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Abstract

Automobile manufacturers in the U.S. supply chain exhibit signi�cant
di¤erences in their days-of-supply of �nished vehicles (average inventory
divided by average daily sales rate). For example, from 1995 to 2004, Toy-
ota consistently carried approximately 30 fewer days-of-supply than General
Motors. This suggests that Toyota�s well documented advantage in manu-
facturing e¢ ciency, product design and upstream supply chain management
extends to their �nished-goods inventory in their downstream supply chain
from their assembly plants to their dealerships. Our objective in this re-
search is to measure for this industry the e¤ect of several factors on inventory
holdings. We �nd that two factors, the number of dealerships in a manu-
facturer�s distribution network and a manufacturer�s production �exibility,
explain essentially all of the di¤erence in �nished goods inventory between
Toyota and three other manufacturers, Chrysler, Ford and General Motors.
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1. Introduction

The auto industry is clearly important to the overall world economy and it has been a source

of many innovations in produce design and manufacturing technology (e.g., the assembly

line, just-in-time inventory, kan-ban, etc.). As a result, it has been the subject of numerous

empirical studies. However, most of these studies have been centered on analyzing the

production and procurement processes (e.g., Lieberman et al. (1990) and Lieberman and

Asaba (1997)) or the new product development process (e.g., Clark and Fujimoto (1989)).

Little attention has been placed on the management of the �nished goods from the assembly

plant down to the consumer, which is the focus of this paper.

Figure 1 displays times series of the days-of-supply (end of month inventory divided by

the average daily sales rate on the following two months) for three auto brands �Chevrolet,

Ford and Toyota�between 1995 and 2004. This measure of inventory performance includes

all non-truck �nished goods inventory destined for sale in the U.S. market and physically

in North America: inventory on factory lots, at ports of entry, in-transit to dealerships and

at dealerships. The �gure reveals striking di¤erences among the di¤erent makes. Although

on average the makes hold about 60 days-of-supply (which is often sugßgested in the trade

press as the �ideal�inventory level, Harris (2004)), Toyota consistently holds less than that

benchmark while Chevrolet and Ford hold more than that benchmark in the majority of the

sample. Furthermore, none of the companies exhibit a trend in inventory during this time

period, which suggests that these di¤erences are persistent1. Our objective in this study

is to measure the e¤ect of several factors that could explain the di¤erences in inventory

observed in the industry.

Based on analytical models and empirical studies in the operations management litera-

ture, we identify numerous factors that could in�uence a �rm�s optimal inventory decision.

For example, theory predicts that fragmenting demand across di¤erent products (i.e., ve-

hicle models), or across di¤erent options of a given product or across di¤erent geographic

locations (e.g., dealerships) leads to more variable demand and therefore more inventory.

Heightened competition can in�uence a �rm�s inventory in at least two ways: (1) it should

reduce a product�s margin, which leads to lower inventory; and/or (2) it gives consumers

1We regressed days-of-supply on a linear time trend and monthly dummies assuming AR(1) errors. Our
analysis suggests that only �ve of the �fteen manufacturers exhibit a trend. Among the six major manu-
facturers, only Nissan exhibits a (negative) trend. Porsche and Isuzu are the only manufacturers that have
trends in nominal inventories (both positive).
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more choices, which leads to higher inventory - when a consumer has choices it is important

to have in stock a product that closely matches the consumer�s preference, otherwise the

consumer is more likely to substitute to a competitor�s product. Production capabilities

should also in�uence inventory. As a plant becomes more �exible over time it can adjust its

production more readily and therefore can better match its production to its sales. Hence,

adding �exibility to a plant could enable a �rm to hold less inventory. Furthermore, holding

a plant�s production �exibility constant, inventory should increase when the plant is required

to produce a greater variety of products, due to switching times between products. Al-

though theory enables us to identify these various factors, an empirical study is needed to

evaluate their relative importance (at least for our focus industry and market, U.S. autos).

Among our �ndings, we highlight our observation that a manufacturer�s inventory is

associated with (i) the number of dealerships in a manufacturer�s distribution network and

(ii) the level of production �exibility the manufacturer exhibits. In particular, inventory

reductions are related to decreases in dealerships and increases in production �exibility. In

fact, these two factors appear su¢ cient to explain the di¤erences in �nished goods inventory

between Toyota and three other makes, Chrysler, Ford and General Motors.

The next section reviews the related literature. Section 3 gives a brief introduction to

the industry and section 4 describes the data used. Section 5 describes the factors included

in our econometric model and our hypotheses. Section 6 details our estimation methods,

provides our estimation results and o¤er sensitivity analysis. Section 7 summarizes our main

conclusions.

2. Literature Review

Most studies of operational performance in the auto industry have focused within the as-

sembly plant or on the product design process rather than �nished goods in the downstream

supply chain. For example, Fisher and Ittner (1999) measure the e¤ect of product va-

riety on work-in-process inventory using archival data from automotive plants of a single

company. MacDu¢ e et al. (1996) analyze the impact of product variety on manufactur-

ing productivity and consumer-perceived quality using data from 70 auto assembly plants.

Lieberman et al. (1990) analyze drivers of productivity growth across �rms in the auto indus-

try, which includes labor, capital and total factor productivity. Lieberman and Demeester

(1999) demonstrate that reductions in work-in-progress inventory can lead to productivity
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gains, which is a causal relationship that is econometrically challenging to identify due to

the feedback between the two variables. Lieberman and Asaba (1997) report interesting

di¤erences regarding inventory performance across the supply chains of Japanese and U.S.

auto manufacturers, but they exclude �nished goods inventory from the analysis. Clark and

Fujimoto (1989) study the e¤ect of several product and project characteristics and organi-

zational capabilities on new product development leadtimes. Bresnahan and Ramey (1994)

and Hall (2000) provide evidence of signi�cant adjustment costs in the production rate at

auto plants, leading manufacturers to have intermittent plant closings to match supply with

demand. Goyal et al. (2006) study factors that in�uence the adoption of �exible production

technology by U.S. auto manufacturers. We add to this stream of research by linking other

factors associated with production and scheduling that are associated with �nished-goods

inventory.

Several papers explore inventory at the industry level with a focus on either the long

run trend in inventory (e.g., Wu et al. (2005) and Rajagopalan and Malhotra (2001)) or the

volatility of production relative to sales (e.g., Cachon et al. (2007)) - we do not consider either

of those issues in our study. There is a growing literature that explores �rm level inventory

rather than at the product/model level as we do. For example, Gaur et al. (2005), use panel

data from quarterly �nancial reports of retailers to �nd that inventory turnover is negatively

related to a retailer�s capital intensity and positively related to the retailer�s gross margin

and a proxy for sales forecast errors. We focus on �nished-goods inventory performance over

a larger section of the supply chain (assembly plant down to retailer/dealer) and because we

concentrate on one product category (automobiles), we are able to obtained more detailed

data on other factors that in�uence inventory performance. Rumyantsev and Netessine

(2007) use aggregate inventory data of public U.S. companies to measure the relationship

between demand uncertainty, lead times, gross margins and �rm size on inventory levels. We

include similar covariates in our study. Hendricks and Singhal (2005), Wu et al. (2005), Lai

(2006) and Randall et al. (2006) study the relationship between inventory and �rm �nancial

performance measures, but we do not consider such measures (again, because our unit of

analysis is the product/model level rather than the company level).
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3. The U.S. Automotive Industry

In this section we provide a brief description of some idiosyncratic features of the U.S. auto

industry during the time of our study. Six companies account for about 90% of sales in

the U.S. auto market: Chrysler, Ford, General Motors (GM), Honda, Nissan and Toyota.2

More than 90% of U.S. sales for Chrysler, Ford and GM is produced in the U.S., Canada and

Mexico. We refer to vehicles produced in (outside) North America as domestic (imported).

