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1 Introduction

Stochastic games are central to the analysis of strategic interactions among forward-looking

players in dynamic environments. Dating back to Shapley (1953), they have a long tradition

in economics. Applications of dynamic stochastic games abound and range from public finance

(Bernheim and Ray 1989) and political economics (Acemoglu and Robinson 2001) to industrial

organization (Bergemann and Välimäki 1996). An especially well-known example is the Ericson

and Pakes (1995) model of dynamic competition in an oligopolistic industry with investment,

entry, and exit that has triggered a large and active literature in industrial organization (see

Doraszelski and Pakes (2007) for a survey) and, most recently, has been used also in other

fields such as international trade (Erdem and Tybout 2003) and finance (Goettler, Parlour, and

Rajan 2005, Kadyrzhanova 2006). In all these models the equilibrium concept is that of Markov

perfect equilibrium.

While several results in the literature guarantee the existence of Markov perfect equilibria in

dynamic stochastic games (e.g., Fink 1964, Sobel 1971, Federgruen 1978, Whitt 1980, Escobar

2008), to date very little is known about the structure of the equilibrium set in a dynamic

environment. This paucity of knowledge sharply contrasts with normal form games, where a

large body of research is devoted to characterizing the equilibrium set and the properties of

its members, and raises a number of crucial concerns for both theoretical and applied work on

dynamic stochastic games.

First, it is not known how we should interpret behavior strategy equilibria in dynamic envi-

ronments. In a mixed-strategy equilibrium, at each decision node, a player is indifferent among

several pure actions. It is then natural to ask what compels the player to randomize precisely as

mandated by the equilibrium. For normal form games Harsanyi’s (1973a) celebrated purification

theorem provides an elegant answer to this question, namely that a mixed-strategy equilibrium

can be seen as a pure-strategy equilibrium of a nearby game of incomplete information. In gen-

eral classes of dynamic economic models, in contrast, whether a similar purification argument

can be made is an open problem.

A second concern relates to the estimation of primitives and the computation of equilibria. As

it turns out, dynamic stochastic games of incomplete information are often easier to solve numer-

ically than their complete information counterparts. Doraszelski and Satterthwaite (2007), for

example, reformulate the Ericson and Pakes (1995) model of dynamic competition as a game of

incomplete information with the express purpose of rendering it computationally tractable using

standard algorithms (Pakes and McGuire 1994, Pakes and McGuire 2001). Dynamic stochas-
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tic games of incomplete information are also more tractable econometrically, making them the

natural starting point for structural estimation (Aguirregabiria and Mira 2007, Bajari, Benkard,

and Levin 2007, Judd and Su 2008, Pakes, Ostrovsky, and Berry 2006, Pesendorfer and Schmidt-

Dengler 2008). Yet, to date it is not known whether the choice between complete and incomplete

information is largely one of convenience or whether the strategic interactions among players are

sensitive to the different formulations of a dynamic economic problem.

A third concern arises as it is not known whether slight changes in the parameters of a dynamic

stochastic game cause slight changes in its Markov perfect equilibria or severely alter the nature

of the interactions among players. This concern is especially pertinent if the researcher uses

modern econometric techniques to structurally estimate the underlying primitives of the game

and therefore recovers the payoffs with estimation error. It then becomes critical that slight

changes in the payoffs do not completely reshape equilibrium behavior.

A fourth and final concern is that it is not clear that comparative statics are well defined

in dynamic environments, in particular when it comes to taking derivatives of the endogenous

variables with respect to an exogenous variable. Applied work also often aims to conduct coun-

terfactual experiments or policy simulations (e.g., Benkard 2004, Collard-Wexler 2005, Dube,

Hitsch, and Manchanda 2005, Gowrisankaran and Town 1997, Ryan 2005). These exercises

present an especially troubling problem when a dynamic stochastic game has multiple equilibria

because in this case little is known about which equilibrium will be played after a change to the

system has occurred. What happens depends on how players adjust to the change.

The goal of this paper is to help settle these concerns by developing a theory of regular

Markov perfect equilibria in discrete-time, infinite-horizon dynamic stochastic games with a finite

number of states and actions. We begin by introducing a suitable regularity notion and showing

that regularity is a generic property of Markov perfect equilibria. More formally, we identify a

dynamic stochastic game with its period payoffs and show that the set of games having Markov

perfect equilibria that all are regular has full Lebesgue measure. While regularity is a purely

mathematical concept, it paves the way to a number of economically meaningful properties.

An immediate consequence of the fact that all Markov perfect equilibria of almost all dynamic

stochastic games are regular is that almost all games have a finite number of Markov perfect

equilibria that are locally isolated. Moreover, with some further work, it can be shown that

these equilibria are essential and strongly stable and are therefore robust to slight changes in

payoffs. Finally, they all admit purification and can therefore be obtained as limits of equilibria

of dynamic stochastic games of incomplete information as random payoff fluctuations become

vanishingly small. In sum, this paper shows how to extend several of the most fundamental
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results of the by now standard theory of regular Nash equilibria in normal form games, including

genericity (Harsanyi 1973b), stability (Wu and Jiang 1962, Kojima, Okada, and Shindoh 1985),

and purifiability (Harsanyi 1973a) from static to dynamic environments.

Our main insight is that, holding fixed the value of future play, the strategic situation that the

players face in a given state of the dynamic system is akin to a normal form game. Consequently,

a Markov perfect equilibrium of a dynamic stochastic game must satisfy the conditions for a

Nash equilibrium of a certain reduced one-shot game. We exploit these conditions to derive a

system of equations, f(σ) = 0, that must be satisfied by any Markov perfect equilibrium σ. We

say that the equilibrium is regular if the Jacobian of f with respect to σ, ∂f(σ)
∂σ

, has full rank. Our

notion of regularity is closely related to that introduced by Harsanyi (1973a, 1973b) for normal

form games and, indeed, reduces to it if players fully discount the future. Because we view a

dynamic stochastic game as a family of interrelated (and endogenous) normal form games, we

are able to “import” many of the techniques that have been used to prove these results in the

context of normal form games.

The proof of our main genericity result builds on Harsanyi’s (1973b) insights but the presence

of nontrivial dynamics introduces nonlinearities that preclude us from simply applying Harsanyi’s

(1973b) construction. Two insights are the key to our proof. First, the map that relates a dy-

namic stochastic game to the payoffs of the family of induced normal form games underlying our

regularity notion is linear and invertible. These properties are evident if players fully discount

the future but are less than obvious in the presence of nontrivial dynamics. Second, in a depar-

ture from the standard treatment in the literature on normal form games (Harsanyi 1973b, van

Damme 1991), we study the regularity of f by directly applying the transversality theorem —a

generalization of Sard’s theorem— to it.

As a corollary to our main genericity result we deduce that almost all dynamic stochastic

games have a finite number of Markov perfect equilibria that are locally isolated. While this result

has already been established in an important paper by Haller and Lagunoff (2000), deriving it as

part of a theory of regular Markov perfect equilibria makes for a shorter and, we believe, more

transparent proof. In contrast to our approach, Haller and Lagunoff (2000) exploit a notion

of regularity based on the idea that once-and-for-all deviations from the prescribed equilibrium

strategies cannot be profitable. While there are clearly many types of deviations one can consider

in dynamic stochastic games, our focus on one-shot deviations has the additional advantage that

it permits us to generalize several other major results for normal form games besides generic

finiteness to dynamic stochastic games.

We demonstrate that regular Markov perfect equilibria are robust to slight changes in payoffs
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and, more specifically, that the equilibria of a given game can be approximated by the equilibria

of nearby dynamic stochastic games. To this end, we generalize two stability properties that

have received considerable attention in the literature on normal form games to our dynamic

setting, namely essentiality and strong stability. Loosely speaking, a Markov perfect equilibrium

is essential if it can be approximated by equilibria of nearby games; it is strongly stable if

it changes uniquely and continuously with slight changes in payoffs. We show that regular

equilibria are strongly stable and, therefore, essential. This result in combination with our main

genericity result yields the generic essentiality and strong stability of Markov perfect equilibria.1

We, moreover, show that the map from payoffs to equilibria is locally not only continuous but

also differentiable.

These stability properties ensure that slight changes in the parameters of a dynamic stochastic

game do not severely alter the nature of the interactions among players. In addition, they lay the

foundations for comparative statics. Because the map from payoffs to equilibria is differentiable,

differentiable comparative statics are well defined, at least for a small change to the system. We

also offer some guidance for the particularly difficult situation when a dynamic stochastic game

has multiple equilibria. Under a variety of learning processes, our main stability result allows

us to single out the equilibrium that is likely to be played after a small change to the system

has occurred. We finally discuss how to compute this equilibrium using so-called homotopy or

path-following methods.

Next we show that regular Markov perfect equilibria admit purification, thereby extending

Harsanyi’s (1973a) celebrated purification theorem from normal form games to dynamic stochas-

tic games. We perturb a dynamic stochastic game by assuming that, at each decision node, a

player’s payoffs are subject to random fluctuations that are known to the player but not to his

rivals. We demonstrate that any regular Markov perfect equilibrium of the original complete

information game can be obtained as the limit of equilibria of the perturbed game of incomplete

information as payoff fluctuations become vanishingly small. Hence, one can view the original

game of complete information as an idealization—a limit—of nearby games with a small amount

of payoff uncertainty. The proof of our main purification result generalizes arguments previously

presented by Govindan, Reny, and Robson (2003) in the context of normal form games. That

we are able to do so once again shows the power of our regularity notion.

Our main purification result suggests that the choice between complete and incomplete in-

formation in formulating a dynamic economic problem is largely one of convenience, at least in

1Maskin and Tirole (2001) have demonstrated the generic essentiality of Markov perfect equilibria in finite-
horizon dynamic stochastic games. Their result does not imply, nor is it implied by, our essentiality result.
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situations where the random payoff fluctuations are deemed small. It also provides a convincing

interpretation of behavior strategy equilibria in dynamic stochastic games because in the ap-

proximating equilibrium a player is no longer indifferent among several pure actions but instead

has a strictly optimal pure action for almost all realizations of his payoffs.

We finally advance the study of purifiability in dynamic environments. While the purifiabil-

ity of equilibrium behavior in dynamic environments has received some attention recently, the

literature so far has studied but a small number of particular examples. Bhaskar (1998, 2000)

and Bhaskar, Mailath, and Morris (2007) provide examples of nonpurifiable equilibria in which

strategies depend on payoff irrelevant variables. In contrast, our main purification result shows

that equilibria in which strategies depend only on the payoff relevant history are generically

purifiable. We discuss in more detail how our results relate to their examples later in the paper.

For now we just note that, to the best of our knowledge, this paper is the first to establish the

purifiability of equilibrium behavior in a general class of dynamic economic models.

In sum, in this paper we develop a theory of regular Markov perfect equilibria in dynamic

stochastic games. We show that almost all dynamic stochastic games have a finite number of

locally isolated equilibria. These equilibria are essential and strongly stable. Moreover, they all

admit purification. The key to obtaining these results is our notion of regularity which is based

on the insight that, holding fixed the value of future play, the strategic situation that the players

face in a given state of the dynamic system is akin to a normal form game. By viewing a dynamic

stochastic game as a family of induced normal form games, we are able to make a rich body of

literature on normal form games useful for the analysis of dynamic environments.

The remainder of this paper is organized as follows. Section 2 sets out the model and equi-

librium concept. Section 3 introduces our notion of regularity and illustrates it with an example.

Section 4 states the main genericity result and discusses its implications for the finiteness of the

equilibrium set. Section 5 presents stability properties and Section 6 our main purification result.

Section 7 contains the proofs of our main genericity and purification results. Some supporting

arguments have been relegated to the Appendix.

2 Model

In this section we set up the model and define our notion of equilibrium. We further describe

the total payoff that a player receives in a dynamic stochastic game.
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2.1 Dynamic Stochastic Games

A dynamic stochastic game is a dynamic system that can be in different states at different times.

Players can influence the evolution of the state through their actions. The goal of a player is to

maximize the expected net present value of his stream of payoffs.

We study dynamic stochastic games with finite sets of players, states, and actions. Let I

denote the set of players, S the set of states, and Ai(s) the set of actions of player i at state s.

