problem maximizes the reward obtained by the ads

selected. The first constraint ensures that viewer vj has

enough capacity during the planning horizon to watch all

ads assigned to it while taking into account their length and

required frequency. The second constraint requires that ad

ai be assigned to ri different viewers if the ad is selected.

The third constraint only permits allocation of ads to

relevant viewers. The last two constraints make our

decision variables binary.

The viewing capacity, however, is uncertain in practice,

which makes the first constraint difficult to enforce. If a

viewer watches less TV than expected, i.e. the capacity is

reduced, it may force some ads not to be shown the number

of times required compromising the revenue with which it

is associated. On the other hand, if the viewer has a larger

capacity than expected, it is unclear how to adapt the

solution to best utilize the extra viewing capacity. Luckily,

the problem with uncertainty has natural re-optimization

points: after every period we can observe the actual

capacity each viewer had and which of the previous allo-

cations were successful. Taking this current state of

information into account, we can make a better decision as

to how to adapt to uncertainty in the next time periods.

We can use the formulation in Problem (2) to represent

solving the problem of optimizing the ads selection and

assignment after t0 periods have occurred. For this we need

to adjust the data of the problem to include the information

that has occurred up to this point, i.e. the ads which have

been watched during the passed periods. In particular, we

consider a new rating, r0i; which is the rating of ad ai minus

the number of times ad ai was fully assigned to a viewer.

Note, if after t0 periods ad ai has already been success-

fully assigned and viewed by ri viewers, i.e. in periods

T0; . . .; t0; then the adjusted rating value will be r0i ¼ 0 and

the ‘‘memory’’ of the allocation will be represented by

setting yi = 1. In addition, we need to redefine ad fre-

quency to f 0ij; which equals ad’s ai frequency fi minus the

number of times viewer vj has seen ad ai.

The modified formulation representing the updated

problem for the remaining periods after t0 periods, i.e. T - t0

periods, is as follows:

max
Xn

i¼1

pi � yi

s:t:
Xn

i¼1

li � f 0ij � xij�
XT

t¼T0þt0
wjt 8j ¼ 1; . . .;m

Xm

j¼1

xij ¼ r0i � yi 8i ¼ 1; . . .; n

xij�Relevantðai; vjÞ 8i ¼ 1; . . .; n; j ¼ 1; . . .;m

xij 2 f0; 1g 8i ¼ 1; . . .; n; j ¼ 1; . . .;m

yi 2 f0; 1g 8i ¼ 1; . . .; n

ð3Þ

The viewer capacity only appears in the first constraint

and it is summed over all periods left to consider, i.e. all the

remaining periods. If the capacity is deterministic, i.e.

uj = 0, then it is the same as a single-period problem

with a total capacity of
PT

t¼T0þt0 wjt ¼
PT

t¼T0þt0 cj ¼
T � T0 þ t0ð Þ½ � � cj:

In Sect. 4, we describe the efficient heuristics we

developed for both the deterministic, single-period version

of the Ads Allocation problem and the stochastic multi-

period version. In addition, since the last version of the

stochastic multi-period problem is exactly the same prob-

lem faced by a single-period problem with uncertainty, the

algorithms to solve a single-period problem with uncer-

tainty are the same as the ones we developed for the multi-

period problem.

3.3 The considered uncertainty

We consider a basic model of uncertainty for the viewing

capacity while assuming that it belongs to a given bounded

set without any further distribution assumptions, i.e. wjt 2
½cjð1� ujÞ; cjð1þ ujÞ�; 8 j ¼ 1; . . .;m and t ¼ T0; . . .; T :

There are a number of optimization under uncertainty

approaches that can be used to solve Problem (3). For

instance, if the distribution of wjt is known, we could use a

chance constrained model that would replace the first set of

constraints with constraints that have to be satisfied with a

high probability (see also Sect. 2.3). If a discrete distri-

bution of the random capacities wjt is known, possibly by

sampling, this problem could be stated as a multistage

stochastic programming problem. Both of these models
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require strong assumptions on the uncertainty in viewing

capacities and lead to challenging computational models.