Toyota and Honda produce about 50% of their U.S. sales domestically, while 65% of Nissan�s

vehicles are domestic. Some companies, e.g. Hyundai and Porsche, satis�ed all of their U.S.

sales with imported production during our study period.

There are di¤erent levels of aggregation at which one can describe product variety in

the auto industry. Each company o¤ers vehicles under several brands or auto makes. For

example, GM makes include Chevrolet, GMC and Pontiac, among others; Toyota makes

are Toyota division (hereafter Toyota), Lexus and Scion. Each auto make produces several

auto models. Examples of models include the Chevrolet Cavalier, the Toyota Camry and

the Ford Explorer. Models can be classi�ed into vehicle types, which include cars, sport

cars, sport utility vehicles, pickups, minivans, etc. A platform is often used to describe

commonality among models at the production level. For example, the Harbour Report

(2004, pg. 229) de�nes a platform as the �welded or framed underbody a car is built and rides

on�and designates that the Chevrolet Cavalier and the Pontiac Sun�re are built on the same

platform. Consumers purchase models with di¤erent options, which include di¤erent body

styles, engines, transmission types, safety features (e.g., side airbags, automatic breaking

system) and other accessories.

Automobile assembly plants consist of one or more assembly lines that are designed to

produce in large scale a particular vehicle speci�cation with a limited range of options.

Opening a new assembly plant requires signi�cant capital investment and assembly lines

are designed to operate at a particular line rate (vehicles per hour). As a result, in the

short-run, a manufacturer�s primary option for adjusting production is either to add or to

subtract shifts (Bresnahan and Ramey (1994)).

Franchise laws regulate new vehicle sales in the U.S. and all new vehicles must be sold

through a network of dedicated franchised dealers. In the U.S. most vehicles are pur-

2Chrysler merged with Daimler-Benz in 1998, changing its name to Daimler-Chrysler, but we continue
to refer to the company throughout as Chrysler.
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chased directly from dealership inventory3. Furthermore, dealerships do not order inventory

like retailers in most other industries, but rather manufacturers implement a push system

that allocates inventory to dealerships after production (e.g., Cachon and Lariviere (1999)).

Hence, we study the performance of all �nished goods inventory in the supply chain from

the assembly plant down to the dealership.

4. Data

We collected data, covering the years 1996 through 2004, from three main secondary sources:

Automotive News, Ward�s Auto and Harbour Report. From Wards Auto, we obtained

monthly end-of-the-month inventory and sales by model. Inventory includes all �nished

automobiles in North America destined for sale in the U.S. market: inventory on factory

lots and ports of entry, inventory in-transit to dealerships and inventory at dealerships.4 We

also obtained (i) model speci�cations and list prices for all cars and light-trucks (pickups,

vans and SUVs) available by year, (ii) monthly domestic production of each model by plant,

and (iii) the platform designations of each model. From Automotive News we obtained data

on (i) the number of dealerships by auto make by year, (ii) survey data on gross pro�ts of

dealerships by auto make by year, and (iii) model speci�cations which were used to complete

and cross validate the data published by Wards. We also obtained data on plant stoppages

from the weekly periodicals of Automotive News.

From The Harbour Report we obtained data on a selection of assembly plants in North

America. Several plants have more than one production line and the data are reported

separately for each line. In those cases we refer to each production line as a distinct plant.

The data include total production, line rate capacity and the number of platforms produced

by plant by year.5 We also have data on the models that were produced at each plant.

Harbour includes data for all Chrysler, Ford and GM plants, with the exception of Chrysler�s

Conner Avenue plant. The Harbour Report does not include plants from BMW, Mercedes,

Subaru, Volkswagen and Volvo. The plants in the Harbour Report cover 90% of total

domestic production during year 1996 through 2004. Coverage is excellent for Chrysler,

3Marti (2000) reports that only 15-20% of buyers buy custom cars from manufacturers.
4Exports are a small fraction of U.S. production and are often shipped as parts, therefore not counted as

�nished vehicles. GM changed its inventory counting scheme during the study period, reporting dealership
inventory only. We included dummy variables to control for this change in our econometric study.

5For three plants, the number of platforms is provided for the plant and not for each production line
within the assembly plant. All our results are robust to the exclusion of these plants.
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Ford and GM but somewhat lower for Toyota and Honda due to the exclusion of some of

their plants6.

In addition to these data, we obtained some economic data, such as the price of gasoline,

consumer price indexes, number of households in the U.S. and personal income data. These

were obtained from the Current Population Survey, Energy Information Administration and

from the Bureau of Labor Statistics. We collected data from Consumer Reports for our

sensitivity analysis.

We excluded some data in our econometric analysis. The Chevrolet Lumina was phased-

out in years 2000-2001 and sold only to rental companies, so we chose to exclude it. We

also excluded the Chevrolet Metro in 2001 (its last year of production) and the Saturn EV1

(an electric vehicle), both of which had a days-of-supply greater than 600 (more than 20

standard deviations above the mean). We excluded the Ford Excursion in 2000 because its

plant utilization was more than 5 standard deviations above the mean. GM Oldsmobile

and Suzuki had the largest variation in the number of dealerships during the study period.

GM announced the closing of Oldsmobile in 2000 and the last model was produced in 2004

(the number of dealerships was reduced from 2990 to 1337). Suzuki experience the opposite

change in its dealership structure - it expanded from 290 dealers in 1995 to 543 in 2005.

We chose a conservative approach and excluded from our main results observations from

Oldsmobile from 2000-2004 and all Suzuki observations because these dramatic changes in

the dealership structure could be correlated with other factors that a¤ect inventory (e.g.,

such as closing a brand or building a brand).7 We also excluded full sized vans and pickups

from our analysis because models in these segments tend to exhibit huge option variety

(e.g. Ford F-Series has an average of 280 options o¤ered per year). As we show later, our

estimation requires data from assembly plants, so our sample only includes models produced

at plants covered by the Harbour Report.

5. Measures and Hypotheses

We use i to index vehicle models (hereon models) and t to index calendar years (hereon

years). The dependent variable is the log of the average monthly days-of-supply, DSit; of

each model in each year, where days-of-supply in a month equals the inventory at the end of

6Tables A1 and A2 in the online appendix describes in more detail the plants included in the The Harbour
Report.