Time is discrete and the horizon is infinite.2

The game proceeds as follows. The dynamic system starts at time t = 0 from an initial

state st=0 that is randomly drawn according to the probability distribution q̄(·) ∈ ∆(S), where

∆(S) denotes the space of probability distributions over S. After observing the initial state,

players choose their actions at=0 = (at=0
i )i∈I ∈

∏
i∈I Ai(s

t=0) = A(st=0) simultaneously and

independently from each other. Now two things happen, depending on the state st=0 and the

actions at=0. First, player i receives a payoff ui(a
t=0, st=0) ∈ R, where ui(·, s) : A(s) → R is the

period payoff function of player i at state s ∈ S. Second, the dynamic system transits from

state st=0 to state st=1 according to the probability distribution q(·; at=0, st=0) ∈ ∆(S), with

q(st=1; at=0, st=0) being the probability that state st=1 is selected. In the next round at time

t = 1, after observing the current state st=1, players choose their actions at=1 ∈ A(st=1). Then

players receive period payoffs u(at=1, st=1) and the state of the dynamic system changes again.

The game goes on in this way ad infinitum.

We let Ui = (ui(a, s))a∈A(s),s∈S ∈ R
∑
s∈S |A(s)| denote the vector of payoffs of player i and

U = (Ui)i∈I ∈ R|I|
∑
s∈S |A(s)| the vector of payoffs of all players. A dynamic stochastic game is a

tuple

〈S, (Ai(s))i∈I,s∈S, U, (δi)i∈I , q, q̄〉,

where δi ∈ [0, 1[ is the discount factor of player i that is used to compute his total payoff as the

expected net present value of his period payoffs. In the remainder of this paper, unless otherwise

stated, we identify a dynamic stochastic game with its period payoffs U = (Ui)i∈I .

2.2 Markov Perfect Equilibria

Roughly speaking, a Markov perfect equilibrium is a subgame perfect equilibrium in which the

strategies depend only on the payoff relevant history. Below we provide a precise definition of our

equilibrium concept and an alternative characterization that is key to the subsequent analysis.

2Our results also apply to finite-horizon dynamic stochastic games.
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A stationary Markov behavior strategy (or strategy, for short) for player i is a collection of

probability distributions (σi(·, s))s∈S such that σi(·, s) ∈ ∆(Ai(s)) and σi(ai, s) is the probability

that player i selects action ai ∈ Ai(s) in state s. We denote the set of strategies for player i

as Σi =
∏

s∈S ∆(Ai(s)) and define Σ =
∏

i∈I Σi. We further extend ui(·, s) and q(s′; ·, s) in the

obvious way to allow for randomization over A(s).

Definition 1 A stationary Markov behavior strategy profile σ = (σi)i∈I is a Markov perfect

equilibrium (or equilibrium, for short) if it is a subgame perfect equilibrium.

We denote the set of Markov perfect equilibria of the dynamic stochastic game U by Equil(U).

The nonemptiness of Equil(U) has long been established in the literature (see, e.g., Fink 1964).

We next provide an alternative characterization of equilibrium that exploits the recursive

structure of the model. A strategy profile σ = (σi)i∈I is a Markov perfect equilibrium if and only

if (i) for all i ∈ I there exists a function Vi : S → R such that for all s ∈ S

Vi(s) = max
ai∈Ai(s)

ui((ai, σ−i(·, s)), s) + δi
∑
s′∈S

Vi(s
′)q(s′; (ai, σ−i(·, s)), s) (2.1)

and (ii) for all s ∈ S the strategy profile σ(·, s) = (σi(·, s))i∈I is a (mixed strategy) Nash

equilibrium of the normal form game in which player i chooses an action ai ∈ Ai(s) and, given

the action profile a = (ai)i∈I ∈ A(s), obtains a payoff

ui(a, s) + δi
∑
s′∈S

Vi(s
′)q(s′; a, s). (2.2)

The function Vi : S → R in equation (2.1) is the equilibrium value function for player i. Vi(s)

is the expected net present value of the stream of payoffs to player i if the dynamic system is

currently in state s. That is, Vi(s) is the equilibrium value of continued play to player i starting

from state s.

Our alternative characterization of equilibrium is based on the observation that, given con-

tinuation values, the strategic situation that the players face in a given state s is akin to a

normal form game. Consequently, an equilibrium of the dynamic stochastic must induce a Nash

equilibrium in a certain reduced one-shot game. The payoff to player i in this game as given

in equation (2.2) is the sum of his period payoff and his appropriately discounted continuation

value. Note that, given continuation values, equation (2.2) can be used to construct the entire

payoff matrix of the normal form game that players face in state s.
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While simple, the observation that a dynamic stochastic game can be studied by analyzing a

family of normal form games is the key to the subsequent analysis. It suggests to define a notion

of regularity with reference to the induced normal form games. We formalize this idea in Section

3. The obvious difficulty that we have to confront is that the induced normal form games are

endogenous in that the payoffs depend on the equilibrium of the dynamic stochastic game.

2.3 Notation and Continuation Values

Before defining our notion of regularity, we introduce some notation and further describe the

total payoff that a player receives in a dynamic stochastic game.

In what follows we consider not only equilibria but also deviations from equilibrium strategies.

We thus have to know the value of continued play given an arbitrary strategy profile σ ∈ Σ. In

fact, since Σ is not an open set of R
∑
i∈I

∑
s∈S |Ai(s)|, we work mostly with the set Σε. We construct

Σε to be open in R
∑
i∈I

∑
s∈S |Ai(s)| and to strictly contain Σ. The construction of Σε is detailed in

the Appendix. Here we just note that Σε has elements that are not strategies.

To facilitate the subsequent analysis we introduce some notation. Enumerate the action

profiles available at state s as

A(s) =
{
a1
s, . . . , a

|A(s)|
s

}
.

We also write S = {s1, . . . , s|S|}. As in Haller and Lagunoff (2000), we define the transition

matrix Q ∈ R
∑
s∈S |A(s)|×|S| as

q(s1; a1
s1
, s1) . . . q(s|S|; a

1
s1
, s1)

q(s1; a2
s1
, s1) . . . q(s|S|; a

2
s1
, s1)

...
...

q(s1; a
|A(s1)|
s1 , s1) . . . q(s|S|; a

|A(s1)|
s1 , s1)

q(s1; a1
s2
, s2) . . . q(s|S|; a

1
s2
, s2)

...
...

q(s1; a
|A(s2)|
s2 , s2) . . . q(s|S|; a

|A(s2)|
s2 , s2)

...
...

q(s1; a1
s|S|
, s|S|) . . . q(s|S|; a

1
s|S|
, s|S|)

...
...

q(s1; a
|A(s|S|)|
s|S| , s|S|) . . . q(s|S|; a

|A(s|S|)|
s|S| , s|S|)



. (2.3)

9



We further define the matrix Pσ ∈ R|S|×
∑
s∈S |A(s)| as

σ(a1
s1 , s1) . . . σ(a|A(s1)|

s1 , s1) 0 . . . 0 . . . 0 . . . 0

0 . . . 0 σ(a1
s2 , s2) . . . σ(a|A(s2)|

s2 , s2) . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . σ(a1
s|S|

, s|S|) . . . σ(a
|A(s|S|)|
s|S| , s|S|)

 .

In the remainder of the paper, we write Psσ to denote row s of Pσ. We also define Psai,σ−i as the

s row of the matrix above, assuming that player i chooses ai ∈ Ai(s) with probability 1 in state

s. Finally, Ir denotes the Rr×r identity matrix.

Using this notation, the value of continued play given an arbitrary profile σ ∈ Σε is

V U
i (·, σ) =

( ∞∑
t=0

(δi)
t(PσQ)tPσ

)
Ui =

(
I|S| − δiPσQ

)−1

PσUi, (2.4)

where the inversion is justified by the construction of Σε. We interpret V U
i (s, σ) as the expected

net present value of the stream of payoffs to player i if the dynamic system is currently in state s

and play is according to σ. Our notation emphasizes that these continuation values also depend

on the payoff vector U .

3 Regularity

In this section we first define our notion of regularity. Then we illustrate our definition with an

example.

3.1 Regular Markov Perfect Equilibria

Our notion of regularity is based on the observation that, given continuation values, the strategic

situation that the players face in a given state s is akin to a normal form game with the payoffs

in equation (2.2). Since an equilibrium of the dynamic stochastic game must induce a Nash

equilibrium of this normal-form game, one-shot deviations cannot be profitable.

To make this idea precise, for each s ∈ S define Ui(·, s, ·) : Ai(s)× Σε → R by

Ui(ai, s, σ) = ui((ai, σ−i(·, s)), s) + δi
∑
s′∈S

V U
i (s′, σ)q(s′; (ai, σ−i(·, s)), s). (3.1)
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Ui(ai, σ, s) is the expected net present value of the stream of payoffs to player i if the current

state is s, his rivals play according to σ−i, and player i chooses action ai in the current period

and then plays according to σi from the subsequent period on. If σ ∈ Σ is an equilibrium, then

one-shot deviations cannot be profitable. Formally, if σ ∈ Σ is an equilibrium, then, for all i ∈ I
and s ∈ S,

σi(ai, s) > 0 implies ai ∈ arg max
a′i∈Ai(s)

Ui(a′i, s, σ). (3.2)

These are the conditions for a Nash equilibrium in the normal form game in state s as induced

by the value of continued play V U
i (·, σ).

Consider a collection of actions asi ∈ Ai(s) for all i ∈ I and s ∈ S. We think of asi as a

reference action for player i in state s. We now define f : Σε × R|I|
∑
s∈S |A(s)| → R

∑
i∈I

∑
s∈S |Ai(s)|

so that its (i, ai, s) component is given by

fi,ai,s(σ, U) =

{ ∑
ai∈Ai σi(ai, s)− 1 if ai = asi ,

σi(ai, s)
(
Ui(ai, s, σ)− Ui(asi , s, σ)

)
if ai ∈ Ai(s) \ {asi}.

(3.3)

Condition (3.2) implies that if σ is an equilibrium of the game U such that σ(asi , s) > 0 for all

i ∈ I and s ∈ S, then

f(σ, U) = 0. (3.4)

Equation (3.4) is necessary but not sufficient for an equilibrium. Equation (3.4) is derived

as necessary optimality conditions for Nash equilibrium in the family of reduced normal form

games induced by the continuation play. Further, since Pσ is continuously differentiable as a

function of σ ∈ Σε, so is V U
i (·, σ). Therefore, f is continuously differentiable as a function of

σ ∈ Σε. For future reference, we note that f is also continuously differentiable as a function of

(σ, U) ∈ Σε × R|I|
∑
s∈S |A(s)|.

We are now ready to define our notion of regularity.

Definition 2 A Markov perfect equilibrium σ of a dynamic stochastic game U is regular if the

Jacobian of f with respect to σ, ∂f(σ,U)
∂σ

, has full rank for some selection of actions asi ∈ Ai such

that σ(asi , s) > 0 for all i ∈ I and s ∈ S. An equilibrium is irregular if it is not regular.

Note that the definition of f depends on the particular selection (asi )i∈I,s∈S of actions. How-

ever, if an equilibrium σ is regular given a collection (asi )i∈I,s∈S with σi(a
s
i , s) > 0, then it is also

regular given any other collection (bsi )i∈I,s∈S with σi(b
s
i , s) > 0.

Our definition of regularity is reminiscent of that introduced by Harsanyi (1973a, 1973b),

an neatly summarized by van Damme (1991), for normal form games. Indeed, if δi = 0 for all
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i ∈ I, our notion of regularity reduces to the standard notion. But even if δi > 0 for some i ∈ I,

our notion remains closely related to the standard notion because we base it on the equilibrium

conditions for reduced one-shot games. This observation, while simple, permits us to make a

rich body of literature on normal form games useful for the analysis of dynamic environments.

Below we provide a simple example of a dynamic stochastic game that has regular equilibria.

Example 1 (Exit Game) We consider a simple version of the model of industry dynamics

proposed by Ericson and Pakes (1995) (see also Doraszelski and Satterthwaite 2007). Consider

an industry with two firms. The set of players is I = {1, 2} and the set of states is S =

{(1, 1), (1, 0), (0, 1), (0, 0)}, where the state s = (s1, s2) indicates whether firm i is in the market

(si = 1) or out of the market (si = 0).

We assume that the only nontrivial decision a firm has to make is whether or not to exit if

the market is a duopoly; in all other states a firm has no choice but to preserve the status quo.

More formally, firm i’s action set is {exit, stay} in state s = (1, 1) but a singleton in all other

states. All states other than state (1, 1) are absorbing.