Considering the size of the problem (selecting thousands of

ads to assign to millions of viewers) and the presence of

integer variables we have opted for a simpler approach.

The robust optimization approach is another common

approach that does not require any special assumptions on

the uncertainty other than knowing the bounds. We discuss

the robust optimization approach, that optimizes the worst

case, with heuristic solution methods for this problem as well

as other heuristic algorithms in the next section (Sect. 4).

Example 3 demonstrates the considered model for

periods T0; . . .; T compared to the real viewing capacity in

period T0.

Example 3 Considered viewing capacity that is higher

than the real viewing capacity

The considered viewing capacity in this example was

higher than the real viewing capacity. Thus, only part of the

planned ad playlist for the first week was watched by the

viewer and reallocation is needed, e.g. ai9 was not watched

as planned.

The real viewing capacity can be much different and

there are two approaches to handle this: the first considers

the uncertainty in advance, i.e. while solving the allocation

for periods T0; . . .; T ; while the second adapts the future

allocations after some of the uncertainty has been discov-

ered, i.e. during reallocating for periods T0 þ 1; . . .; T : We

used both of these approaches in our heuristics as described

in Sect. 4.2.

4 Heuristics

Heuristics are very common for solving instances of GAP

[17] such as the Ads Allocation problem. In general terms,

heuristics exploit special characteristics of the problem to

obtain good solutions within a reasonable time. In this

section, we describe the heuristics we proposed for the two

versions of the problem, i.e. the deterministic single-period

and the stochastic multi-period.

4.1 The single-period deterministic problem

In the deterministic version of the problem we assume the

viewing capacities are known in advance, i.e. for all the

viewers the uncertainty factors are uj = 0. This version can

be relevant in situations where the viewing capacities are

static and known in advance. For example, consider an array

of static TV screens in public places where the ‘‘viewers’’

are the public TV screens and the viewing capacities are

static and known in advance, e.g. 24 h a day. As mentioned

before (see Sect. 3.3), since the deterministic multi-period

version can be treated as a single-period problem, by mul-

tiplying the viewing capacities by the number of periods, we

consider only the single-period version.

4.1.1 Basic heuristic

Our heuristics iteratively choose ads and pack them to

viewers. In describing the heuristics, we use the following

predicates which present a snapshot of the current alloca-

tion step:

• Free_Viewer(ai, vj): viewer vj has at least fi � li free

viewing capacity to view ad ai.

• Available_Ad(ai): ad ai has not yet been validly

assigned to ri viewers and it is available for allocation.

If for a given snapshot of the problem, these predicates

are true as well as the predicates Relevant(ai, vj) (defined in

Sect. 3.1) then, allocation of ad ai to viewer vj is possible.

The description of each of our proposed solutions fol-

lows the description of the basic ads allocation algorithm,

Algorithm 1, which is the basis for all of them.

The algorithm iteratively chooses ads according to some

ranking order. The ranking has significant impact on the

performance and each heuristic uses different ranking

orders. Each selected ad is allocated to viewers until it is no

longer available, i.e. it is allocated to ri viewers as required.

4.1.2 Greedy heuristic

This heuristic is greedy and prefers ads with the highest

profit per second, i.e. highest PaymentPerSec = payment/

length. This algorithm is different from the basic algorithm
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(Algorithm 1) only in reference to the ad’s ranking order,

which is in a decreasing order of PaymentPerSec values.

We denote this heuristic by PaymentPerSec.

4.1.3 Target populations heuristic

There are ads with very specific target populations and

others with wider target populations. This algorithm gives

preference to ads with the most specific target populations.

This is done under the assumption that as the target pop-

ulation is more specific it is more rare and the number of

relevant viewers is smaller, whereas the more general the

target populations the larger the number of relevant view-

ers. Thus, in order to be able to assign the specific ads and

be more profitable the algorithm first assigns the specific

ads and then the general ones. We denote this heuristic

TargetPopulation.