7Section 6.1 shows some results when these makes are included.
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the month divided by the average daily sales rate in the following two months. Speci�cally,

for models that were sold in each month of a year,

DSit =
1

12

12X
m=1

 
IitmPm+2

k=m+1 Sitk

!
;

where Iitm is end-of-month inventory (in units) in month m and Sitm is sales (in units) in

month m: (Naturally, months 13 and 14 in year t are actually months 1 and 2 in year

t+ 1:) If a model was sold for part of a year, we average the days-of-supply from only those

months. Finally, the average days-of-supply does not include the last two months a model

is sold. We use a forward looking assessment of the sales rate (two months ahead) because

we expect that inventory is held in anticipation of future demand rather than in reaction to

past demand, especially when demand exhibits known seasonal patterns. Our results are

robust to alternative measures of days-of-supply.8 A log transformation is consistent with

previous studies (e.g., Gaur et al. (2005)), but we report in section 6.1 results without a log

transformation.

The independent variables are divided into two groups: measures associated with indi-

vidual models, denoted by the (column) vector Xit and measures attributed to the plant

producing a model, p(i); denoted by the (column) vector Wp(i)t. The third group in our

model is an error term, uit; that captures unobserved factors and other random �uctuations

a¤ecting DS. Thus, the econometric model is de�ned as:

DSit = �Xit + Wp(i)t + uit , (1)

where � and  are row vector parameters to be estimated. Like DS, all variables in X and

W are included with log transformation. We next detail the particular measures included

in X and W: Subsequently, we divide uit into additional components. Figure 2 graphically

summarizes our independent variables and their hypothesized relationship to DS:

Several covariates in Xit capture sales characteristics: sales trends and sales seasonality.

Production capacity can be costly to adjust in the short run, so changes in sales from year

to year may lead to deviations from target inventory levels. We include in Xit the following

8We considered three other methods for evaluating the sales rate in the denominator of the days-of-
supply ratio: (1) the average sales in the following month only; (2) the average sales rate in the following
three months; and (3) sales in the same month inventory is measured. Our results with these measures were
similar, but the estimates were less precise in particular when DS was calculated using the third option.
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two measures:

STREND+
it = max

�
(SALESit � SALESit�1)+; 1

�
(2a)

STREND�
it = max

�
(SALESit�1 � SALESit)+; 1

�
; (2b)

where x+ denotes max(x; 0): (These measures are never less than 1, which ensures that we

can apply a log transformation to each of them.) We expect DS is decreasing in STREND+

(because production capacity may lag the sales growth) and, DS is expected to be increasing

in STREND� (because the �rm may maintain a steady level of production even if the sales

rate decreases). We include two measures to allow for di¤erent reactions to sales increases

and decreases.9

Sales in the auto industry exhibit varying degrees of seasonality, which motivates a pro-

duction smoothing strategy when it is costly to change the level of production - produce

at a reasonably constant level, build up inventory during slow sales periods and draw down

inventory during sales peaks. As a result, we expect that DS is increasing in the degree of

seasonality - the more seasonal sales are, all else being equal, the more inventory a �rm ra-

tionally carries. To measure seasonality, with each sales-time series, we �t a regression with

model-speci�c monthly dummies, denoted dim, m 2 f1; :::; 12g: Our seasonality measure for
model i is

SEASONi =
p
V (dim)=E (Sitm) ; (3)

where V (�) denotes the sample variance, and E(�) the sample mean.
Three of the factors included inXit are related to various forms of demand fragmentation:

SALESit; OPTIONSit and DEALERS it. SALESit is the average monthly sales (in units) of

model i during year t (again, only including months for which the model was sold): as a brand

adds models to its assortment it may reduce the annual sales per model as its aggregate sales

become fragmented over its wider product o¤ering. OPTIONSit is the number of options

o¤ered for model i in year t, where an increase in a model�s options may be associated

with fragmenting its inventory into units that are not perfect substitutes. The de�nitions

of these options are relatively standard, so it is possible to make comparisons of option

9Our sales trend measures begin in 1996 because our sales data begins in 1995. Some new models were
introduced during our study period. Usually, sales of a new model start in the second half of the year
previous to the model-year of introduction. For example, the Cadillac Escalade was launched in model-year
1999, but sales for this model started on October of 1998. For this model, STREND is calculated for 1999
as the di¤erence in average monthly sales between 1999 and 1998. Similar calculations were used for the
other new models. Excluding models in their year of introduction does not change our main results.
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intensity across models and years.10 Finally, DEALERS it is the number of dealerships in

year t of model i�s brand. There are two reasons to suspect that demand fragmentation

leads to higher DS: First, there may exist economies of scale in inventory management.

For example, it is well known that the EOQ model exhibits economies of scale - doubling

demand increases inventory by less than a factor of 2. Second, demand fragmentation can

lead to more variable demand, which can require more inventory to meet the same target

service level, such as an in-stock service level (the probability of having a customer�s preferred

version in stock) or a �ll-rate service level (the fraction of demand met immediately from

stock) (see van Ryzin and Mahajan (1999)). Thus, we expect that DS is increasing in

DEALERS and OPTIONS, and decreasing in SALES.

In addition to demand fragmentation, DEALERS andOPTIONS can in�uenceDS through

other mechanisms. Adding options to a model may create additional production switch-

ing times in the assembly process, thereby reinforcing the positive relationship between

OPTIONS and DS. DEALERS may in�uence inventory through a model loyalty mecha-

nism. To explain, we use the term �model loyalty�to refer to the propensity of consumers

to purchase a vehicle in a �rm�s assortment of a given model even if their most preferred

version is not available immediately. If a model�s loyalty is low, then a dealer needs to

increase its target service level to ensure that sales are not lost due to poor availability (e.g.,

limited selection of colors and trim packages). On the other hand, if a model�s loyalty is high,

a dealer is unlikely to lose a sale even if inventory availability is low because consumers are

then likely to substitute to another version or wait for their preferred version to be available.

We hypothesize that DEALERS is negatively associated with model loyalty - as the number

of dealers for a brand increases, the dealers are more likely to be closer to each other and

to dealerships from other brands, thereby increasing the choices available to consumers and

lowering their model loyalty. Hence, DEALERS is expected to be positively associated with

DS: Note, the model loyalty mechanism relating DEALERS to DS is consistent with the

demand fragmentation mechanism that also relates the two of them.

Model loyalty is also likely to be in�uenced by the number of competing models in a

segment - just as increasing the number of dealerships in an area gives consumers more

choices, an increase in the number of models in a segment gives consumers more choice,

10Kekre and Srinivasan (1990) uses cross-sectional survey data from di¤erent industries to estimate the
e¤ect of product variety on inventory, but �nds no signi�cant impact. Measuring di¤erences in product
variety across industries is challenging and could be causing this negative result. By focusing on the auto
industry, we are able to use more detailed and objective measures of product variety.
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thereby reducing model loyalty. Thus, included in Xit is NMKT it; the number of models in

the same segment as model i in year t: We expect DS is increasing in NMKT it:

Competition can in�uence inventory through its impact on cost markups: if a product�s

margin decreases due to additional competition, then the �rm has a lower incentive to o¤er

a high service level. We are not able to observe COSTMK it; the markup for model i in

year t as a percentage of the model�s cost, i.e., (price -cost) /cost, so, following Berry et al.