If the market is a duopoly in state (1, 1), then each firm receives a period payoff πD. If the

market is a monopoly in state (1, 0) or (0, 1), then the monopolist receives a period payoff πM

and its competitor receives nothing. Neither firm receives anything in state (0, 0). Finally, if a

firm is in the market but decides to exit it, then it receives a scrap value φ regardless of what

the other firm does. We assume that

δ

1− δ
πD < φ <

δ

1− δ
πM ,

where δ ∈]0, 1[ is the common discount factor. Hence, while a monopoly is viable, a duopoly is

not. The duopolists are thus caught up in a war of attrition.

The exit game has three equilibria, two of them in pure strategies. The pure strategy equilibria

are so that in state (1, 1) one of the firms exits while the other stays. In any of the pure strategy

equilibria, at each decision node, a firm strictly prefers to conform with the equilibrium strategy

(we call these equilibria strict, see Section 5.1). Proposition 1 therefore implies that this pure

strategy equilibria are strict.

The only symmetric equilibrium, denoted by σ̄, is fully characterized by the probability of

exiting if the market is a duopoly:

σ̄i(exit, (1, 1)) =
(1− δ)φ− δπD

δ
(
πM

1−δ − πD − φ
) .

12



Our goal here is to show that the symmetric equilibrium σ̄ is regular.

To compute the value of continued play given an arbitrary strategy profile σ, we exploit the

simple structure of the exit game rather than rely on equation (2.4). Since all states other than

state (1, 1) are absorbing, we have Vi(s, σ) = 0 if si = 0 and Vi(s, σ) = πM

1−δ if si = 1 and s−i = 0.

Vi((1, 1), σ) is defined recursively as the unique solution to

Vi((1, 1), σ) = πD + σi(exit, (1, 1))
{
φ+ δ0

}
+σi(stay, (1, 1))

{
δσ−i(exit, (1, 1))

πM

1− δ
+ δσ−i(stay, (1, 1))Vi((1, 1), σ)

}
.

The (i, ai, s) component of f is

fi,ai,s(σ) =


σi(ai, s)− 1 if si 6= (1, 1),

σi(exit, (1, 1)) + σi(stay, (1, 1))− 1 if si = (1, 1) and ai = stay,

σi(exit, (1, 1))
{
πD + φ−

(
πD + δσ−i(exit, (1, 1)) π

M

1−δ

+δσ−i(stay, (1, 1))Vi((1, 1), σ)
)}

if si = (1, 1) and ai = exit.

Computing the Jacobian of f with respect to σ and evaluating its determinant at σ̄, it can be

verified that the determinant is nonzero under our assumptions on the parameters, so that the

symmetric equilibrium σ̄ is regular. This is easiest to see if we normalize πD = 0 to reduce the

determinant to

−
δ2φ2

(
πM − (1− δ)φ

)4(
δ (πM)2 − (1− δ)2φ2

)2 < 0.

4 Genericity of Regular Equilibria

Before demonstrating that our notion of regularity is useful for characterizing the equilibrium

set and the properties of its members, we show that regularity is a property that is satisfied by

all equilibria of a large set of models.

Recall that we identify a dynamic stochastic game with its period payoff functions (ui)i∈I .

We endow the set of games with the Lebesgue measure λ and say that a property is generic if it

does not hold at most on a closed subset of measure zero. In this case we say that the property

holds for almost all games U ∈ R|I|
∑
s∈S |A(s)|.

The following is the main result of this section.
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Theorem 1 For almost all games U ∈ R|I|
∑
s∈S |A(s)|, all equilibria are regular.

The proof of Theorem 1 is detailed in Section 7.1. It proceeds as follows. We first consider

the set of dynamic stochastic games having equilibria in which some player puts zero weight on

some of his best replies. The set of such games has a small dimension and so does, therefore, the

subset of games having irregular equilibria. We then consider the set of games having equilibria in

which all players put positive weight on all their best replies (we call these equilibria quasi-strict,

see Section 5.1 for a formal definition). Within this class we restrict attention to completely

mixed equilibria. For these equilibria, we show that the Jacobian of f with respect to the pair

(σ, U) has full rank. An application of the transversality theorem—a generalization of Sard’s

theorem—then yields the desired result.

In the context of normal form games, Harsanyi (1973b) proves the generic regularity of

Nash equilibria as follows. Denoting the space of normal form games by Γ, Harsanyi (1973b)

constructs a subspace Γ̄ of the space of games and a function Φ: Σ × Γ̄ → Γ such that σ is a

regular equilibrium of the game U ∈ Γ if and only if Φ(σ, Ū) = U and ∂Φ(σ,Ū)

∂(σ,Ū)
has full rank, where

Ū denotes the projection of U ∈ Γ on Γ̄. Applying Sard’s theorem to Φ, it follows that the set

of normal form games having equilibria that are all regular has full Lebesgue measure.

The presence of nontrivial dynamics introduces nonlinearities that preclude us from simply

applying Harsanyi’s (1973b) construction to our problem. Since his proof exploits the polynomial

nature of f , in the case of normal form games, to construct the map Φ, it is not clear how his

approach can be extended to our problem. Indeed, the family of induced normal form games is

endogenous to the equilibrium of the dynamic stochastic game. Moreover, the value of continued

play (2.4) is not a polynomial function of σ.

Two insights facilitate our analysis. The first observation is that in order to study the

regularity of f , we can apply directly the transversality theorem to it (see Section 7.1.2 for

details). The second observation facilitating our analysis is that, given a strategy profile σ to

be followed from next period on, the map that relates a dynamic stochastic game to the payoff

matrices of the family of induced normal form games is linear and invertible. To see this, consider

the normal form game induced in state s. Given the action profile a ∈ A(s), player i obtains a

payoff

ui(a, s) + δi
∑
s′∈S

V U
i (s′, σ)q(s′; a, s), (4.1)

where we have replaced the equilibrium continuation value Vi(·) in equation (2.2) with V U
i (·, σ),

the value of continued play given the arbitrary strategy profile σ to be followed from next period
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on. The payoff to player i in equation (4.1) is the (a, s) component of the vector Ui+δiQV
U
i (·, σ) ∈

R
∑
s∈S |A(s)|. Using equation (2.4), we obtain

Ui + δiQV
U
i (·, σ) =

(
I
∑
s∈S |A(s)| + δiQ

∞∑
t=0

(δi)
t(PσQ)tPσ

)
Ui

=
(
I
∑
s∈S |A(s)| + δiQPσ + δiQδi(PσQ)Pσ + δiQδ

2
i (PσQ)2Pσ + . . .

)
Ui

=
( ∞∑
t=0

(δi)
t(QPσ)t

)
Ui

=
(
I
∑
s∈S |A(s)| − δiQPσ

)−1

Ui,

where the inversion is justified since all the relevant matrices have strictly dominant diagonals

by construction of Σε. The following lemma summarizes the discussion so far.

Lemma 1 (Invertibility Lemma) For all i and σ ∈ Σε, the matrix
(
I
∑
s∈S |A(s)| − δiQPσ

)−1

has full rank
∑

s∈s|A(s)| and the map Ui 7→ Ui + δiQV
U
i (·, σ) is linear and invertible.

Linearity and invertibility are evident for normal form games where the term δiQV
U
i (·, σ) van-

ishes. In our dynamic setting, the matrix
(
I
∑
s∈S |A(s)| − δiQPσ

)−1
is a part of the Jacobian of f

with respect to U . The significance of Lemma 1 is thus that it enables us determine the rank

of the Jacobian of f with respect to the pair (σ, U), a key step in applying the transversality

theorem (see Section 7.1.1 for details).

To fully appreciate the importance of the Lemma, fix the continuation play and consider the

set of reduced normal form games induced by all period payoffs U ∈ R|I|
∑
s∈S |A(s)|. If δi = 0 for all

i ∈ I, then set of reduced normal form games coincides with the set of all possible normal form

games and therefore the set of games U having equilibria that are all regular is generic. Now,

if δi > 0 for some i, the Invertibility Lemma shows that the set of dynamic stochastic games

induces a set of reduced normal form games which has the same dimension as the set of normal

form games. Since our regularity notion is in reference to the reduced normal form games, the

Lemma shows that in the set of all such games, we have enough degrees of freedom to prove our

genericity result.

To provide a first glimpse at the power of our regularity notion, we note that any regular

equilibrium is locally isolated as a consequence of the implicit function theorem. A dynamic

stochastic game having equilibria that are all regular has a compact equilibrium set that consists

of isolated points; therefore the equilibrium set has to be finite. We summarize in the following

corollary.
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Corollary 1 (Haller and Lagunoff (2000)) For almost all games U ∈ R|I|
∑
s∈S |A(s)|, the num-

ber of equilibria is finite.

The above result has already been established in an important paper by Haller and Lagunoff

(2000). These authors exploit a notion of regularity derived from the first-order necessary con-

ditions for an equilibrium of a dynamic stochastic game. This system of equations captures

the idea that once-and-for-all deviations from the prescribed equilibrium strategies cannot be

profitable. There are clearly many types of deviations one can consider in dynamic stochastic

games, and Haller and Lagunoff (2000) choose a different approach than we do. This is so partly

because they are not interested in developing a theory of regular equilibria but only in proving

the above finiteness result.

While Haller and Lagunoff’s (2000) approach to defining a notion of regularity is interesting,

we believe that our focus on deviations from a reduced one-shot game has three advantages. First,

it provides a simple and intuitive generalization of the standard regularity notion for normal form

games. Second, it makes for a shorter and more transparent proof of the above finiteness result.

We discuss this point in more detail after Corollary 3. Third, and perhaps most important, it

allows us to derive several economically meaningful properties of regular equilibria that cannot

be derived using Haller and Lagunoff’s (2000) regularity notion. The rest of the paper illustrates

this point.

Before moving on, we mention that Herings and Peeters (2004) have strengthened Corollary

1 by showing that generically the number of Markov perfect equilibria is not only finite but also

odd. While not pursued here, this result can also be deduced by elaborating on our arguments.

Herings and Peeters (2004) derive necessary conditions for equilibrium by exploiting, as we do,

the fact that one-shot deviations cannot be profitable. To characterize equilibria they introduce

additional variables to the set of equilibrium conditions (see their Theorem 3.6), and implicitly

work with a regularity notion (introduced in their Appendix) that, in contrast to ours, is not

immediately connected to the family of reduced normal form games induced by continuation

play.

5 Stability Properties of Regular Equilibria

In this section we explore the notions of strongly stable and of essential equilibria in dynamic

stochastic games. Before studying these desirable stability properties, we introduce the notions

of strict and quasi-strict equilibria. These concepts both help us to clarify the proofs below and
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are invoked extensively again in Section 7. At the end of the section, we discuss the implications

of our results for applied work.

5.1 Strict and Quasi-Strict Equilibria

Given a strategy profile σ ∈ Σ, we define the set of (pure) best replies for player i in state s as

Bi(σ, s) = arg max
ai∈Ai(s)

Ui(ai, s, σ).

We also define the carrier Ci(σ, s) ⊆ Ai(s) of player i in state s as the set of actions ai with

σi(ai, s) > 0. We finally define B(σ) =
∏

i∈I
∏

s∈S Bi(σ, s) and C(σ) =
∏

i∈I
∏

s∈S Ci(σ, s).

If σ is an equilibrium, then Ci(σ, s) ⊆ Bi(σ, s) for all i ∈ I and s ∈ S. The equilibrium is

quasi-strict if Bi(σ, s) = Ci(σ, s) for all i ∈ I and s ∈ S. This means that all players put strictly

positive weight on all their best replies. We further say that the equilibrium is strict if the set

of best replies is always a singleton, i.e., |Bi(σ, s)| = 1 for all i ∈ I and s ∈ S.

A strict equilibrium is also quasi-strict, but how these concepts relate to regularity is not

immediately apparent. The following proposition resembles a well known result for normal form

games (see, e.g., Corollary 2.5.3 in van Damme 1991).

Proposition 1 Every strict equilibrium is regular. Every regular equilibrium is quasi-strict.

Proof. Define J(σ) = ∂f(σ,U)
∂σ

to be the Jacobian of f with respect to σ and consider the

submatrix J̄(σ) obtained from J(σ) by crossing out all columns and rows corresponding to

components (ai, s) with ai ∈ Ai(s) \ Ci(σ, s). For all pairs (ai, s) with ai /∈ Ci(σ, s) we have

∂fi,ai,s(σ, U)

∂σi(ai, s)
= Ui(ai, s, σ)− Ui(asi , s, σ),

while for all j ∈ I and ãj ∈ Aj(s), with ãj 6= ai if j = i, we have

∂fi,ai,s(σ, U)

∂σj(ãj, s)
= 0.