The preference for ads with specific target populations is

done by counting the number of attributes in the target

populations profile with the value All, which we denote

CountAllValue. As the number of CountAllValue is higher,

the ad’s target population is wider and the preference will

be lower. This algorithm is different from the basic algo-

rithm (Algorithm 1) only in the ads ranking order which is

in an increasing order of the CountAllValue values.

4.1.4 Backtrack heuristic

This algorithm comprises three steps. First, it runs the basic

allocation algorithm (Algorithm 1) with a decreasing ads

ranking order of PaymentPerSec values and then Coun-

tAllValue values. Thereafter it runs a backtrack phase, finds

the partially assigned ads and eliminates their allocations.

Finally, it runs the basic allocation algorithm (Algorithm 1)

again with the same ranking order, i.e. first according to

PaymentPerSec values and then CountAllValue values. The

idea is to try to fully assign ads with the viewing capacity

of the partially assigned ads, since there is no payment for

partially assigned ads. We denote this heuristic algorithm

BacktrackHeuristic.

4.2 The multi-period uncertain problem

In this version of the problem there are uncertain viewing

capacities and thus multiple periods are considered. We use

two approaches in order to handle the uncertainty: the data

approach and the algorithm approach. The data approach

represents a modification of the problem data while using

the same algorithms used for the deterministic problem. In

contrast, in the algorithm approach the problem data

remains the same while the algorithm is modified to handle

uncertainty. We used the algorithm approach to build a

new basic algorithm and the data approach in order to

improve this basic algorithm. In the rest of this section, we

first provide a general description of the sequential solution

procedure we propose and then present the developed

heuristic solutions.

4.2.1 Sequential procedure model

Ad campaigns usually extend over several weeks and it is

possible to modify the allocations of ads to viewers during

these weeks. Therefore, as mentioned in Sect. 3.2, this

problem naturally falls into the category of a multi-period

problem where after each period, when some of the

uncertainty has been revealed, the ads can be reallocated.

In this section, we describe in detail a sequential solution

procedure for the problem that is used for all the heuristic

algorithms presented. The procedure performs the follow-

ing three steps per period sequentially from the first to the

last period:

1. The deterministic allocation problem is solved for all

the remaining periods, i.e. some viewing capacity

values are assumed and the allocation problem is

solved. The solution is an allocation of ads to viewers

for all the remaining periods.

2. For each viewer, we determine a schedule to order the

airing of the ads allocated to him, i.e. build a playlist

for each viewer from the ads which have been

allocated to him. We perform this using a scheduler

algorithm.

3. Following the allocation and schedule processes, the

ads from the playlist per viewer are aired for one time

period. At the end of the period, the actual viewing is

revealed, i.e. the uncertainty of the period is realized,

and the remaining demands of frequency and rating per

ad are updated.

The scheduler algorithm should take into account some

special constraints of the TV medium, e.g. avoid too many

airings of the same ad within a period, enforce minimum

timespan between airings of the same ad, etc. The sched-

uling itself is also an NP-Hard problem which has been

addressed in many papers, e.g. [5, 11]. The scheduling

problem is not in the scope of this paper, and since we do

not consider any specific scheduler or any schedule con-

straints we assume a random scheduler. Notice that if we

would have any a priori knowledge regarding the scheduler

we could manipulate it and suit an allocation algorithm

such that the uncertainty effect would decrease and the

revenue obtained would increase.

4.2.2 Basic uncertain heuristic

The basic uncertain allocation algorithm we used

adapts the best allocation algorithm for the deterministic
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single-period version of the Ads Allocation problem to the

multi-period setting, i.e. the BacktrackHeuristic algorithm

(see results in Sect. 5.2). The adaptation takes into account

that in the multi-period problem, the relevant airings of an

ad depends on each viewer, as indicated by the f 0ij values in

Problem (3). In addition, a new measurement for prefer-

ence viewers was used, denoted PaymentPerRemainSec.

This measurement is defined for each ad and viewer and

represents the ad’s payment for the total remaining seconds

needed to be viewed by the viewer, i.e. PaymentPer

RemainSec = pi/(li � f 0ij).
The BasicU algorithm runs the above algorithm

(Algorithm 2) at the beginning of each period where the

viewing capacity is assumed to be cj per period. The

BasicU algorithm was also used as a reference for solving

the deterministic instance of the problem, i.e. the instance

of the problem where the actual viewing capacities are

known in advance (see Sect. 5.3).