(1995), we estimate the cost markups for each model using a structural model of oligopoly

price competition in a di¤erentiated product market. In short, this methodology estimates

the cross-price elasticities among all products o¤ered during a year, and computes equilib-

rium markups based on competitive pricing under the estimated demand system. Our cost

markup estimation includes all non-truck vehicles sold in the U.S. in 1996-2004. As in Berry

et al. (1995), we jointly estimate a model of consumer demand based on a random-coe¢ cient

multinomial logit and a reduced form supply equation to model marginal costs. On the con-

sumer demand side, we include random coe¢ cients for the following vehicle characteristics:

price, size, acceleration, fuel e¢ ciency, security and an indicator of market segment. We also

include brand indicators and proxies for vehicle quality (obtained from Consumer Reports)

as covariates without random coe¢ cients. The supply side equation has the log of marginal

cost as the dependent variable and covariates that include vehicle characteristics and vari-

ables describing the location where the vehicle is produced. To account for the endogeneity

of price in the demand equation, we use the characteristics of other vehicles o¤ered by the

same �rm and rival �rms as instrumental variables.

The average estimated cost markup is 65%, which is line with the margins estimated

by Berry et al. (1995) and other work using similar methodology (e.g. Petrin (2002)). To

validate our cost markup estimates, we calculated the gross pro�t per vehicle for each make

based on the estimated model markups and compared them to the dealerships�gross pro�t

per vehicle published by Automotive News.11 If dealerships get a �xed proportion of the

supply chain pro�ts, the estimated and actual pro�ts should be proportional and highly

correlated. The sample correlation between these measures is 80%. Further details on the

cost markup estimation are shown in the online appendix.

Finally, we include in Xit a measure of production �exibility. We do not observe produc-

tion �exibility directly, so we seek to observe the application of �exibility. In particular, if a

11The gross-pro�t data in Automotive News is collected by J.D. Power through a survey of U.S. dealers,
which reports the average gross per vehicle for each brand.
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model is manufactured in a plant that becomes more �exible, then we conjecture the plant

will be able to produce in smaller batches, switch production more easily between models

without substantial downtime periods and/or possibly more readily increase or decrease pro-

duction by adding or subtracting shifts and/or overtime. As a result, a plant�s production

should track sales more closely as it becomes more �exible. Therefore, we proxy production

�exibility by the average absolute di¤erence between production and sales, normalized by

sales volume,

PSit =
E (jPitm � Sitmj)

E (Sitm)
=
E (jIitm � Iitm�1j)

E (Sitm)
, (4)

where P is the production series, and the equation above follows from inventory balance

(i.e., the change in inventory equals the di¤erence between production and sales).12 Note,

higher value of PS suggests a larger mismatch between production and sales. Nevertheless,

we refer to PS as a proxy of production �exibility with the understanding that a large PS

is associated with low �exibility. Hence we expect that DS is decreasing in PS:

Now consider Wp(i)t; which includes characteristics of the plants that produce model

i: To account for the time to switch between producing di¤erent models, NPLATF p(i)t

is the number of platforms (as de�ned by the Harbour Report) produced at plant p(i) in

year t: For models that were produced at more than one plant during the same year,

p (i) denotes a weighted average plant, calculated with production quantities as weights.

We expect NPLATF to have a positive e¤ect on DS, due to production switching times.13

A measure of capacity utilization, UTIL; is also included in Wp(i)t: We calculated UTIL

assuming a constant per hour production rate of the plant during the year (using Harbour�s

line rate measure), three 8-hour shifts and 365 days per year: There is theory suggesting a

positive e¤ect of UTIL on DS. For example, in a make-to-stock queuing model, an increase

in utilization increases a product�s lead time, which can increase the inventory needed to

maintain a target service level.14

The third group in (1) is the error term, which we decompose into di¤erent random

12We use the inventory series rather than the production and sales series because some of North American
production is not sold in the U.S., especially for plants in Mexico. As a result, the production series (for all
of North America) and the sales series may not balance with the inventory series (for just the U.S. market).
Because we are studying the U.S. supply chain, we prefer to base our measure of �exibility on the changes
in U.S. inventory.
13For example, in an economic lot scheduling problem with cyclic schedules, adding platforms to a pro-

duction process requires an increase in the production batches, which leads to higher inventory.
14However, one could develop a model that predicts the opposite relationship. Consider a cyclic production

schedule with multiple products and switching times between products. If there is a minimum production
quantity (e.g., one shift), then there can be a negative relationship between UTIL and DS:
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components:

uit = �i + !p(i) + � t + �
m
it + �

w
p(i)t . (5)

The random components �i and !p(i) represent time-invariant unobserved factors related to

model i and plant p (i) where the model is produced, respectively. The term � t represents

time shocks that a¤ect inventory performance industry-wide (such as economic trends) and

�mit and �
w
p(i)t represent other idiosyncratic shocks which are model-year or plant-year speci�c.

Potential unobserved factors in �i include model loyalty, while factors in �mit could include

changes in model loyalty across time. Factors in !p(i) could include unobserved di¤erences

in manufacturing �exibility (including switching times) and �wp(i)t may include unobserved

changes in plant capabilities across time. To simplify some notation, denote �it = �mit + �
w
p(i)t.

Table 1 describes the means of the variables used, grouped by manufacturer, and some

other summary statistics for our sample. (We excluded some outliers from the sample, which

are discussed in detail in Section 6.1.) Consistent with Figure 1, the table shows that Toyota

carries approximately 30 fewer days-of-supply than the sample average. There are some other

notable di¤erences between Toyota and the other makes (primarily Chrysler, Ford and GM).

Toyota has considerably higher sales per model than the other makes, substantially higher

production �exibility (measured as a lower PS) and many fewer dealerships (about 1200

instead of about 3000). However, Toyota�s cost markup matches the mean of the entire

sample, and they are not remarkably distinctive in terms of the number of options o¤ered

per model, the number of platforms produced per plant, or plant utilization. The online

appendix includes a table of correlations between the variables.

6. Estimation Strategy and Results

There are several econometric concerns with the estimation of (1). Consequently, in this

section we identify these concerns and report on four speci�cations designed to mitigate

them.

A primary issue is that several of the factors included in (1) may be endogenous, i.e.,

controlled, at least in part, by the manufacturers. Consequently, because we do not observe

all factors that a¤ect inventory decisions, some of the endogenous variables in X and W can

be correlated with the error term u. In such a situation, OLS can lead to biased estimates

of � and  in (1). The inclusion of additional controls to the model can mitigate this

endogeneity bias. We include in all four of our speci�cations the following control variables.

12



The regressions include year indicators to control for the random component � t. Make and

segment controls are included to control for unobserved time-invariant di¤erences in model

loyalty across makes and segments (captured in �i). We used the following four-segment

classi�cation published by Wards: (i) sport cars; (ii) all other cars; (iii) Sport/Utility and

Cross/Utility Vehicles (SUV); and (iv) minivans. These controls may be important because

a manufacturer may know that a particular segment has higher loyalty than others, thereby

leading the manufacturer to choose a higher COSTMK for models in that segment, which

implies a correlation between �i and COSTMK. To control for unobserved changes in model

loyalty across the product life-cycle (which is captured in �it), we include two indicators,

INTRODUM and ENDDUM, in the �rst and last year a model is produced15. To control

for di¤erences in replenishment leadtime (longer leadtimes should lead to higher DS), we

include indicators of plant location (Mexico, Canada and U.S.) as well as a control if the

model has some imported production.