It follows that

|det (J(σ))| = |det
(
J̄(σ)

)
||
∏
i∈I

∏
s∈S

∏
ai∈Ai(s)\Ci(σ,s)

[
Ui(ai, s, σ)− Ui(asi , s, σ)

]
|. (5.1)
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If the equilibrium σ ∈ Σ is strict, then {asi} = Ci(σ, s) = Bi(σ, s) for all i ∈ I and s ∈ S.

Therefore, det
(
J̄(σ)

)
= 1 and Ui(ai, s, σ)−Ui(asi , s, σ) < 0 for all pairs (ai, s) with ai /∈ Ci(σ, s).

It follows that det
(
J(σ)

)
6= 0 so that σ is regular. On the other hand, if the equilibrium is

regular, then each of the terms on the right hand side of equation (5.1) is nonzero. Hence,

Ui(ai, s, σ) < Ui(asi , s, σ) for all pairs (ai, s) with ai ∈ Ai(s) \ Ci(σ, s); this corresponds to the

definition of quasi-strictness.

5.2 Strongly Stable and Essential Equilibria

We now study some continuity properties of regular equilibria with respect the data of the game.

Continuity is harder to obtain the more parameters of the game are allowed to vary. In this and

the next subsection, we fix the action and state spaces and identify a dynamic stochastic game

G = (U, δ, q) with the vector of period payoffs, in addition of the transition function q and the

collection of discount factors (δi)i∈I . In this subsection, we also highlight the dependance of f ,

Equil and Ui on the game G by writing f(σ,G) and UGi (ai, s, σ).

We say that an equilibrium σ̄ of game Ḡ is strongly stable if there exist neighborhoods NḠ
of Ḡ and Nσ̄ of σ̄ such that the map equil : NḠ → Nσ̄ defined by equil(G) = Equil(G) ∩ Nσ̄
is single-valued and continuous. In words, an equilibrium is strongly stable if the equilibrium

correspondence is locally a continuous function. This definition generalizes that introduced for

normal form games by Kojima, Okada, and Shindoh (1985).

Proposition 2 Every regular equilibrium is strongly stable.

Proof. Let σ̄ be a regular equilibrium of game Ḡ. Since ∂f(σ̄,Ḡ)
∂σ

has full rank, the implicit

function theorem implies the existence of open neighborhoods NḠ of Ḡ and Nσ̄ of σ̄ and a

differentiable function σ̃ : NḠ → Nσ̄ such that for all G ∈ NḠ, σ̃(G) is the unique solution

σ ∈ Nσ̄ to f(σ,G) = 0. We can choose NḠ and Nσ̄ small enough so that for all i ∈ I, all

s ∈ S, and all ai ∈ Ai(s) the following properties hold: (i) If σ̄i(ai, s) > 0, then σi(ai, s) > 0

for all σ ∈ Nσ̄. (ii) If U Ḡi (ai, s, σ̄) − U Ḡi (asi , s, σ̄) < 0, then UGi (ai, s, σ) − UGi (asi , s, σ) < 0 for all

(σ,G) ∈ Nσ̄ ×NḠ.

Denote σ̃(G) by σG. From (i) it follows that σGi (ai, s) > 0 for all ai ∈ Ci(σ̄, s). This together

with the definition of f implies that for all G ∈ NḠ

Ci(σ̄, s) ⊆ Ci(σ
G, s) and UGi (ai, s, σ

G) = UGi (asi , s, σ
G) for ai ∈ Ci(σG, s). (5.2)
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Now, for ai ∈ Ai(s) \ Ci(σ̄, s), the fact that σ̄ is regular and so quasi-strict implies that

U Ḡi (ai, s, σ̄) < U Ḡi (asi , s, σ̄). From (ii) it follows that UGi (ai, s, σ
G) < UGi (asi , s, σ

G) and, by defini-

tion of σG, σG(ai, s) = 0. It follows that for all G ∈ NḠ

Ci(σ
G, s) ⊆ Ci(σ̄, s) and UGi (ai, s, σ

G) < UGi (asi , s, σ
G) for ai /∈ Ci(σ̄, s). (5.3)

Conditions (5.2) and (5.3) imply that σG ∈ Equil(G) for all G ∈ NḠ. Moreover, σG is the

only equilibrium of G in Nσ̄ because any other equilibrium σ would have to satisfy f(σ,G) = 0;

consequently, equil(G) = Equil(G) ∩ Nσ̄ = σG. Since σG is differentiable, equil(G) = σG is

differentiable (and therefore continuous).

For future reference we note that the proof of Proposition 2 develops an argument we exploit

in the proof of our main purification result (see Section 7.2.2 for details). The idea behind the

proof is to show that close enough to a regular equilibrium σ̄ of Ḡ, the system of equations

f(σ,G) = 0 fully characterizes the equilibrium map Equil. This is not self evident for, as we

noted in Section 3.1, f(σ,G) = 0 is necessary but not sufficient for σ ∈ Equil(G). Hence, to

establish the proposition, we further invoke the quasi-strictness of a regular equilibrium.

Importantly, the proof of Proposition 2 shows that the equilibrium correspondence is locally

not only a continuous but also a differentiable function.

Corollary 2 Let σ̄ ∈ Equil(Ḡ) be regular. Then there exist open neighborhoods NḠ of Ḡ and Nσ̄
of σ̄ such that the map equil : NḠ → Nσ̄ defined by equil(G) = Equil(G)∩Nσ̄ is a differentiable

function.

To illustrate, note that the symmetric equilibrium in Example 1 is regular and therefore differ-

entiable in the parameters of the model.

Turning to the notion of essentiality, we say that an equilibrium σ̄ of game Ḡ is essential

if for every neighborhood Nσ̄ there exists a neighborhood NḠ such that for all games G ∈ NḠ
there exists σ ∈ Equil(G) ∩ Nσ̄. In words, an equilibrium is essential if it can be approximated

by equilibria of nearby games. Since any strongly stable equilibrium can be approximated by

equilibria of nearby games, the following proposition is immediate.

Proposition 3 Every strongly stable equilibrium is essential.

Theorem 1, Proposition 2, and Proposition 3 permit us to deduce the generic essentiality of

equilibria, generalizing a well known result for normal form games due to Wu and Jiang (1962)

to our dynamic context.

19



In closing, we note that the regularity notion in Haller and Lagunoff (2000) does not imply

quasi-strictness. Since that regularity notion does not restrict payoffs on actions which are not

used in equilibrium, it is easy to construct equilibria which are regular in Haller and Lagunoff’s

(2000) sense while not being quasi-strict. Further, we can construct a game with an equilibrium

which is regular according to Haller and Lagunoff (2000) but is not strongly stable. Indeed, just

for simplicity assume that |I| = 2 and take any equilibrium σ satisfying the notion of regularity in

Haller and Lagunoff (2000). Now, construct the following artificial game. For some state s′, add a

new action a′i to each of the action sets Ai(s
′), i = 1, 2. We keep the game unchanged when none

of added actions is played so that we only need to specify the payoffs and the transition when

the state is s′ and the action profile a is such that ai = a′i for some i. The transition is extended

so that q(s′; a, s′) = 1 whenever ai = a′i for some i. Payoffs are taken as follows. When player 1

plays a′1 in state s′ and 2 plays a2 6= a′2, then 1’s period payoff equals (1− δi)Ui(ai, s, σ) for some

action ai ∈ Ci(σ, s); while if player 2 plays a′2 then 1’s payoff is u1(a′, s′) > maxa∈A(s),s∈S u1(a, s).

Player 2’s payoff is constructed so that u2(a1, a
′
2, s
′) is sufficiently negative when a1 6= a′1, while

u2(a′, s′) > maxa∈A(s),s∈S u2(a, s). Clearly, the equilibrium σ of the original game can be extended

to a strategy profile σ′ putting weight 0 on actions a′i in the new artificial game. Moreover, σ′

satisfies the definition of regularity in Haller and Lagunoff (2000) because that definition only

imposes restrictions on actions belonging to the carrier of the equilibrium strategies. However,

the equilibrium σ′ is not strongly stable because a small increase to player 1’s payoff from the

added action a′1 completely reshapes the equilibrium.

5.3 Application: Comparative Statics and Multiple Equilibria

The literature on normal form games has forcefully argued that an equilibrium should be stable

against slight changes to the parameters of the game because the data of the game are usually

not known exactly. This argument is especially pertinent in our setting if the researcher uses

modern econometric techniques such as Aguirregabiria and Mira (2007), Bajari, Benkard, and

Levin (2007), Judd and Su (2008), Pakes, Ostrovsky, and Berry (2006), and Pesendorfer and

Schmidt-Dengler (2008) to estimate the underlying primitives of a dynamic stochastic game and

therefore recovers the payoffs with estimation error. It then becomes critical that slight changes in

the date of the game do not severely alter the nature of the strategic interactions among players.

The fact that strongly stable equilibria are the norm, rather than the exception, implies that

we can be relatively confident about the robustness of the conclusions reached when employing

these econometric tools.

We also lay the foundations for differentiable comparative statics. Because regular equilibria
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are strongly stable and, as shown by Corollary 2, the locally defined equilibrium map equil is

differentiable, differentiable comparative statics are well defined, at least for small changes to the

system.3

While the problem of computing equilibria is beyond the scope of this paper, we briefly discuss

the implications of our results for the numerical implementation of the above comparative statics

exercises. Consider a game Ḡ and an equilibrium σ̄. In applied work, the fundamentals of the

game Ḡ and the equilibrium σ̄ may be estimated from data. We are interested in how the

equilibrium changes when we slightly change the fundamentals from Ḡ to Ĝ. Our results ensure

the existence of a locally defined differentiable function equil : NḠ → Nσ̄ that maps games

to equilibria with equil(Ḡ) = σ̄. We assume, without loss of generality, that NḠ is convex.

Moreover, if Ĝ is close enough to Ḡ, then Ĝ belongs to NḠ, the domain of equil. Consider the

homotopy function H : Nσ̄ × [0, 1]→ R
∑
i∈I

∑
s∈S |Ai(s)| defined by

H(σ, τ) = f(σ, (1− τ)Ḡ+ τĜ).

Our results ensure the existence of a path σ : [0, 1] → Nσ̄ satisfying H(σ(τ), τ) = 0 for all

τ ∈ [0, 1]. It is parameterized by the homotopy parameter τ and connects the “old” equilibrium

σ(0) = σ̄ at Ḡ to a “new” equilibrium σ(1) = σ̂ at Ĝ. One way to compute this path is to

numerically solve the ordinary differential equation

dσ

dτ
(τ) = −

[ df
dσ

(
σ(τ), (1− τ)Ḡ+ τĜ

)]−1 ∂f

∂G
(σ(τ), (1− τ)Ḡ+ τĜ)

(
Ĝ− Ḡ

)
with initial condition σ(0) = σ̄. See Zangwill and Garcia (1981) for a more detailed discussion of

homotopy methods and Besanko, Doraszelski, Kryukov, and Satterthwaite (2007) and Borkovsky,

Doraszelski, and Kryukov (2008) for an application to dynamic stochastic games.

A particular vexing problem arises when the game has multiple equilibria. In this case little

is known about which equilibrium is likely be played after a change to the system has occurred.

What happens depends on how players adjust to the change. See Pakes (2008) for a more detailed

discussion of the multiplicity problem in applied work and Fudenberg and Levine (1998) for an

exposition of the theory of learning in games. Our results offer some guidance here; in particular,

under a variety of learning processes, our results suggest to single out σ(1) = σ̂ as the equilibrium

that is likely to be played after the original game Ḡ has been slightly changed.

3Aguirregabiria and Ho (2008) conduct counterfactual experiments in a dynamic stochastic game by assuming
the existence of a locally defined differentiable function that relates parameters to equilibria. While their model
does not fit exactly into our framework, their analysis illustrates how the existence and differentiability of equil
can be exploited in applications.
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To provide an informal argument, consider the learning process that has given rise to the

original equilibrium σ̄ and note that σ̄ must have been an asymptotically stable point of this

learning process in the original game Ḡ. We further assume σ̄ is a sink. Suppose that the flow

that characterizes the learning process is sufficiently continuous in the fundamentals of the game.