4.2.3 Robust heuristics

We propose a series of algorithms all based on the robust

optimization technique mentioned in Sect. 2.

The heuristic denoted Robust is an implementation of

the robust optimization technique. It solves the worst case

instance of the problem, where all the viewing capacities

are equal to cj � ð1� ujÞ. In other words, the input of the

viewing capacity of the Robust algorithm is modified and

the problem for all the periods is solved. Similar to the

robust optimization technique, if the actual viewing

capacity is longer than the lower bound considered in the

robust planning, the extra time is not used since no allo-

cations were prepared for such cases. The algorithm runs

only once at the beginning of the first period and there is no

need for reallocation at the beginning of each period as the

original allocation will always be completed.

The second algorithm, denoted AdaptiveRobust, is

similar to the robust algorithm with two major

modifications. First, if the actual viewing capacity of a

viewer is longer than expected, i.e. the worst case, the extra

time is used and the allocations which were prepared for

the next periods are aired to the viewer. In this manner

there is no waste of viewing time but the allocations for the

next periods may change. It is possible that all the original

allocations of the viewer have already been viewed by him

but there are more periods for viewing which can be used

for extra allocations. Thus the second change is imple-

mentation of an adaptive approach. The Robust algorithm

is called at the beginning of each period and not only once

at the first period. That way the allocations are adapted to

the actual viewing capacity as soon as they are revealed.

The new allocation solution is used only if its revenue is

higher than the original allocation’s revenue, or else the

original allocation solution is kept.

An interesting insight regarding this algorithm is that the

revenue obtained will never be lower than the revenue of

the original allocation. In other words, if at some time period

the original allocation is replaced the revenue is guaranteed

to increase. There are two reasons for this behavior. First,

preparation for the worst case such that in each period all

allocations can be fully allocated even in the worst case

scenario. Second, future allocations will be adapted only if

such adaptation will cause an increase in the revenue.

The third robust algorithm, denoted LastRobust, is

implementation of the robust optimization technique only

in the last period. It solves the remaining allocation prob-

lem at the beginning of each time period using the basic

uncertain allocation algorithm, while the viewing capacity

of each viewer is assumed to be cj per period, though for

the last period it is assumed to be cj � ð1� ujÞ, i.e. the worst

case. The motivation for this algorithm is based on the

observation that in most of the cases the basic uncertain

allocation algorithm is sufficient but its performance is

dramatically damaged when the ads are not fully allocated

due to uncertainty in the last period. In order to overcome

this issue, the algorithm is prepared in advance for the

worst case in the last period, such that the last period

allocations will always be aired. Another motivation is that

as the number of periods increases the average of the

observed viewing capacity should converge to the expected

capacity.

4.2.4 Modified ratings heuristic

The ModifiedRatings algorithm implements the data

approach on the ads data. The ads rating requirements are

modified, such that ri � ð1þ Uai
Þ is used instead of ri,

where Uai
is the average uncertainty factor of all the rel-

evant viewers of ai. The viewing capacities remain the

same, i.e. cj.
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The motivation of this algorithm is that in all cases,

except the worst case, it is always possible that the pre-

pared allocation will not be aired due to uncertainty. In

order to neutralize the effect of such situations, i.e. cases

where ads have not been fully allocated, this algorithm

allocates the ads to more viewers than required. Thus, if for

example there will be a dramatic change in the actual

viewing capacity of a viewer and he will not view a specific

ad there will be another viewer who has viewed the ad

instead of the given viewer and the requirement for ri full

allocations will have been fulfilled.