Our �rst speci�cation includes model indicators to control for �i. If model loyalty varies

across models within a segment, these controls are useful for providing unbiased estimates of

COSTMK and SALES. The concern with COSTMK has already been mentioned and the

concern with SALES is similar: models with high loyalty may also have high sales, meaning

that higher sales may be associated with lower DS rather than causal. This speci�cation is

equivalent to �xed e¤ect (FE) estimation, which exploits only the variation within each model

across time. Model indicators do not entirely control for time-invariant plant unobservables,

!p(i), because some models change their production across plants on di¤erent years. Hence,

in the FE speci�cations, the estimation of  still relies on cross-sectional variation across

plants. SEASON, which is time-invariant for each model, cannot be estimated with FE. We

note that DEALERS is make-speci�c, hence this e¤ect is estimated with variation across

time only (in this, as well as the other speci�cations). The within make variation in the

number of dealerships is low (the coe¢ cient of variation is below 10% for most makes),

hence we expect this e¤ect to be estimated with low precision. NMKT is segment speci�c,

so its estimate is also based on time variation only.

Column (a) of Table 2 reports the estimates from our �rst speci�cation. The signs of all

the point estimates are consistent with theoretical predictions (except STREND+, which is

15Days-of-supply in the year a model is introduced could be lower because of higher model popularity
(e.g., a novel product design). Therefore, we expect INTRODUM to have a negative e¤ect. We included
ENDDUM as a control, but do not have an a priori predictions of the directions of its e¤ect. We also
considered further controls for product life-cycle and found no changes in our main results.
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positive and not signi�cant), but not all the coe¢ cients are di¤erent from zero with statistical

signi�cance. We defer our detailed discussion of the results from this speci�cation to later

in this section.

Our second speci�cation is estimated without the model indicators. Here, we assume

strict exogeneity, E
�
uitjXit;Wp(i)t

�
= 0, where X and W include all of the controls men-

tioned previously other than the model indicators; thus, we do not control for time-invariant

unobservable di¤erences across models (but the make and segment controls remain). Given

this assumption, the parameters can be estimated consistently using OLS, but random ef-

fects (RE) estimation accounts for the heteroskedastic structure of uit and provides more

e¢ cient estimates. However, we note that FE estimates are consistent under less restrictive

assumptions. More speci�cally, FE is consistent even if the assumptions E (�ijXit) = 0 and

E
�
�ijWp(i)t

�
= 0 are relaxed. We use a statistical test (e.g. the Hausman test) to compare

the estimates of these two speci�cations (and the next two) to choose a preferred one. Note,

it is also possible to include SEASON in this estimation.

Column (b) of Table 2 shows the estimates using RE. The coe¢ cients in columns (a)

and (b) are similar with a few exceptions. The magnitude of the coe¢ cient on COSTMK

reduces its magnitude and becomes not statistically distinguishable from zero. The coe¢ cient

on SALES increases in magnitude and is negative with statistical signi�cance. A Hausman

test rejects the null hypothesis that the estimates of columns (a) and (b) are equal (p-value

less than 0.01), and so the strict exogeneity assumption E (�itjXit) = 0 and E (�itjWit) = 0

is rejected by the data. A single coe¢ cient t-test on the equality of the COSTMK or SALES

coe¢ cients also rejects the null. These results are consistent with our conjecture about the

confounding e¤ect of model loyalty: models with higher customer loyalty tend to have higher

sales and markups, and higher loyalty allows the �rm to choose lower inventory because

consumers do not as readily switch to a competitor�s model when their most preferred version

of the model is not available. Consequently, the empirical evidence suggests that controlling

for model loyalty is important to get consistent estimates of the direct e¤ect of cost markup

and sales volume on inventory.

The third speci�cation reintroduces the model controls and focuses on the estimation of

PS: There is a concern that PS could exhibit a mechanical relationship with the dependent

variable DS: PS is evaluated with monthly inventory changes and DS is calculated using

contemporary inventory data. However, we note that a mechanical relationship need not

exist between the variability of inventory (PS) and the level of inventory (DS). To explain
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further, consider the typical saw-tooth inventory pattern implied by a (Q; r) inventory policy

(e.g. Nahmias (2005), pg. 251). Inventory depends both on the level of safety stock (the

amount of inventory at the inventory troughs) as well as on the size of the batches. An

in�exible production process produces in large batches and therefore exhibits more inventory

volatility. Furthermore, two products can have the same average inventory level but di¤erent

inventory volatilities (batch sizes), or two products can have the same inventory volatility

(batch size) but di¤erent average inventory levels (because they carry di¤erent safety stock

levels). Nevertheless, to address this issue, we instrument PS using the following instru-

mental variables: the average PS of other models produced in the same plant (PS oth), and

one-year lags of the model�s PS and PS oth. These instruments do not use the same inven-

tory observations, hence cannot be mechanically related to DS. They explain variation across

models produced in di¤erent plants, but they are weak instruments to explain variation in

PS across years within a plant. Hence, this identi�cation strategy is not feasible when plant

controls are included in the model.

Column (c) of Table 2 reports results from the third speci�cation. Because the instru-

ments include the PS of other models produced in the same plant and lagged values of PS,

the sample size in this speci�cation is smaller.16 The standard errors increase substantially

for the estimated PS coe¢ cient, but the point estimate is similar in magnitude to (a) and

signi�cant at the 10% con�dence level. The other coe¢ cients do not change much. We

estimated speci�cation (a) over the same sample and used a Hausman test to compare the

estimates. The test cannot reject that the estimates are equal. Therefore, the statistical

evidence suggests that the positive e¤ect of PS is not driven by a mechanical relationship

with DS.

Our fourth speci�cation deals with the issue of endogeneity in production planning choices

and plant �exibility. If manufacturer�s are aware of heterogeneity in production �exibility

across their plants, they are likely to assign more platforms to the more �exible plants because

those plants can better cope with the additional switching time each platform generates.

Thus, there could be an association between !p(i) and NPLATF. To control for this (and

possibly other) time-invariant unobservables in !p(i), this speci�cation adds plant indicators

(as well as model FE). Consequently, in this speci�cation, both � and  are estimated

16The sample excludes plants producing a single model and the �rst year in which a model is produced at
a plant (which can be a new model or an exisiting model switching production between plants).
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using variation across years only.17 In column (d) of 2 we report that the coe¢ cient on

NPLATF increases in magnitude and becomes signi�cant. This provides some evidence that

an increase in the number of platforms produced at a plant raises the days-of-supply of the

models produced by the plant. The di¤erence in the estimated coe¢ cient for NPLATF from

(a) and (d) is moderately statistically signi�cant (p-value=0.09). The other coe¢ cients are

similar in magnitude and statistical signi�cance. This suggests that the potential bias due to

unobserved plant capabilities is not large (given the controls included in our speci�cations).

Based on the statistical analysis, we choose (a) as our preferred speci�cation. Speci�-

cation (b) is rejected against (a), suggesting that model FE are important to control for

unobservable model characteristics such as model loyalty. Speci�cation (c), which corrects

for a potential mechanical correlation between PS and DS, yields similar results compared

to (a), but the estimates of (a) are more precise. The estimates in (d) are also similar,

but model (a) is more parsimonious. In Section 6.1 we conduct additional analysis showing

the robustness of the estimates of speci�cation (a). Hence, we now focus the analysis and

discussion on the results provided by this speci�cation.