While the theory of learning has not yet been developed for dynamic stochastic games, at least

in the context of normal form games this is the case for a variety of learning processes, e.g.,

those derived from best replies. But if σ̄ is a sink and the learning rule is sufficiently continuous,

then σ̂ must be a sink and therefore an asymptotically stable point of the learning process of the

modified game Ĝ. Moreover, as the starting point of the learning process σ̄ is close enough to σ̂,

the learning process in the modified game will give rise to σ̂.

6 Purification of Regular Equilibria

In this section we present our main purification result. We begin by introducing incomplete

information into our baseline model of dynamic stochastic games. After presenting our main

purification result, we briefly discuss some of its implications for repeated games.

6.1 Dynamic Stochastic Games of Incomplete Information

Below we consider a slightly different version of the model studied in the previous sections.

Following Harsanyi (1973a), we now assume that in every period t, after state st is drawn, player

i receives a shock ηti ∈ R|A(st)| before choosing his action. The shock ηi is known to player i

but not to his rivals. The private shocks are independent across players and periods and drawn

from a probability distribution µi(·; st). We assume that µi(·; s) is differentiable and therefore

absolutely continuous with respect to the Lebesgue measure in R|A(s)|. The period payoff of

player i is

ui(a, s) + ηi(a),

where ηi(a) denotes the a component of ηi. We extend ηi(·) in the obvious way to allow for

randomization over A(s). We refer to the private information game as the perturbed dynamic

stochastic game; it is characterized by a tuple

〈S, (Ai(s))i∈I,s∈S, U, (δi)i∈I , (µi(·, s))i∈I,s∈S, q, q̄〉.
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A pure strategy for player i is a function bi(s, ηi) of the state s ∈ S and the private shock

ηi ∈ RA(s). The equilibrium concept is Bayesian Markov perfect equilibrium. We, however, are

not interested in equilibrium strategies but in equilibrium distributions. A distribution profile

σ = (σi)i∈I ∈ Σ is a Markov perfect equilibrium distribution (or equilibrium distribution, for

short) if and only if (i) for all i ∈ I there exists a function V̄i : S → R such that for all s ∈ S

V̄i(s) =

∫ (
max

ai∈Ai(s)
ui((ai, σ−i(·, s)), s) + ηi(ai, σ−i(·, s)) + δi

∑
s′∈S

V̄i(s
′)q(s′; (ai, σ−i(·, s)), s)

)
dµi(ηi; s)

(6.1)

and (ii) for all s ∈ S the distribution profile σ(·, s) = (σi(·, s))i∈I is consistent with a (pure

strategy) Bayesian Nash equilibrium of the incomplete information game in which player i chooses

an action ai ∈ Ai(s) and, given the action profile a = (ai)i∈I , obtains a payoff

ui(a, s) + ηi(a) + δi
∑
s′∈S

V̄i(s
′)q(s′; a, s), (6.2)

where by consistent we mean that if (bi(s, ηi))i∈I is the strategy profile in the Bayesian Nash

equilibrium, then σi(ai, s) =
∫
{ηi|bi(s,ηi)=ai} dµi(ηi; s).

4

This characterization of Bayesian Markov perfect equilibrium is similar in spirit to the char-

acterization in Section 2.2. The main difference is that here we have a game of incomplete in-

formation and therefore the equilibrium concept in the reduced one-shot game is Bayesian Nash

equilibrium. Escobar (2008) ensures the existence of a Bayesian Markov perfect equilibrium in

the perturbed dynamic stochastic game.

6.2 Purification: Convergence and Approachability

We are now ready to explore how good of an approximation to the original (unperturbed) dynamic

stochastic game the perturbed game is. More precisely, we consider, for all i ∈ I and s ∈ S, a

sequence of probability distributions of private shocks (µni (·; s))n∈N converging to a mass point

at 0 ∈ R|A(s)|. We ask whether the corresponding sequence of perturbed games has equilibrium

distributions that are getting closer to the equilibria of the original game.

Before answering this question, we provide a precise notion of convergence for a sequence of

probability distributions.

4Given the absolute continuity of µi, player i has a unique best reply for almost all realizations of ηi.
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Definition 3 The sequence of probability distributions (µni (·; s))n∈N converges to a mass point

at 0 ∈ R|A(s)| as n→∞ if

lim
n→∞

1

µni (Rn; s)

∫
ηi∈Rn

{
max
a∈A(s)

|ηi(a)|
}
dµni (ηi; s) = 0

for any sequence of measurable sets (Rn)n∈N such that µni (Rn) > 0.

The perturbations considered by Harsanyi (1973a) satisfy Definition 3. While our approachability

result in Theorem 2 remains valid under more general perturbations, we prefer to work with a

single convergence notion because both convergence and approachability are desirable properties

in applications. Note that Definition 3 is satisfied by, for example, any sequence of probability

distribution (µni (·; s))n∈N such that the support of µni (·; s) is contained in a ball of radius r(n)

centered at 0 ∈ R|A(s)|, where r(n)→ 0 as n→∞.

To facilitate the exposition we define Equiln(U) to be the set of equilibrium distributions

of the perturbed game when players’ private shocks are drawn from µn = (µni (·; s))i∈I,s∈S. The

following proposition shows that as the private shocks vanish, any converging sequence of equi-

librium distributions for perturbed games converges to an equilibrium of the original game.

Proposition 4 (Convergence) Suppose that, for all i ∈ I and all s ∈ S, (µni (·; s))n∈N con-

verges to a mass point at 0 ∈ R|A(s)| as n → ∞. Suppose further that (σn)n∈N, with σn ∈
Equiln(U), converges to σ̄ as n→∞. Then, σ̄ ∈ Equil(U).

The proof of Proposition 4 is detailed in the Appendix. Note that any sequence (σn)n∈N ⊆ Σ

has a converging subsequence and therefore Proposition 4 applies to the subsequence.

The following is the main result of this section. It shows that any regular equilibrium of the

original game can be approximated by equilibrium distributions of nearby perturbed games.

Theorem 2 (Approachability) Suppose that, for all i ∈ I and all s ∈ S, (µni (·; s))n∈N con-

verges to a mass point at 0 ∈ R|A(s)| as n→∞. Let σ̄ be a regular equilibrium of game U . Then,

for all ε̄ > 0 and all large enough n, there exists σn ∈ Equiln(U) such that ‖σn − σ̄‖ < ε̄.

In conjunction with Theorem 1, Theorem 2 indicates that, for almost all games U ∈ R|I|
∑
s∈S |A(s)|,

all equilibria are purifiable. Hence, one can interpret the original game as an idealization—a

limit—of nearby games with a small amount of payoff uncertainty. Our main purification result
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also blunts a common criticism of the notion of a mixed-strategy equilibrium, namely that a

player has no incentive to adhere to the prescribed randomization over his pure actions, since in

the approximating equilibrium a player has a strictly optimal pure action for almost all realiza-

tions of his payoffs.

It is considerably more difficult to obtain lower hemi-continuity results such as Theorem 2

than closure results such as Proposition 4. The proof of Theorem 2 is detailed in Section 7.2.

We first characterize the set of equilibrium distributions of the games of incomplete information

as solutions to a fixed point problem. We then use the fixed point characterization and rely on

arguments previously presented by Govindan, Reny, and Robson (2003) to derive the existence

of an equilibrium distribution close enough to the regular equilibrium σ̄. That we are able to

generalize their proof once again shows the power of our regularity notion. The two key properties

satisfied by regular equilibria that we exploit are strong stability and quasi-strictness.

Coming back to Haller and Lagunoff’s (2000) work, we note that their regularity notion does

not imply purifiability because it does not imply quasi-strictness. See the discussion at the end

of Section 5.2 for an example.

6.3 Application: Repeated Games

Consider now a repeated game characterized by a period payoff function π : A → R|I| and a

discount factor δ. For simplicity, we assume that monitoring is perfect and public. We focus on

state strategies, formally defined as follows. Let S be a finite state space and q(·; a, s) ∈ ∆(S) be

a transition function and assume that the initial state of the repeated game is drawn according

to q̄ ∈ ∆(S). We define a finite state strategy for player i as a probability distribution over

actions σi(·, s) ∈ ∆(Ai) for each state s ∈ S. A finite state strategy profile is a finite state

strategy equilibrium if it is a subgame perfect equilibrium of the repeated game. We can also

see a finite state strategy equilibrium as a Markov perfect equilibrium of the stochastic game

〈S, (Ai)i∈I , U, (δi)i∈I , q, q̄〉, where U(a, s) = π(a) for all a and all s and δi = δ for all i.

Finite state strategies have received considerable attention in the literature on repeated games.

In contrast to more general strategies, finite state strategies are analytically tractable in that

incentive constraints can be written as a finite set of inequalities (e.g. Ely and Välimäki 2002).

Under additional assumptions on the transition, strict finite state equilibria are also robust to

private monitoring (Mailath and Morris 2002). Moreover, finite state strategies are rich enough

as to generate a variety of behaviors in repeated games because, as Fudenberg and Maskin (1986)
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have shown, finite state strategies are sufficient to prove a folk theorem. The following example

shows a finite state strategy equilibrium; see Mailath and Samuelson (2006) for additional details.

Example 2 (Repeated Prisoners’ Dilemma) Consider the repeated prisoners’ dilemma with

two players I = {1, 2}, two actions Ai = {C,D} per player, and a common discount factor

δ ∈]0, 1[. The payoff matrix is

C D

C 1 1 −g 1 + g

D 1 + g −g 0 0

where g > 0. Define the state space by S = {on, off} and the transition function by

q(on; a, s) =

1 if a = (C,C) and s = on,

0 otherwise

and q̄(on) = 1. Then, the trigger strategy can be represented as

ai(s) =

C if s = on,

D otherwise.

When δ > g
1+g

, the state strategy is a strict equilibrium and, according to Proposition 1, is also

regular.

Bhaskar (1998) and Bhaskar, Mailath, and Morris (2007) study repeated games having finite

state mixed strategy equilibria which fail to be locally unique. Those equilibria are not purifiable

and therefore fail to be robust to private information. At first glance, these results may seem

purely driven by the fact that players choose different mixed strategies after different payoff

irrelevant histories. Our next example shows this is not the case because one can construct

nontrivial mixed strategy equilibria which are regular.

Example 3 (Mixed Strategy Equilibrium in the Repeated Prisoners’ Dilemma) Consider

the repeated prisoners dilemma with state space S and transition q as defined in the previous

example. Let σ̄ be a mixed strategy equilibrium of the associated stochastic game. Clearly, for

all i, σ̄i(D, off) = 1 so mixing can occur only in state on. Suppose that player i mixes in state

on. Then, i must be indifferent between defecting and cooperating in state on. This implies that

σ̄j(C, on)
(

1 + δVi(on)
)

+ (1− σ̄j(C, on))
(
− g+ δ0

)
= σ̄j(C, on)

(
1 + g+ δ0

)
+ (1− σ̄j(C, on))0.
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Since the player is indifferent between cooperating and defecting when the state is on, the value

function is given by the value of defecting so that Vi(on) = σ̄j(C, on)(1 + g). Plugging into the

equation above we obtain the following quadratic equation

σ̄j(C, on)
(

1 + δσ̄j(C, on)(1 + g)
)

+ (1− σ̄j(C, on))(−g) = σ̄j(C, on)(1 + g)

which has a single positive solution

σ̄j(C, on) =

√
g

δ(1 + g)
.

Provided δ ≥ g
1+g

, this number is less than 1 and therefore the constructed profile is the only

mixed strategy equilibrium.

To study the regularity of the mixed strategy equilibrium σ̄, we compute the determinant of

the Jacobian of f at σ̄ as a function of g and δ. This determinant is 0 only when

δ ∈ {0, 1,−4(1 + 2g + g2)g4}.

Since δ ∈ [ g
1+g

, 1[, the finite state mixed strategy equilibrium σ̄ is regular.

At the same time, our results allow us to conclude that an important class of subgame

perfect equilibria in repeated games are knife-edge cases. Consider again the repeated prisoners’

dilemma in Example 2 and introduce a payoff irrelevant state variable s ∈ {CC,CD,DC,DD}
with transition function

q(s′; a, s) =

1 if a = s′,

0 otherwise
(6.3)

and initial distribution q̄(CC) = 1. In words, the state in the subsequent period is the action

profile played in the current period. Any strictly state dependent Markov perfect equilibrium of

this dynamic stochastic game such that at each decision node each player is indifferent between

the actions taken by his opponent is a belief-free equilibrium of the repeated prisoners’ dilemma.