4.2.5 Combined uncertain heuristics

The CombinedHalf algorithm combines both of the algo-

rithms ModifiedRatings and LastRobust with some modi-

fications. Combining the two algorithms as is would be

considered an overkill, since the uncertainty is considered

twice. Thus, only half of the uncertainty is considered in

each of them. In other words, each rating value is changed

to ri � ð1þ Uai
=2Þ; and each viewing capacity value of the

last period is changed to cj � ð1þ uj=2Þ:
The CombinedHalfLastPeriod algorithm is another

combination of modified ratings and the robust technique,

shortly denoted as CombinedHalfLP. Throughout all the

time periods this algorithm is similar to the AdaptiveRobust

algorithm, excluding the last period where it is similar to

the CombinedHalf algorithm. The motivation for this

algorithm is based on the advantages of the AdaptiveRobust

algorithm over all the periods excluding the last period. In

the last period there are no future allocations that the

AdaptiveRobust algorithm can use. Thus, the extra alloca-

tions performed by the CombinedHalf algorithm can help

in the last period.

5 Experimental results

We tested the efficacy of our proposed algorithms through

simulations. In this section, first we present the simulation

environment, then the data used in the computational tests

for each problem version and finally the results.

5.1 Simulation environment and data generation

We built a simulator to evaluate the efficacy of our pro-

posed algorithms on synthetic data based on real distribu-

tions. The experiments were conducted as follows. First the

problem instance was generated according to the required

configurations. For the single-period deterministic version

each of the allocation methods was run with the problem

instance as input. For the multi-period with uncertainty

version the sequential solution procedure was started

whereby each iteration included (see Sect. 4.2.1): alloca-

tion of ads to viewers, random scheduling of the allocated

ads, discovering the uncertainty of the current period and

updating the problem instance. Note that we assume once a

viewer begins to view an airing of an ad he will finish

watching it. In other words, we assume that an airing of an

ad cannot be cut in the middle. The algorithms were

implemented in C# language using Visual Studio 2005 and

.Net Framework version 2.0. All the experiments were run

on Windows XP, on a 3.00 GHz with 4 GB RAM machine.

The generation of data for the different problem

instances includes viewers and ads with values for all of

their parameters. In addition, according to the viewers’

uncertainty factors, the actual viewing capacity of each

viewer in each period was randomly generated such that all

the algorithms were tested on the same actual viewing

capacities. The generation of data was done according to

the following value distributions. The ad length values (in

seconds), li, were {10, 20, 30, 40, 50, 60}, which were

randomly selected according to real distributions given by

SintecMedia [32]. The ad payment values, pi, were

{1, 5, 10, 15, 20}, which were randomly selected accord-

ing to the distributions 10, 25, 30, 25, 10 %, respectively,

e.g. the probability of the value 1 was 10 %. The ad fre-

quency values, fi, were {5, 10, 15} with equal distribution.

The ad rating values, ri, were {10, 30, 50} with equal

distribution. The viewers’ viewing capacity values per time

period, cj, were {300, 600, 900} seconds with equal

distribution.

As for the profiles, we used three attributes each with a

set of the following possible values: Age: {Adult, Child},

Gender: {Male, Female} and Social Class: {ABC1,

ABC2}.

The viewers’ profiles were distributed according to

SintecMedia [32] and known social class distributions [12]

and we did not consider variations of them. For the ad’s

target population profiles we defined three configurations:

• General Case: all ad’s target population profiles are

general, i.e. each ad can be allocated to each viewer.

The values of all the profile attributes are All.

• Specific Case: each ad’s target population is very

specific, i.e. each ad is targeted to one combination of

attribute values. The values of each profile attribute is

randomly selected where all values have the same

probability of being selected, i.e. 50 %.

• Normal Case: the more reasonable case where the

target population profiles are a mix of the general and

the specific cases:

– age: {Adult = 70 %; Child = 10 %; All = 20 %}

– gender: {Male = 30 %; Female = 30 %; All = 40

%}
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– social class: {ABC1 = 30 %; ABC2 = 30 %;

All = 40 %}.