To evaluate the economic signi�cance of the results from our �rst speci�cation (a), we

calculated the e¤ect of increasing the value of the covariates one standard deviation above the

mean. The number of dealerships, DEALERS, has the largest economic impact�an increase

in this factor raises DS by 21%. Increasing PS raises DS by 8%. The e¤ect of increasing

NMKT is 9%, and raising COSTMK increases inventory by 6%. The e¤ect of raising UTIL

is 5%, and the impact of the remaining variables is below 4%. To provide another measure of

the economic signi�cance of the DEALERS and PS coe¢ cients, Table 3 shows the adjusted

days-of-supply for the three domestic manufacturers from setting DEALERS and PS to the

average levels of Toyota, and the implied reduction in annual inventory costs. Inventory

cost are calculated based on a 20% annual holding cost, $15 thousand cost per vehicle and

average annual sales of each manufacturer. We also report the marginal e¤ect of each factor

and the 95% con�dence interval for the adjusted days-of-supply. Recall from Table 1 that

the average DS of Toyota is 38. The results reported in the table suggest that the number of

dealerships (DEALERS) and our measure of production �exibility (PS) explain almost all of

the di¤erence in days-of-supply between Toyota and Chrysler, Ford and GM. Furthermore,

the potential inventory cost savings are substantial: nearly $1billion for GM. Thus, our two

main �ndings are:

17For models produced in more than one plant, multiple plant indicators are set equal to one.
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1. increasing the number of dealerships, DEALERS ; in a supply chain is associated with

higher days-of-supply;

2. greater production �exibility, as measured by the exhibited ability for production to

track closely with sales, PS, is associated with lower days-of-supply.

Although the DEALERS e¤ect is of large magnitude and signi�cant, it is also measured

with a large standard error, which we believe is due to the limited variation in the number of

dealerships across most makes over time. (Recall, we control for di¤erences across models, so

DEALERS is not estimated with cross-sectional data.) Twomakes did exhibit a considerable

amount of variation in their dealership structure, Oldsmobile and Suzuki, but we chose to

exclude them from the analysis because their changes in DS may be due to reasons other

than the shift in the number of dealerships. For example, Oldsmobile may have reduced its

DS because it was phasing out the brand even if it was also maintaining the same number

of dealerships.

While we identify an important e¤ect regarding the dealership network on inventory, we

are unable to identify the precise mechanism by which the number of dealerships is related

to DS: For example, it is possible that increasing the number of dealerships leads to more

demand fragmentation, which leads to higher demand variability and more inventory to

achieve the same service level. Alternatively, more dealerships could lead to lower model

loyalty, which leads to higher service levels. To distinguish between these two e¤ects requires

di¤erent data. Olivares and Cachon (2008) use cross sectional variation in inventory holdings

of individual dealerships to provide evidence in support of the model loyalty e¤ect - they �nd

that the introduction of local competition causes incumbents to increase their inventory.

Aside from DEALERS, our other measures of demand fragmentation do not suggest a

strong e¤ect. For example, we did not �nd signi�cant economies of scale associated with

SALES, and the e¤ect of the number of options o¤ered for the model is small (but still

statistically signi�cant). It is possible that economies of scale are adequately captured by

our other controls. For example, if PS is removed from the regression, the e¤ect of SALES

increases in magnitude and becomes signi�cant. The option e¤ect may be small due to

con�icting forces: adding options may fragment demand and make demand more variable

which would lead to more inventory; but product di¤erentiation o¤ers a better match to

heterogeneous customer preferences, making customers more loyal (less likely to substitute),

which would lead to less inventory. (See Cachon et al. (2006) for a model of some of these
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e¤ects.) Furthermore, there is evidence in the literature that the number of options may

not have a strong e¤ect on production (Fisher and Ittner (1999)).

We �nd an important association between our proxy of production �exibility, PS; and

our dependent variable, DS: PS measures inventory volatility and we suggest that as a

plant becomes more �exible it generates less inventory volatility because it is better able

to match its production to its demand. Consistent with a connection between PS and

production �exibility, we �nd a higher correlation between the PS of models produced at

the same plant than between models in the same segment. Furthermore, PS appears

to be capturing a measure of production �exibility beyond just the number of platforms

produced at a plant, NPLATF, the aggregate scale of production, SALES, or measures of

demand volatility, SEASON. However, with our data we are unable to identify the speci�c

mechanism that enables one model�s production to track sales more closely than another

model�s production. For example, PS could re�ect lower switching times or more �exible

labor, among other possible sources of production �exibility.

We �nd that an increase in a model�s cost markup (COSTMK ) is associated with higher

inventory, which provides evidence of the direct e¤ect of markups on shortage costs. However,

our econometric analysis also suggests that unobservable model characteristics (such as model

loyalty) can confound the direct e¤ect of markups on inventory. Models with high loyalty

have customers who do not substitute to a competitor�s product when they do not �nd in

stock a vehicle with their most preferred set of options, which allows the �rm to carry less

inventory relative to a model with lower loyalty. Furthermore, models with high loyalty

tend to have higher markups, thereby suggesting that higher markups should be associated

with lower inventory. Hence, a regression that does not include controls for model loyalty

may underestimate the direct positive e¤ect of cost markups on inventory. This appears to

be an important issue for the auto industry and may be relevant for other industries as well.

The results suggests that the e¤ect of plant utilization, UTIL, is positive and signi�cant.

Two alternative explanations are consistent with this �nding. An increase in utilization also

increases the plant�s production leadtimes, which leads to higher safety stocks. The second

explanation is related to �xed plant production capacity. In plants producing more than one

product with a cyclic schedule, switching times reduce e¤ective capacity available for pro-

duction. To meet an increase in demand with �xed capacity, plants need to schedule longer

production cycles, which increases production lot sizes and utilization (because production

volume increases and capacity is �xed). Consequently, higher plant utilization is associated
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with higher inventory levels. Since we do not have data on production leadtimes and lot

sizes, we cannot identify these two e¤ects separately.

Finally, we �nd a positive association between the number of models in a segment, NMKT,

and DS. This is consistent with the theory that more substitutes within a segment make

customer less prone to wait for a product that is out of stock. Consequently, stronger

competition makes stock-outs more costly to a �rm, leading to higher target service levels

(and thereby higher inventories) to reduce the frequency of stock-outs.

6.1 Sensitivity Analysis

Several regression diagnostics were conducted to analyze the robustness of the results. Resid-

uals vs. �tted scatter plots did not exhibit any systematic trend, so heteroskedasticity is

not considered an issue. We found a few outliers in the data, but these are not in�uential

points in the estimation. Excluding any observation from the data does not change any of

the estimated coe¢ cients by more than half its standard error, suggesting that the main

results are not driven by in�uential points.

We tested alternative speci�cations to validate our results. (Estimation results of these

alternative speci�cations are available from the authors upon request.) We estimated (a)

without log transformations and found small di¤erences in our results. NMKT and DEAL-

ERS are positive but not signi�cant. The R-square is 0.3, lower than the one obtained in

the log-log speci�cation (0.38).