Introduced by Ely and Välimäki (2002), belief-free equilibria are a class of subgame perfect

equilibria in stationary behavior strategies with one-period memory. Ely and Välimäki (2002)

and Bhaskar, Mailath, and Morris (2007) show that there is a continuum of belief-free equilibria

and that none of them is purifiable. These results are consistent with ours because, by restricting

payoffs to be state independent, the repeated prisoners’ dilemma constitutes a negligible subset

of dynamic stochastic games. Corollary 1 implies that belief-free equilibria cannot be regular
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and thus cannot survive even a small amount of state dependence in payoffs.

Our results appear to suggest that by introducing some state dependence into the payoffs

one could obtain regularity and purifiability of belief free equilibria. This, however, is not the

case. To see this fix the state space S = {CC,CD,DC,DD}, the action sets Ai = {C,D}, and

the transition q defined in equation (6.3). Suppose now that we allow payoffs to depend on the

state s so that ui(a, s) is the payoff to player i when the action profile is a ∈ {C,D}2 and the

state is s ∈ {CC,CD,DC,DD}. In the prisoners dilemma above, we assumed that the payoffs

ui(a, s) do not depend on the state s. Now, we allow for state dependence and, as we have done

throughout the paper, we see the period payoffs as a vector U ∈ R8. We say that a Markov

strategy profile σ is a belief free equilibrium if for each player i at each decision node s ∈ S,

σi(·, s) puts positive weight on actions which are optimal no matter what player j picks. The

following proposition shows that belief free equilibria are not robust to payoff dependence.

Proposition 5 For almost all games U ∈ R8, the set of Markov belief free equilibria is empty

The idea behind the proof is to show that the belief free notion imposes too many restrictions

on the set of Markov strategies so that those restrictions can rarely be satisfied. To see the

logic behind the result, consider a two person normal form game and suppose that we look for

mixed strategy equilibria σ = (σi)i∈I which are belief free: the strategy σi is optimal no matter

what i’s rival plays. It is then clear that unless payoffs happen to be trivial, no such belief free

equilibrium will exist.

7 Proofs

In this section we detail the proofs of our main genericity and purification results in Theorems 1

and 2, respectively.

7.1 Proof of Theorem 1

7.1.1 Two Useful Lemmata

Below we present two lemmata. As a corollary to the second lemma we further obtain a charac-

terization of the dimension of the equilibrium graph.
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To facilitate the subsequent analysis we require some additional notation. Define arbitrary

product sets B∗ =
∏

i∈I
∏

s∈S B
∗
i (s) and C∗ =

∏
i∈I
∏

s∈S C
∗
i (s), where B∗i (s), C

∗
i (s) ∈ 2|Ai(s)|.

Further define G(B∗, C∗) as the set of games having some equilibrium σ with best replies B∗ and

carriers C∗. Formally,

G(B∗, C∗) =
{
U | there exists σ ∈ Equil(U) such that Bi(σ, ·) = B∗i and Ci(σ, ·) = C∗i for all i ∈ I

}
,

where the sets Bi(σ, s) and Ci(σ, s) are as defined in Section 5.1. We also define I(B∗, C∗) as

the set of games having some irregular equilibrium with best replies B∗ and carriers C∗. Clearly,

I(B∗, C∗) ⊆ G(B∗, C∗).

The first lemma shows that the set of games having some equilibrium that fails to be quasi-

strict has measure zero. The proof proceeds as follows. We first derive a set of necessary

conditions characterizing a game Ū and an equilibrium σ̄ that fails to be quasi-strict. These

indifference conditions can be written as a system of equations, M(σ̄, Ū) = 0. Since these

equations are linearly independent (as shown below in Claim 1), we can derive a locally defined

function that maps strategies and some components of the payoff vector U to the entire vector

U . We then show that the set of all games Gσ̄,Ū(B∗, C∗) that are close to Ū and have some

equilibrium that is close to σ̄ has a small dimension and is therefore negligible (Claim 2). The

lemma finally follows by applying this logic to each possible pair (σ̄, Ū) in a properly chosen way.

Lemma 2 If B∗ 6= C∗, then λ(G(B∗, C∗)) = 0. In follows that λ(I(B∗, C∗)) = 0.

Recall from Section 4 that λ is the Lebesgue measure on the set of games.

Proof. Considering a game Ū with an equilibrium σ̄ such that Bi(σ̄, ·) = B∗i and Ci(σ̄, ·) = C∗i

for all i ∈ I. Because B∗ 6= C∗ by assumption, σ̄ fails to be quasi-strict. Fix a collection of

actions asi ∈ Ai(s) such that asi ∈ C∗i (s) for all i ∈ I and s ∈ S.

By definition of B∗i (s), it must be that Ui(ai, s, σ̄) equals Ui(asi , s, σ̄) for all ai ∈ B∗i (s). In

words, player i’s payoff to all his best replies is the same. In matrix notation Ui(ai, σ̄, s) in

equation (3.1) can be written as

Psai,σ̄−i
(
I
∑
s∈S |A(s)| − δiQPσ̄

)−1
Ūi,

where Psai,σ̄−i is as defined in Section 2.3. Hence, for all ai ∈ B∗i (s) \ {asi},

(Psai,σ̄−i − P
s
asi ,σ̄−i

)
(
I
∑
s∈S |A(s)| − δiQPσ̄

)−1
Ūi = 0.
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For all ai ∈ B∗i (s) \ {asi} and s ∈ S, define the (ai, s) row of P̄i,σ̄ ∈ R
∑
s∈S(|B∗i (s)|−1)×

∑
s∈S |A(s)| by(

Psai,σ̄−i − P
s
asi ,σ̄−i

)
. Write the indifference conditions for player i as

P̄i,σ̄
(
I
∑
s∈S |A(s)| − δiQPσ̄

)−1
Ūi = 0.

Collect the indifference conditions for all players to obtain the system of equations

M(σ̄, Ū) =


P̄1,σ̄

(
I
∑
s∈S |A(s)| − δ1QPσ̄

)−1
Ū1

...

P̄|I|,σ̄
(
I
∑
s∈S |A(s)| − δ|I|QPσ̄

)−1
Ū|I|

 = 0.

Claim 1 The Jacobian ∂M(σ̄,Ū)
∂U

has full rank
∑

i∈I
∑

s∈S
(
|B∗i (s)| − 1

)
.

The proof of Claim 1 is as follows. The Jacobian of M with respect to U takes the form

∂M(σ̄, Ū)

∂U
=


P̄1,σ̄

(
I
∑
s∈S |A(s)| − δ1QPσ̄

)−1
0 . . . 0

0 P̄2,σ̄

(
I
∑
s∈S |A(s)| − δ2QPσ̄

)−1
. . . 0

...
...

...

0 0 . . . P̄|I|,σ̄
(
I
∑
s∈S |A(s)| − δ|I|QPσ̄

)−1

 .

The matrix P̄i,σ̄ has full rank
∑

s∈S(|B∗i (s)| − 1). To see this, note that for all pairs (ai, s)

with ai ∈ B∗i (s) \ {asi}, the (ai, s) row of P̄i,σ̄ contains a zero in all those components (a′, s′)

where either s′ 6= s or ai is not contained in a′ (by this we mean that there is no a−i such that

(ai, a−i) = a′). The (ai, s) row also contains a nonzero term in some component (a′, s) where a′

contains ai; indeed,
∑

a′ contains ai
σ̄−i(a

′ \ ai, s) =
∑

a−i
σ̄−i(a−i, s) = 1, where given a′ = (ai, a−i)

we take a′ \ ai = a−i. This shows that P̄i,σ̄ has full rank. The matrix
(
I
∑
s∈S |A(s)| − δiQPσ̄

)−1

has full rank as a consequence of Lemma 1. Taken together, these observations imply that the

Jacobian of M with respect to U has full rank
∑

i∈I
∑

s∈S
(
|B∗i (s)| − 1

)
, thereby completing the

proof of Claim 1.

As a consequence of the implicit function theorem, it is possible to obtain open sets N 1 ⊆
R|I|

∑
s∈S |A(s)|−

∑
i∈I

∑
s∈S(|B∗i (s)|−1), N 2 ⊆ R

∑
i∈I

∑
s∈S(|B∗i (s)|−1), and N ⊆ Σε, where Ū ∈ N 1 × N 2

(properly ordered) and σ̄ ∈ N , and a function Φ: N 1 × N → N 2 such that for all (σ, U1) ∈
N ×N 1, Φ(U1, σ1) is the unique solution U2 ∈ N 2 to M(σ, (U1, U2)) = 0. We define the function

H(σ, U1) = (U1,Φ(σ, U1)). In order to highlight the dependence of these objects on σ̄ and Ū ,
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we write N 1
σ̄,Ū

, N 2
σ̄,Ū

, Nσ̄,Ū , and Hσ̄,Ū , respectively. We assume, without loss of generality, that

N 1
σ̄,Ū

, N 2
σ̄,Ū

, and Nσ̄,Ū are balls with rational centers and radii.

Define Gσ̄,Ū(B∗, C∗) as the set of all games that are close enough to Ū and have some equi-

librium that is close enough to σ̄ with the same best replies and carriers as σ̄. More formally,

Gσ̄,Ū(B∗, C∗) =
{
U ∈ N 1

σ̄,Ū ×N
2
σ̄,Ū | there exists σ ∈ Equil(U) ∩Nσ̄,Ū

with Bi(σ, ·) = B∗i for all i ∈ I and σ ∈ A(C∗)
}
,

where A(C∗) = {σ ∈ Σ | Ci(σ, ·) = C∗i for all i ∈ I}. Further define the set

P σ̄,Ū(B∗, C∗) =
{
U ∈ N 1

σ̄,Ū ×N
2
σ̄,Ū , | there exists (σ, U1) ∈ N 1

σ̄,Ū ×
(
A(C∗) ∩Nσ̄,Ū

)
such that Hσ̄,Ū(σ, U1) = U

}
.

Clearly, Gσ̄,Ū(B∗, C∗) ⊆ P σ̄,Ū(B∗, C∗).

Claim 2 λ
(
P σ̄,Ū(B∗, C∗)

)
= 0.

The proof of Claim 2 is as follows. Note that dim(N 1
σ̄,Ū

) = |I|
∑

s∈S|A(s)| −
∑

i∈I
∑

s∈S(|B∗i (s)| − 1)

and dim(A(C∗) ∩ Nσ̄,Ū) =
∑

i∈I
∑

s∈S
(
|C∗i (s)| − 1

)
. Therefore, dim(N 1

σ̄,Ū
×
(
A(C∗) ∩ Nσ̄,Ū

)
) =

|I|
∑

s∈S|A(s)| −
∑

i∈I
∑

s∈S|B∗i (s)| +
∑

i∈I
∑

s∈S|C∗i (s)| < |I|
∑

s∈S|A(s)| for B∗i (s) 6= C∗i (s) for

some i ∈ I and s ∈ S. Since P σ̄,Ū(B∗, C∗) = Hσ̄,Ū

((
A(C∗) ∩Nσ̄,Ū

)
×N 1

σ̄,Ū

)
, the claim follows.

We are now ready to complete the proof of Lemma 2. For each game Ū having some equi-

librium σ̄ such that Bi(σ̄, ·) = B∗i and Ci(σ̄, ·) = C∗i for all i ∈ I, we can construct the sets

Gσ̄,Ū(B∗, C∗) and P σ̄,Ū(B∗, C∗). Moreover, since the neighborhoods N 1
σ̄,Ū

, N 2
σ̄,Ū

, and Nσ̄,Ū are

chosen from a countable set, it follows that

G(B∗, C∗) ⊆ ∪n∈NQ
n,

where Qn = P σ̄n,Ūn(B∗, C∗) is constructed for each of the countable number of neighborhoods.

Lemma 2 now follows from Claim 2 by noting that the countable union of measure zero sets has

measure zero as well.

The proof of Lemma 2 resembles proofs given for normal form games by Harsanyi (1973a) and

van Damme (1991). The main difference is that we cannot define Φ globally (see the discussion

on Harsanyi’s (1973b) approach after Theorem 1). Instead we analyze the system of equations
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Φ(σ̄, Ū) = 0 locally and apply this construction to a countable set of games and equilibria. Haller

and Lagunoff (2000) also use local arguments to show the local finiteness of the equilibrium set.

We, in contrast, use local arguments only in order to dispense with equilibria which are not

quasi-strict.