For the multi-period with uncertainty version, the

number of periods and viewers’ uncertainty factors were

also generated. The number of periods had the possible

values T ¼ 1; 2; . . .; 8: For simplification, the uncertainty

factors, uj, of all the viewers were the same and the tested

values were 0; 10; . . .; 100 %: The actual viewing capacity

value per viewer and period was a uniform distributed

random value from the range ½cj � ð1� ujÞ; cj � ð1þ ujÞ�:

5.2 Deterministic problem results

In this section, we present the results of the deterministic

version where there is no uncertainty and there is a single-

time period.

We compare the results of the heuristics proposed with

the results we obtained by solving the problem’s IP model

(see Sect. 3.2) using a generic IP Solver. We used ILOG

CPLEX 11.1, with a runtime limit of 300 s, and use CPLEX

to denote its solutions. Since some instances could not be

optimally solved by CPLEX even without a runtime limit,

we measured the performance of the algorithms as a per-

cent of the upper bound of the optimal value given by

CPLEX. As for the runtime, all of our heuristics ran within

a few seconds, i.e. 1–3 s.

For each version of the problem we tested different

configurations which are relevant to it. For the single-

period deterministic version we tested all combinations of

the ads’ target population profiles with different combina-

tions of the number of ads and the number of viewers. The

number of ads and viewers that were tested included 1000

viewers and 100, 200, 300, 400 and 500 ads. For each

combination we generated 100 random instances, and

considered the average results with a confidence level of 95

% (the values on plots 1, 2, 3 are the average with the

confidence intervals surrounding them). The most inter-

esting results were achieved by the ProfitPerSec, Back-

trackHeuristic, and CPLEX and thus we will focus only on

those results.

In the normal case (Fig. 1), which is the most realistic,

for a small number of ads, i.e. 100 and 200, CPLEX

attained almost all the revenue possible, i.e. more than 99

%. Nonetheless as the number of the ads increased its

performance dramatically dropped. The PaymentPerSec

algorithm performs well for the smallest instances, i.e. 98

%, but badly for all the other instances, i.e. 93–94 %. The

BacktrackHeuristic algorithm attained an average of 99 %

and returned the best allocations for most of the instances

(300–500 ads).

In the specific case (Fig. 2), as expected, all the algo-

rithms’ performance linearly decreased as the number of

ads increased. The CPLEX algorithm returned the best

allocations, more than 99 % on average. The Backtrack-

Heuristic algorithm performed well with 96 % on average

and the PaymentPerSec algorithm performed the worst

with 93 % on average. The instances of this case seem easy

to solve by CPLEX. The reason for this may be because

each ad can be allocated only to a small subset of viewers,

i.e. the number of options that need to be considered for

each ad is small, thus CPLEX can quickly find a good

allocation.

In the general case (Fig. 3) the BacktrackHeuristic

algorithm performed the best with more than 99 % on

average. The performance of the ProfitPerSec algorithm

was not far from this with 98 % on average. The interesting

aspect is the performance of CPLEX. For the instances of

400 ads CPLEX’s performance dropped dramatically to 76

% on average, but then for the instances of 500 ads its

performance increased to 93 % on average.

We also experimented with larger instances but the

CPLEX algorithm was not able to solve them even after

hours of run-time.

5.3 Uncertain problem results

In this section, we present the results of the uncertain ver-

sion, i.e. single-period and multiple periods. We compared

the revenue of the proposed solutions and all combinations

of periods and uncertainty factors were examined with 100

ads, 300 viewers and ad’s target population profiles

according to the Normal Case (as described in Sect. 5.1).
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For each experiment combination we generated 60 random

instances and considered the average result.

To compare the revenue obtained with each heuristic we

normalized this value with respect to the revenue obtained

by the BasicU algorithm for the deterministic instance in

which the outcome of the viewing capacity was known. In

other words, for each instance the obtained revenue values

were normalized to the revenue of the BasicU algorithm for

the same instance where the uncertain data was known in

advance. Notice that although the BasicU algorithm solves

the deterministic problem, it is only a heuristic algorithm

and its solution is not guaranteed to be the best solution, i.e.

the revenues obtained by some other heuristics are higher.