Four models in our sample include some imported production18. We excluded the model-

years that included imports and found no signi�cant change in our results. We also estimated

speci�cation (a) excluding models in their introduction year and found no changes in the main

results. Recall from section 4 that our main results exclude observations from Oldsmobile in

2000-2004 and all Suzuki models due to their dramatic change in the number of dealerships.

When including these observations in the analysis, the coe¢ cient of DEALERS increases in

magnitude and statistical signi�cance.

Demand for more fuel-e¢ cient vehicles increased during our sample period, possibly

related to the almost 100% increase in oil prices from 1999 to 2004. To control for changes

in demand across vehicle segments, we included segment-speci�c year controls and found no

changes in our results.

18These include COROLLA after year 2001, and all the model-years of ACCORD, CAMRY and MAXIMA;
a total of 15 observations.
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We estimated speci�cation (a) using alternative measures of DS as the dependent vari-

able, based on average sales rate of one and three months ahead (instead of two months

ahead). We found no change in our results, and the R-square of these speci�cations are also

similar.

COSTMK is estimated from the data and subject to measurement error. We estimated

speci�cations similar to (a) and (b) replacing COSTMK by the list price of the standard

model (PRICE). In the FE regression, the coe¢ cient on PRICE is .013 and not signi�cant.

In the RE regression, the coe¢ cient is -0.12 and statistically signi�cant. This change in

magnitude provides further evidence of the confounding e¤ect of model loyalty. In both re-

gressions, all the other coe¢ cients were similar in magnitude and statistical signi�cance. This

suggests that the measurement error in COSTMK does not bias the estimated coe¢ cients

of the other covariates.

Our econometric model includes NMKT �the number of models o¤ered in a segment

by all companies in the market � as a factor that in�uences model loyalty. However, it

may be possible for this e¤ect to be di¤erent depending on whether the substitutes of a

model are o¤ered by the same company or by a rival company. To explain, a company

that o¤ers a more attractive assortment (more models to choose from) may not need to

carry as much inventory to prevent losing customers to a competitor, because customers are

more likely to purchase within the company�s assortment when facing a stockout. We tested

this by replacing NMKT it with two measures: NMKT_OWN it, which counts the number of

models o¤ered in the segment by the same company o¤ering model i, and NMKT_OTHERit,

which includes the number of models o¤ered by all other companies. The coe¢ cient of

NMKT_OTHER is similar to that of NMKT (0.247 with standard error 0.086) and the

coe¢ cient on NMKT_OWN is -0.03 and not statistically signi�cant. Hence, DS is increasing

in the number of substitute models o¤ered by rival companies, but is relatively insensitive

to the number substitutes o¤ered by the same company. This provides further evidence that

NMKT is capturing the e¤ect of competition and model loyalty.

Our results suggest that including model FE is useful to control for unobserved model

loyalty to get consistent estimates of the e¤ect of COSTMK on inventory performance.

But if model loyalty changes across time, then model FE does not control completely for

this confounding e¤ect. To test this, a proxy that captures longitudinal variation in model

loyalty is needed. Consumer Reports provides model ratings based on customer surveys. We

included two of the measures published by Consumer Reports. The �rst measure is a rating
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from 1 to 5 based on test drives, 3 been the average rating for the segment and 5 the highest

rating19. The second measure is an indicator on whether the model was recommended or

not. This recommendation takes into account predicted reliability (based on previous survey

data) in addition to the product rating. Note that not all the models are rated each year,

so the size of this sample is smaller20. For comparison, we estimated speci�cation (a) using

the Consumer Reports sub-sample. Adding the consumer report variables does not change

the estimated coe¢ cients. The coe¢ cients of the consumer report variables are small and

not signi�cant. If the Consumer Reports ratings are a reasonable proxy for changes in a

model�s customer loyalty, this analysis suggests that unobservable variation in model loyalty

over time is not a major confounder in our results.

Speci�cation (d) in Table 2 includes plant indicators to control for unobserved plant

capabilities. These controls are weak if plant capabilities changed substantially over time.

PS captures possible changes in �exibility over time, but we also included additional proxies

for plant �exibility to validate our results. We obtained weekly data on work stoppages for

all Chrysler, GM and Ford plants, published in Automotive News. Details of these data are

described in Bresnahan and Ramey (1994).21 From these data, we calculated the number of

days that each plant was closed due to model changeovers (MODCHG). If a plant becomes

more �exible by reducing switching times, it should be re�ected in fewer plant closings

(lower MODCHG). We estimated (a) with this additional variable. Because the sample size

is smaller, DEALERS is no longer signi�cant. All other estimates were similar to (a).

Our measure of production �exibility, PS, is strongly correlated with measures of demand

variability: the correlation between PS and the coe¢ cient of variation of sales is approxi-

mately 0.55. Hence, it may be possible that PS is picking up the e¤ect of promotion activity

(which is related to demand variability) in addition to production �exibility. To test this,

we included in the regression a measure of demand variability�the coe¢ cient of variation of

the model sales during the year, CVSALES it. The coe¢ cient on PS remains similar in sign

and magnitude (point estimate is 0.241 with standard error 0.029), and the coe¢ cient of

CVSALES it is -0.11 and statistically signi�cant. The coe¢ cients on all the other covariates

19Consumer Report classi�cation of vehicles includes more segments then the four we use, decomposing
the car and SUV segments into multiple groups (luxury, middle/large size, etc).
20The sample of Consumer Reports models tends to include higher selling vehicles than in the base sample

(122 versus 104 thousand vehicles).
21We thank Valery Ramey and Daniel Vine for providing the dataset used in their study, which includes

plant closures up to 2001. We completed their dataset by collecting data from some missing plants (located
in Mexico) and from years 2002-2004.
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do not change much. While demand variability seems to have some e¤ect, it is relatively

small compared to the other factors considered in this study. More importantly, the e¤ect

of PS remains large and signi�cant after controlling for CVSALES it, suggesting that PS is

capturing mismatches between production and sales rather than just demand variability.

The speci�cations in Table 3 include models that were produced at more than one plant.

For those models, Wp(i)t represent average plant e¤ects, calculated by taking the weighted

mean of all plants that produced the model. To see whether this a¤ected our results, we re-

estimated speci�cation (a) limiting the sample to models that had at least 70% of its domestic

production from a single plant and included the data from that plant only in the model (the

sample size reduces to 545 observations). All results were similar with two exceptions.

SALES becomes more negative (-0.08) and statistically signi�cant at the 10% con�dence

level. The coe¢ cient on NPLATF is 0.08 and moderately signi�cant (p-value<0.1). In

this speci�cation, the Wp(i)t covariates are measured more precisely, which could explain the

higher statistical signi�cance of NPLATF.

The results in Table 2 provide some evidence that the number of platforms produced

at a plant a¤ects DS, but the e¤ect seems to be small. We want to test the robustness of

this result with other measures of product variety. A new measure was de�ned based on

Ward�s platform classi�cation, which is di¤erent from Harbour�s platform de�nitions.22 We

estimated speci�cation (a) using this measure instead of NPLATF. The coe¢ cient on the

new measure is 0.01 with a standard error of 0.03 (and not statistically signi�cant).