Having disposed of all games having some equilibrium that fails to be quasi-strict, we turn

to games having equilibria that all are quasi-strict. Within this class we restrict attention to

completely mixed equilibria. The second lemma shows that for these equilibria the Jacobian of

f with respect to the pair (σ, U) has full rank. Its proof is similar to that of Claim 1 and exploits

Lemma 1 and the diagonal structure of the Jacobian.

To state the lemma, we define the set of completely mixed profiles in Σε as

Σ̃ =
{
σ ∈ Σε | σi(ai, s) > 0 for all i ∈ I, ai ∈ Ai(s), and s ∈ S

}
.

Lemma 3 If σ ∈ Σ̃, then ∂f(σ,U)
∂(σ,U)

has full rank
∑

i∈I
∑

s∈S|Ai(s)|.

Proof. In matrix notation σi(ai, s)
(
Ui(ai, s, σ) − Ui(asi , s, σ)

)
in equation (3.3) can be written

as

σi(ai, s)
(
Psai,σ−i − P

s
asi ,σ−i

)
(I∑

s∈S |A(s)| − δiQPσ)−1Ui.

For all ai ∈ Ai(s) \ {asi} and s ∈ S, define the (ai, s) row of P ∗i (σ) ∈ R
∑
s∈S(|Ai(s)|−1)×

∑
s∈S |A(s)| by

σi(ai, s)
(
Psai,σ−i −P

s
asi ,σ−i

)
. The components of f associated with player i can now be written as

fi(σ, U) =


∑

ai∈Ai σi(ai, s1)− 1
...∑

ai∈Ai σi(ai, s|S|)− 1

P ∗i (σ)(I∑
s∈S |A(s)| − δiQPσ)−1Ui

 .

The derivative of the first |S| components of fi with respect to σi takes the form

σi(·, s1) σi(·, s2) . . . σi(·, s|S|)
1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1


.
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This matrix, denoted by Xi, has full rank |S|. The Jacobian of the first |S| components of fi

with respect to (σ−i, U) is 0 ∈ R|S|×(
∑
j 6=i|Aj ||S|+|I|

∑
s∈S |A(s)|).

Next consider the components of fi associated with ai 6= asi . The Jacobian of those compo-

nents with respect to U takes the form(
U1 U2 . . . Ui−1 Ui Ui+1 . . . U|I|

0 0 . . . 0 P ∗i (σ)(I∑
s∈S |A(s)| − δiQPσ)−1 0 . . . 0

)
.

The matrix P ∗i (σ) has full rank
∑

s∈S(|Ai(s)| − 1). To see this, note that for all pairs (ai, s) with

ai ∈ Ai(s) \ {asi}, the (ai, s) row of P ∗i (σ) contains a zero in all those components (a′, s′) where

either s′ 6= s or ai is not contained in a′ (by this we mean that there is no a−i such that (ai, a−i) =

a′). The (ai, s) row also contains a nonzero term in some component (a′, s) where a′ contains

ai; indeed,
∑

a′ contains ai
σ−i(a

′ \ ai, s) =
∑

a−i
σ−i(a−i, s) = 1, where given a′ = (ai, a−i) we write

a′ \ ai = a−i. Since P ∗i (σ) has full rank, so does the matrix Zi = P ∗i (σ)(I∑
s∈S |A(s)|− δiQPσ)−1 as

a consequence of Lemma 1.

We now see that, up to permutations of rows, the Jacobian of f with respect to the pair

(σ, U) takes the form

∂f(σ, U)

∂(σ, U)
=



σ1 σ2 . . . σ|I| U1 U2 . . . U|I|

X1 0 0 0 0 0 . . . 0

0 X2 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 0 X|I| 0 0 . . . 0

Z1 0 . . . 0

0 Z2 . . . 0

Y1 Y2 . . . Y|I|
...

...
. . .

...

0 0 . . . Z|I|



,

where Yi ∈ R
∑
i∈I

∑
s∈S(|Ai(s)|−1)×

∑
s∈S |Ai(s)|. This permits us to deduce that ∂f(σ,U)

∂(σ,U)
has full rank∑

i∈I
∑

s∈S|Ai(s)|.

Lemma 3 implies a version of the structure theorem.

Corollary 3 The equilibrium graph has the same dimension as the space of games.

Corollary 3 generalizes an observation made by Govindan and Wilson (2001) for normal form

games to dynamic stochastic games. Had we only been interested in obtaining a finiteness result,
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this corollary and the transversality theorem yield it almost immediately. To obtain a finiteness

result, it is enough to restrict attention to completely mixed equilibria; therefore, there is no

need for Lemma 2. Our notion of regularity therefore leads to a much simpler finiteness proof

than that of Haller and Lagunoff (2000). Our analysis also provides a finiteness proof for normal

form games that cannot be deemed as more complicated than the proof based on the theory of

semi-algebraic sets in Govindan and Wilson (2001).5

7.1.2 Proof of Theorem 1

We employ the following result from differential topology known as the transversality theorem.

Theorem 3 (Transversality Theorem) Let O ⊆ Rn be open and L : O×Rs → Rn be contin-

uously differentiable. Assume that the Jacobian ∂L(x,y)
∂(x,y)

has rank n for all (x, y) ∈ O × Rs such

that L(x, y) = 0. Then, for almost all ȳ ∈ Rs, the Jacobian ∂L(x,ȳ)
∂x

has rank n for all x ∈ O such

that L(x, ȳ) = 0.

The transversality theorem is a generalization of the well known Sard’s theorem. See Mas-

Colell, Whinston, and Green (1995) for an intuitive discussion and applications in economics and

Abraham and Robbin (1967) and Guillemin and Pollack (1974) for further results and technical

details.

We are now ready to prove Theorem 1. Denote by Ī the set of all games having some irregular

equilibrium. Then

Ī =
⋃

C∗⊆B∗
I(B∗, C∗).

Since there exists only a finite number of sets B∗ and C∗ such that C∗ ⊆ B∗, it is enough to

show that λ(I(B∗, C∗)) = 0 for all such sets. If B∗ 6= C∗, this follows from Lemma 2.

Suppose B∗ = C∗ and consider the submatrix J̄(σ) obtained from J(σ) = ∂f(σ,U)
∂σ

by crossing

out all rows and columns corresponding to components (ai, s) with ai /∈ B∗i (s). As shown in the

proof of Proposition 1,

|det (J(σ))| = |det
(
J̄(σ)

)
||
∏
i∈I

∏
s∈S

∏
ai /∈Ci(σ,s)

[
Ui(ai, s, σ)− Ui(asi , s, σ)

]
|.

5Note, however, that extending Govindan and Wilson’s (2001) tools to dynamic stochastic games requires
establishing the semi-algebraicity of f .
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Since Ui(ai, s, σ)−Ui(asi , s, σ) < 0 for ai /∈ Ci(σ, s), J(σ) has full rank if and only if so does J̄(σ).

The submatrix J̄(σ) is itself the Jacobian of a completely mixed equilibrium. Without loss of

generality we can therefore assume that B∗(s) = C∗(s) = A(s) for all s ∈ S. Then,

I(B∗, C∗) ⊆
{
U ∈ R|I|

∑
s∈S |A(s)| | there exists σ ∈ Σ̃ such that f(σ, U) = 0 and

∂f(σ, U)

∂σ
is singular

}
.

From Lemma 3, ∂f(σ,U)
∂(σ,U)

has full rank for all pairs (σ, U) ∈ Σ̃× R|I|
∑
s∈S |A(s)|. The transversality

theorem therefore implies that for almost all games U ∈ R|I|
∑
s∈S |A(s)|, ∂f(σ,U)

∂σ
has full rank

whenever f(σ, U) = 0.

7.2 Proof of Theorem 2

To prove Theorem 2 we proceed as follows. In Section 7.2.1 we first derive a system of nonlinear

equations that characterizes the equilibrium distributions of a perturbed dynamic stochastic

game. In Section 7.2.2 we then exploit a result from algebraic topology to ensure that there

exists a solution to this system and, moreover, that this solution is close enough to the regular

equilibrium σ̄ of the original (unperturbed) game.

7.2.1 Alternative Characterization

Below we derive a system of nonlinear equations that characterizes the equilibrium distributions

of a perturbed dynamic stochastic game. This, in effect, amounts to providing an alternative

characterization of a Bayesian Markov perfect equilibrium. See Hotz and Miller (1993) and

Aguirregabiria and Mira (2007) for similar derivations.

Continuation Values. Consider a dynamic stochastic game with perturbations (µi(·; s))i∈I,s∈S
and equilibrium strategy profile b. Let σb be the corresponding consistent distribution profile.

Then V̄i : S → R, the equilibrium value function for player i, is the solution the Bellman equation

V̄i(s) = ui(σ
b(·, s), s) +

∑
ai∈Ai(s)

∫
{ηi|bi(s,ηi)=ai}

ηi(ai, σ
b
−i(·, s))dµi(ηi; s) + δi

∑
s′∈S

V̄i(s
′)q(s′;σb(·, s), s).

(7.1)
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The first and the third term on the right hand side of equation (7.1) depend on b only indirectly

through σb. Proposition 1 in Hotz and Miller (1993) ensures that

∑
ai∈Ai(s)

∫
{ηi|bi(s,ηi)=ai}

ηi(ai, σ
b
−i(·, s))dµi(ηi; s) = ei(σ

b, s),

where ei(σ
b, s) is the expected value of the private shock given optimizing behavior. Hence,

the second term in equation (7.1) is seen to also depend on b only indirectly through σb. See

Aguirregabiria and Mira (2002) for further discussion.

Importantly, ei(σ, s) is well defined even if σ ∈ Σ is not an equilibrium distribution. Moreover,

ei(σ, s) is a continuous function of σ ∈ Σ. We note that for all s ∈ S the range of ei(·, s) : Σ→ R
is contained in the interval [−γi(s), γi(s)], where

γi(s) = |Ai(s)|
∫

max
a∈A(s)

{|ηi(a)|}dµi(ηi; s).

According to Tietze’s extension theorem (Royden 1968), it is therefore possible to extend ei(·, s)
to Σ̄ε, the closure of Σε, in a continuous manner such that its range is contained in the interval

[−γi(s), γi(s)]. Slightly abusing notation, we denote the extended function by ei(·, s) : Σ̄ε → R.

Using this construction, the value of continued play given an arbitrary profile σ ∈ Σ̄ε is

V̄i(·, σ) =
(
I|S| − δiPσQ

)−1(PσUi + ei(σ)
)
,

where the s component of ei(σ) ∈ R|S| is given by ei(σ, s). We interpret V̄i(s, σ) as the expected

net present value of the stream of payoffs to player i if the dynamic system is currently in state s

and play is according to σ. Note that the formula above reduces to equation (2.4) if µi({0}; s) = 1

for all s.

Equilibrium Distributions. Fix σ ∈ Σ̄ε and let V̄i(·, σ) be the corresponding value of con-

tinuation play. Define the best reply of player i in state s as

bσi (s, ηi) = arg max
ai∈Ai(s)

ui(ai, σ−i(·, s), s) + ηi(ai, σ−i(·, s)) + δi
∑
s′∈S

V̄i(s
′, σ)q(s′; ai, σ−i(·, s), s).

bσi (s, ηi) is the best reply of player i if the current state is s, his private shock is ηi, his rivals

play according σ−i, and player i plays according to σi from the subsequent period on.
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For ai ∈ Ai(s), define the (i, ai, s) component of the function g : Σ̄ε → Σ by

gi,ai,s(σ) =

∫
{ηi|bσi (s,ηi)=ai}

dµi(ηi; s). (7.2)

gi,ai,s(σ) is the probability that the best reply of player i in state s is ai. The following lemma

characterizes the equilibrium distributions of the dynamic stochastic game with perturbations

(µi(·; s))i∈I as fixed points of g.

Lemma 4 A profile σ ∈ Σ̄ε is an equilibrium distribution if and only if g(σ) = σ.

This lemma is standard up to the fact that the domain of g is not Σ but Σ̄ε. It follows because

the range of g is contained in Σ so that a fixed point of g must belong to Σ.