We will focus on the results which were achieved by

the algorithms BasicU, Robust, CombinedHalf and

CombinedHalfLP. The results of all the other proposed

heuristics seem to follow the others but with lower

achievements. The results of the LastRobust algorithm

were always lower than those of CombinedHalfLP by 12.5

% on average; those of ModifiedRatings were always lower

than those of CombinedHalf by 2 % on average; and those

of AdaptiveRobust were always lower than those of

CombinedHalfLP by 6.5 % on average. As for the runtime,

all of our heuristics ran within a few seconds, i.e. 1–6 s.

5.3.1 Single-period

In the case of a single time period (Fig. 4) the results of

BasicU were poor. Even in the cases where the uncertainty

was low the results were poor and decreased to less than 10

% of the revenue already at an uncertainty factor of 30 %.

The Robust algorithm performed the best with up to 40 %

uncertainty, and for higher uncertainty both combined

algorithms achieved the best results. When the uncertainty

factor was 100 % the Robust algorithm achieved 0 % of the

revenue since the viewing capacity considered was

the worst case, namely 0 %, i.e. no viewing capacity at all.

The combined algorithms achieved the same results for a

single time period since the algorithms are the same for this

instance.

5.3.2 Multi-periods

In the case of four time periods (Fig. 5) which is likely to

be realistic, such as 4 weeks, the results were different

from the results of uncertain with a single period (see

Sect. 5.3.1). Up to 60 % uncertainty both combined algo-

rithms performed very well achieving more than 90 % of

the revenue, where the CombinedHalfLP performed the

best. Between 60 and 100 % uncertainty the CombinedHalf

algorithm performed the best where the increasing uncer-

tainty had a minor effect on the results. Even for the case of

100 % uncertainty its results were higher than 85 % of the

revenue. As before, BasicU algorithm’s performance was

very low and decreased to less than 50 % when the

uncertainty factor reached less than 40 %.

In the case of eight time periods (Fig. 6) the problem

seemed to be easy for cases of uncertainty lower than

60 %. As in the case of four periods, here also the

CombinedHalf algorithm experienced a minor effect of the

increasing uncertainty on the results which were higher

than 99 % even for the case of 100 % uncertainty. The

performances of the CombinedHalfLP algorithm were very

high, up to 80 % uncertainty, and dramatically dropped

with higher uncertainty values. The performances of the

Robust algorithm were very high up to 50 % uncertainty

and slowly dropped with higher uncertainty values down to

0 %.

In general, our algorithms obtained at least 87 % of the

revenue with at least four periods compared to the results

achieved with the common robust approach, i.e. the Robust

algorithm. The CombinedHalfLP algorithm is preferred for
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lower uncertainty while the CombinedHalf algorithm is

preferred for higher uncertainty, where the uncertainty

break-even-point depends on the number of periods.

Another type of analysis, where the uncertainty factor

was fixed, was also performed. In the case of 30 % uncer-

tainty (Fig. 7) the performances of the algorithms differed

from each other up to three periods. The CombinedHalfLP

algorithm seemed to outperform the CombinedHalf

algorithms, which in turn outperformed the Robust algo-

rithm with an average difference of 5 %. For five periods

and more both combined algorithms seemed to perform

similarly attaining more than 98 % of the revenue.

In the case of 70 % uncertainty (Fig. 8), as in the case of

30 % uncertainty, the performances of the algorithms dif-

fered from one another, but in this case with up to six

periods. The CombinedHalf seemed to outperform the

CombinedHalfLP with an average difference of 10 %. For

six periods and more the combined algorithms seemed to

perform similarly achieving more than 97 % of the reve-

nue. The Robust performances were bad, attaining at most

75 % of the revenue for eight periods.

The extreme case of 100 % uncertainty (Fig. 9) is

interesting where the CombinedHalf algorithm reached

over 80 % of the revenue already within three periods. This

case demonstrates the immunity of the CombinedHalf

algorithm even in extreme uncertainty. The Robust algo-

rithm reached 0 % of the revenue for all periods, since the

considered viewing capacity in the worst case is zero, i.e.

no viewing capacity at all. The performances of the BasicU

and the CombinedHalf algorithms were very poor with less

than 40 % of the revenue even when eight periods were

considered. The reason for the unexpected behavior of the

CombinedHalf algorithm, which obtained less revenue as

the number of periods increased, is probably due to the fact

that the algorithm considers the uncertainty only for the last

period as the CombinedHalf algorithm does.