7. Conclusion

We report substantial and persistent di¤erences in �nished-goods inventory levels in the U.S.

auto industry: data on days-of-supply suggest that Toyota�s well documented advantage in

manufacturing e¢ ciency and upstream supply chain management extends to their �nished

goods supply chain downstream from their assembly plants to their dealerships. We identify

and measure the e¤ect of several factors on �nished-goods inventory in this industry. We �nd

that two of these factors, production �exibility and the number of dealerships, explains most

of the di¤erence in inventory between Toyota and Chrysler, Ford and GM. (Although we use

22Ward�s assigns more than one platform to some models during a calendar year. For example, they
considered several platforms for the Toyota Camry, so that the �rst half of a calendar year the Camry was
produced in one platform and on the second half, after the model change-over, on another platform. This
suggests that their platform classi�cation is more sensitive to minor changes in the model speci�cations.
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Toyota for our benchmark for comparisons, our qualitative results are similar for Honda.)

Production �exibility allows a �rm to track production more closely to sales, thereby yielding

a lower optimal level of safety stock for a �rm. Fewer dealerships allows a �rm to pool

demand in fewer locations and to reduce both intra brand and inter-brand competition,

either of which or both could lead to a lower optimal inventory level. Furthermore, we �nd

the dealership e¤ect to be the most in�uential: e.g., this factor alone explains more than

75% of the di¤erence in inventory between Toyota and GM.

While it is debatable whether other manufacturers can emulate Toyota�s skill at produc-

tion �exibility, it is clear that it costly for �rms like the established domestic producers to

match Toyota�s advantage in terms of its dealership network. Chrysler, Ford and GM es-

tablished their dealership networks in the �rst half of the 20th century, before the inter-state

highway system and at a time when the U.S. was more rural. As a result, they created many

dealerships so that consumers need not travel far to reach a dealer. Toyota (and other later

entrants to the U.S. market, like Honda) did not need to open nearly as many dealerships

because as transportation became easier, consumers were willing to travel farther (or did

not need to travel as far with increased urbanization). Furthermore, because the franchise

laws in most states impose stringent requirements on the opening and closing of dealer-

ships, manufacturers �nd it di¢ cult to change their dealership network, either the number

of dealerships or their locations. For example, during the phase-out of the Oldsmobile brand

during 2001-2004, GM spent more than $1 billion reimbursing dealers for forgone pro�ts and

equipment (Welch (2006)); and Ford attempted to consolidate dealerships in local markets,

but they found the legal barriers to be insurmountable (Warner (1998)). GM and Chrysler

have recently taken steps to drastically reduce the number of dealerships in their network,

but only in the context of threatened and actual bankruptcy proceedings (Vlasic and Bunley

(2009)).
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Figure 1 – Inventory of three auto manufacturers. Days-of-supply is calculated as the aggregate 
inventory at the end of each month divided by the average daily sales rate in the following two months. 
Inventory includes all finished vehicles in US territory, including inventory in the plant, in ports of 
entry, in transit to dealers and in dealerships. 
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Figure 2 – Theoretical factors influencing days-of-supply. Covariates included in our model are 
indicated with italics. Signs indicate the hypothesized relationship, where “-” indicates an inverse 
relationship and “+” indicates a positive relationship. 
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Chrysler 69 9147 620 660 2884 6.16 0.68 76 0.40 1.18 0.21 0.16
Ford 74 10499 411 839 3056 6.44 0.69 89 0.38 1.53 0.22 0.14
GM 77 7611 648 562 3075 4.80 0.63 85 0.36 1.37 0.25 0.15
Honda 45 12949 762 206 582 4.70 0.60 104 0.41 1.30 0.19 0.12
Nissan 80 7725 448 417 1076 4.15 0.62 78 0.36 1.54 0.25 0.15
Toyota 38 16473 879 1169 1197 4.87 0.65 100 0.42 1.27 0.13 0.12
             
mean 72 9066 587 653 2685 5.43 0.65 86 0.37 1.39 0.23 0.15
sd 24 7982 1388 1202 1177 4.54 0.10 41 0.11 0.67 0.11 0.05
min 13 281 0 0 258 1.00 0.23 11 0.06 1.00 0.06 0.07
max 197 37347 14540 16376 4420 38.00 1.02 124 0.64 4.00 1.03 0.32

 
Table 1 – Summary statistics (variables measured without log transformation). The means of the 
variables are also reported separately for the six major manufacturers. 



Model:    
 

    (a)   (b)   (c )   (d) 
     
SALES -0.016 -0.105** -0.001 -0.054 
 (0.040) (0.024) (0.047) (0.045) 
STREND- 0.019** 0.016* -0.002 0.019** 
 (0.006) (0.006) (0.007) (0.006) 
STREND+ 0.005 0.002 -0.015* 0.006 
 (0.006) (0.006) (0.007) (0.006) 
DEALERS 0.528* 0.483* 0.699** 0.452* 
 (0.207) (0.210) (0.237) (0.218) 
OPTIONS 0.058* 0.072** 0.016 0.057* 
 (0.024) (0.021) (0.026) (0.025) 
COSTMK 0.439** 0.191^ 0.311^ 0.554** 
 (0.154) (0.110) (0.171) (0.162) 
NMKT 0.220** 0.213** 0.266** 0.189* 
 (0.071) (0.065) (0.086) (0.079) 
UTIL 0.178** 0.129** 0.211** 0.226** 
 (0.041) (0.035) (0.046) (0.045) 
NPLATF 0.047 0.073* 0.047 0.088^ 
 (0.042) (0.033) (0.054) (0.052) 
PS 0.194** 0.218** 0.213^ 0.175** 
 (0.027) (0.026) (0.111) (0.027) 
SEASON  0.216**   
  (0.056)   

Model controls Yes No Yes Yes 
Plant controls No No No Yes 

# obs 705 705 600 705 
# models 133 133 122 133 
R-squared 0.39 0.60 0.37 0.44 

 
Table 2 – Main estimation results. Standard errors showed between parentheses. All the covariates are 
included with log transformation. Column (c) uses instrumental variables to instrument for PS (using PS 
of other models produced at the same plant and lagged values of PS as instrumental variables). Column 
(b) is estimated with RE; all other specifications are estimated with model FE. Column (d) also includes 
plant indicators. ^,* and ** indicate statistical significance at the 0.1, 0.05 and 0.01 confidence levels, 
respectively. Overall R-square is reported in column (b), while within R-square is reported in the others. 
To ease visualization, we do not report on the controls for year, plant location, whether the model has 
imports, and the INTRO and END dummy variables.



 
 
 

  
Days 

of 
Supply 

% reduction in days-of-
supply 

Adjusted Days of 
Supply Inv. Cost 

Reduction M$ Manuf. PS DEALERS Estimate 95% CI 
              
Chrysler 69 7.9% 35.6% 41 [ 27  ,  55] $402  
Ford 74 9.2% 37.4% 42 [ 27  ,  58] $638  
GM 78 11.6% 37.3% 43 [ 28  ,  60] $957  

 
Table 3 - Reduction in days-of-supply and inventory costs (in million $ per year) for Chrysler, Ford and 
GM from adjusting production flexibility (PS) and the number of dealerships (DEALERS) to the 
average levels of Toyota. For adjusted days-of-supply, the point estimate and 95% confidence interval 
(CI) are reported. Inventory costs were calculated based on $15,000 cost per vehicle and 20% annual 
holding cost. 