Finally, for ai ∈ Ai(s), define the (i, ai, s) component of the function h : Σ̄ε → R
∑
i∈I

∑
s∈S |Ai(s)|

by

hi,ai,s(σ) =

{ ∑
ai∈Ai σi(ai, s)− 1 if ai = asi ,

gi,ai,s(σ)− σi(ai, s) if ai 6= asi ,

where asi is the reference action for player i in state s as used in the construction of the function

of f for the equilibrium σ̄ of the unperturbed game U . Since g is continuous in σ, so is h. It is

not hard to see that h(σ) = 0 if and only if g(σ) = σ so the problem of finding an equilibrium

distribution reduces to finding a zero of h.

7.2.2 Proof of Theorem 2

We employ the following result from algebraic topology.

Proposition 6 (Govindan, Reny, and Robson (2003)) Suppose that O is a bounded, open

set in Rm and h, f : Ō → Rm are continuous, where Ō denotes the closure of O. Further, suppose

that f is continuously differentiable on O, that x0 is the only zero of f in O and that the Jacobian

of f at x0 has full rank. If, for all t ∈ [0, 1], the function th+(1−t)f has no zero on the boundary

of O, then h has a zero in O.

The equilibrium σ̄ of the unperturbed game U is a zero of f . Also we have constructed h so that a

zero of h is an equilibrium distribution of the perturbed game. In what follows we use Proposition

6 to establish the existence of a Bayesian Markov perfect equilibrium of the perturbed game.
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Since the equilibrium σ̄ of the unperturbed game U is regular, the argument developed in the

proof of Proposition 2 shows that there exists an open set O ⊆ Σε that satisfies the following

conditions (referred to hereafter as C1-C5):

C1 σ̄ ∈ O;

C2 ‖σ̄ − σ‖ < ε̄ for all σ ∈ O;

C3 σ̄ is the only zero of f(·, U) in O;

C4 for all i ∈ I, s ∈ S, and ai ∈ Ai(s), if σ̄i(ai, s) > 0, then σi(ai, s) > 0 for all σ ∈ O;

C5 for all i ∈ I, all s ∈ S, and ai ∈ Ai(s), if Ui(ai, s, σ̄) − Ui(asi , s, σ̄) < 0, then Ui(ai, s, σ) −
Ui(asi , s, σ) < 0 for all σ ∈ O.

Consider the sequence of probability distributions of private shocks (µni (·; s))n∈N. For all

i ∈ I, use (µni (·; s))s∈S to construct eni , V̄ n
i , gn, and hn as detailed in Section 7.2.1. To prove

Theorem 2 it suffices to find a zero of hn in O for all large enough n. Such a zero is an equilibrium

distribution of the dynamic stochastic game with perturbations (µni (·; s))i∈I,s∈S and it is within

a distance at most ε̄ of σ̄ due to C2. As a consequence of Proposition 6, the following lemma

yields the desired result.

Lemma 5 For all large enough n, and all t ∈ [0, 1], the function thn + (1− t)f(·, U) has no zero

on the boundary of O.

Proof. Suppose not. Consider a sequence (tn)n∈N converging to t̄ ∈ [0, 1] and a sequence (σn)n∈N,

contained in the boundary of O, converging to σ̂, such that σn is a zero of tnhn + (1− tn)f(·, U).

We state and prove three preliminary claims.

Claim 3 If Ui(ai, s, σ̂)− Ui(asi , s, σ̂) < 0, then gni,ai,s(σ
n)→ 0.

The proof of this claim is as follows. For s ∈ S, a′i ∈ Ai(s), and σ ∈ Σε, define

Uni (a′i, s, σ) = ui(a
′
i, σ−i(·, s), s) + δi

∑
s′∈S

V̄ n
i (s′, σ)q(s′; a′i, σ−i(·, s), s). (7.3)

Note that

V̄ n
i (·, σn) =

(
I|S| − δiPσnQ

)−1(PσnUi + eni (σn)
)
→
(
I|S| − δiPσQ

)−1PσUi = Vi(·, σ)
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because the range of eni (·, s) is contained in [−γni (s), γni (s)], where

γn(s) = |Ai(s)|
∫ {

max
a∈A(s)

|ηi(a)|
}
dµni (ηi; s)→ 0.

It thus follows that Uni (a′i, s, σ
n)→ Ui(a′i, s, σ̂) for all s ∈ S and a′i ∈ Ai(s). Consequently, there

exists ψ > 0 such that for all large enough n

Uni (ai, s, σ
n)− Uni (asi , s, σ

n) < −ψ.

By the definition of g in equation (7.2),

gni,ai,s(σ
n) ≤

∫
{ηi∈R|A(s)||ηi(ai,σn−i(·,s))−ηi(asi ,σn−i(·,s))≥Uni (asi ,s,σ

n)−Uni (ai,s,σn)}
dµni (ηi; s)

≤
∫
{ηi∈R|A(s)|||ηi(ai,σn−i(·,s))−ηi(asi ,σn−i(·,s))|≥ψ}

dµni (ηi; s)

≤
∫
{ηi∈R|A(s)|||ηi(ai,σn−i(·,s))−ηi(asi ,σn−i(·,s))|≥ψ}

|ηi(ai, σn−i(·, s))− ηi(asi , σn−i(·, s))|
ψ

dµni (ηi; s)

≤ 2

ψ

∫ {
max
a∈A(s)

|ηi(a)|
}
dµni (ηi; s)

→ 0.

This completes the proof of Claim 3.

Claim 4 If Ui(ai, s, σ̂)− Ui(asi , s, σ̂) < 0, then σ̂i(ai, s) = 0.

The proof of this claim is as follows. From Claim 3, gni,ai,s(σ
n)→ 0. Therefore,

0 = lim
n→∞

tnhni,ai,s(σ
n) + (1− tn)fi,ai,s(σ

n, U)

=t̂(−σ̂i(ai, s)) + (1− t̂)fi,ai,s(σ̂, U)

=− σ̂i(ai, s)
(
t̂+ (1− t̂)(Ui(asi , s, σ̂)− Ui(ai, s, σ̂))

)
.

It follows that σ̂i(ai, s) = 0. This completes the proof of Claim 4.

Claim 5 For all i ∈ I and s ∈ S, σ̂i(·, s) is a probability distribution. In addition, there exist

i ∈ I, ai ∈ Ai(s) \ {asi}, and s ∈ S such that fi,ai,s(σ̂, U) 6= 0.
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The proof of this claim is as follows. If σ̂i(ai, s) < 0, then C4 implies that σ̄i(ai, s) = 0. Since

σ̄ is quasi-strict, Ui(ai, s, σ̄)− Ui(asi , s, σ̄) < 0 and, from C5, Ui(ai, s, σ̂)− Ui(asi , s, σ̂) < 0. Claim

4 shows that σ̂i(ai, s) = 0, a contradiction. Therefore, σ̂i(ai, s) ≥ 0 for all i ∈ I, s ∈ s, and

ai ∈ Ai(s). Further, because hni,asi ,s ≡ fi,asi ,s, we deduce that fi,asi ,s(σ
n, U) = 0 for all n, so σ̂i(·, s)

is a well defined probability distribution over actions. From C3, σ̂ cannot be a zero of f(·, U).

So there must exist i ∈ I, ai ∈ Ai(s)\{asi}, and s ∈ S such that fi,ai,s(σ̂, U) 6= 0. This completes

the proof of Claim 5.

With these claims in hand, we are ready to complete the proof of Lemma 5. Fix i ∈ I,

ai ∈ Ai(s) \ {asi}, and s ∈ S as in Claim 5 for the rest of the proof. Note that asi cannot

belong to Bi(σ̂, s). Indeed, if it did, then Ui(ai, s, σ̂) − Ui(asi , s, σ̂) ≤ 0 and, from Claim 4,

fi,ai,s(σ̂, U) = 0, contradicting the definition of ai (Claim 5). Since σ̄ is quasi-strict, σ̄i(a
′
i, s) > 0

for all a′i ∈ Bi(σ̄, s); this together with C4 implies that σ̂i(a
′
i, s) > 0 for all a′i ∈ Bi(σ̄, s). C5

implies that Bi(σ̂, s) ⊆ Bi(σ̄, s) and therefore σ̂i(a
′
i, s) > 0 for all a′i ∈ Bi(σ̂, s). Consequently,∑

a′i∈Bi(σ̂,s)

fi,a′i,s(σ
n, U) > 0. (7.4)

For a′i /∈ Bi(σ̂, s), g
n
i,a′i,s

(σn)→ 0, so that

∑
a′i∈Bi(σ̂,s)

gni,a′i,s(σ
n)→ 1.

Because σ̂i(a
s
i , s) > 0 and σ̂(·, s) is a probability distribution,

∑
a′i∈Bi(σ̂,s)

σ̂i(a
′
i, s) < 1. Therefore,

∑
a′i∈Bi(σ̂,s)

hni,a′i,s(σ
n) > 0 (7.5)

for large enough n. But equations (7.4) and (7.5) imply that tnhn + (1− tn)f(·, U) is not zero at

σn, a contradiction. This completes the proof of Lemma 5.

A Appendix

In this Appendix we detail the construction of Σε. We then provide the proofs of supporting
results.
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A.1 Construction of Σε

We construct Σε is as follows. Note that, for all σ ∈ Σ, I|S| − δiPσQ and I
∑
s∈S |A(s)| − δiQPσ are

invertible. Indeed, PσQ and QPσ are stochastic matrices so that I|S| − δiPσQ and I
∑
s∈S |A(s)| −

δiQPσ have strictly dominant diagonals. Therefore, for all σ̄ ∈ Σ, we can find εσ̄ > 0 such
that I|S| − δiPσQ and I

∑
s∈S |A(s)| − δiQPσ are invertible for all σ ∈ R

∑
i∈I

∑
s∈S |Ai(s)| satisfying

‖σ̄ − σ‖ < εσ̄. Since Σ is compact, we can take a finite covering
(
B(σ̄j, εσ̄j)

)
j∈J of Σ. Define Σε

to be open such that its closure, denoted Σ̄ε, is contained in the open set ∪j∈JB(σ̄j, εσ̄j).

A.2 Omitted Proofs

Proof of Proposition 4. For large enough n, Ci(σ̄, s) ⊆ Ci(σ
n, s) for all i ∈ I and s ∈ S.

By definition of g in equation (7.2), for any ai ∈ Ci(σn, s), gni,ai,s(σ
n) = σni (ai, s) > 0. Therefore,

there exists a set Rn
i,s ⊆ R|A(s)| such that µni (Rn

i,s; s) > 0 and, for all ηi ∈ Rn
i,s and a′i ∈ Ai(s),

Uni (ai, s, σ
n)− Uni (a′i, s, σ

n) > ηi(a
′
i, σ

n
−i(·, s))− ηi(ai, σn−i(·, s)),

where Uni is defined in equation (7.3). We can integrate out this inequality to deduce that, for
all a′i ∈ Ai(s),

Uni (ai, s, σ
n)− Uni (a′i, s, σ

n) >
1

µni (Rn
i,s; s)

∫
ηi∈Rni,s

ηi(a
′
i, σ

n
−i(·, s))− ηi(ai, σn−i(·, s))dµni (ηi; s).

Letting n→∞ it follows that, for all a′i ∈ Ai(s),

Ui(ai, s, σ)− Ui(a′i, s, σ) ≥ 0.

We have therefore shown that for any ai ∈ Ci(σ̄, s), ai ∈ Bi(σ̄, s). This proves the result.

Proof of Proposition 5. Define Ūi(a, s, σ) = ui(a, s)+δ
∑

s∈S V (s′, σ)q(s′; a, s). Note that

Ui(ai, s, σ) = Ūi(ai, σ−i(·, s), s, σ).

If σ is a belief free equilibrium, then for all aj ∈ Aj and all s ∈ S

σi(ai, s)
(
Ūi(a, s, σ)− Ūi(asi , aj, s, σ)

)
= 0

where asi is any action so that σi(a
s
i , s) > 0.

Without lose of generality, we study the set of perfectly mixed belief free equilibria. Now, for
each i define the column vector f̂i(σ, Ui) so that the (asi , s) component is given by∑

ai∈Ai

σi(ai, s)− 1
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while the component (a, s), for ai 6= asi , is given by

Ūi(a, s;σ)− Ūi(asi , aj, s;σ)

Denote by f̂(σ, U) the vertical concatenation of (f̂i(σ, U))i∈I and note that f̂(σ, U) is contin-
uously differentiable. Moreover, as a consequence of Lemma 1, the rank of ∂f̂/∂(σ, U) is∑

i=1,2|S||Ai||Aj| >
∑

i=1,2|S||Ai| whenever σ is perfectly mixed. The transversality theorem
implies that the solution set is empty for almost all U .
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