In general, for all uncertainty factors our proposed

algorithms indicate a significant improvement over the

BasicU and Robust algorithms. Whereas for instances with

at least four periods our algorithms obtain at least 87 % of

the revenue, compared to the achievements according to

the common robust approach, i.e. by the Robust algorithm,

which obtains much less revenue.

We also checked the standard deviation (STDEV) of our

heuristics in order to identify the impact of the uncertainty

on each heuristic. We focused on four periods and 20, 40,

60 % of uncertainty cases. For each case we generated 30

random instances as described in Sect. 5.1, and for each

instance we repeatedly generated random viewing capaci-

ties 30 times according to the uncertainty factors. The

STDEV was calculated over all the 30 repeats and the

averages over the 30 instances are presented.

As depicted in Table 2, the STDEV values of Robust

were the smallest, lower than 0.65 %. Since this algorithm

considers the worst case, it was less affected by the gen-

erated random capacities. A deeper glance into the details

reveals that Robust obtained the same revenue over all the

repeats of the same instance. This fact should have led to a

0 value for STDEV, but the difference in the revenue

obtained for the deterministic instance for each repeat

caused it to be greater. The STDEV values for the

CombinedHalf and the CombinedHalfLP were quite similar

 0

 25

 50

 75

 100

 10  20  30  40  50  60  70  80  90  100

%
 R

ev
en

ue

% Uncertainty Factor

BasicU
CombinedHalf

CombinedHalfLP
Robust

Fig. 6 Algorithms’ performance—eight periods

 0

 25

 50

 75

 100

 2  3  4  5  6  7  8

%
 R

ev
en

ue

# Periods

BasicU
CombinedHalf

CombinedHalfLP
Robust

Fig. 7 Algorithms’ performance—uncertainty factor of 30 %
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Fig. 8 Algorithms’ performance—uncertainty factor of 70 %
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Fig. 9 Algorithms’ performance—uncertainty factor of 100 %
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and low, i.e. lower than 1.65 %. These results support the

claim that the combined heuristics are stable. As expected,

the STDEV values of BasicU were significantly higher than

the values of the other algorithms. These results can be

explained easily since the algorithm does not take into

account the uncertainty in advance.

6 Summary and conclusions

In this paper we considered the Uncertain Multi-Period Ads

Allocation problem. We formally defined the problem and

proposed a mathematical programming model. Since the

problem is NP-hard, we presented a sequential solution

procedure and proposed several heuristic algorithms to

solve it. We have shown empirically that using natural

heuristics for this multi-period problem it is possible to

obtain a high percentage of the potential revenue, similar to

the case where there is no uncertainty. We adopted two

main proaches in order to handle the uncertainty: (a) adapt

the allocations after some of the uncertainty is reveal and

(b) consider the uncertainty in advance.

Our heuristics outperform the common robust approach

for uncertainty problems and even for high uncertainty, e.g.

100 %, they obtained more than 75 % of the revenue. In

general, we can conclude that instead of handling only the

constraints which are uncertain, as is usually done, related

constraints should also be considered even if they are not

directly affected. For example, in the Ads Allocation

problem, we considered the effects of the uncertain view-

ing capacities on the rating constraints. This approach, we

believe, can be relevant also for other uncertain allocation

problems.

In future research we would like to address the Ads

Allocation problem under relaxation of the all-or-nothing

rating and frequency constraints. The all-or-nothing con-

straints seem to have a tremendous affect on the problem

while in reality minor violations can be ignored. Another

interesting direction would be to replace the random

schedule process with a realistic one. Combining the

allocation and schedule algorithms will probably result in

even higher revenues.

The research is part of the NEGEV Consortium [21]

targeted at developing personalized content services. It was

initiated and directed by SintecMedia [32], a High-Tech

company that designs and implements management sys-

tems for TV broadcasting industries.
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