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Support vector machines (SVMs) have been successfully used to identify individuals’ preferences in conjoint
analysis. One of the challenges of using SVMs in this context is to properly control for preference heterogeneity
among individuals to construct robust partworths. In this work, we present a new technique that obtains all
individual utility functions simultaneously in a single optimization problem based on three objectives: complexity
reduction, model fit, and heterogeneity control. While complexity reduction and model fit are dealt using SVMs,
heterogeneity is controlled by shrinking the individual-level partworths toward a population mean. The proposed
approach is further extended to kernel-based machines, conferring flexibility to the model by allowing nonlinear
utility functions. Experiments on simulated and real-world datasets show that the proposed approach in its linear
form outperforms existing methods for choice-based conjoint analysis.
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1. Introduction

Conjoint analysis is probably the most significant development

in marketing research in the past few decades. It provides an

useful technique to Marketing and Operations Research fields

to identify customers’ preferences. The firms introducing new

products and services rely on conjoint modeling where the

estimated preferences are used to evaluate different opportu-

nities via market simulations (Tsafarakis et al, 2011). Origi-

nally developed by Green et al (2004), conjoint analysis has

been widely used in various domains, such as Banking

(Mankila, 2004), Higher Education (Irani et al, 2014), Trans-

portation (Hensher et al, 1998), Tourism Management (Thyne

et al, 2006), and Public Management (Venkatesh et al, 2012),

among many others.

Conjoint estimation has two important Operations Research

features: On the one hand several optimization methods have

been applied to efficiently solve conjoint analysis problems

(Camm et al, 2006), and on the other hand conjoint modeling

has been used for multiattribute decision making (MADM) to

assess customer preferences via multivariate analysis (Scholl

et al, 2005). Regarding the first point, choice-based conjoint has

been recently tackled using support vector machines (Chapelle

and Harchaoui, 2005; Cui and Curry, 2005) and other advanced

optimization techniques (Evgeniou et al, 2007). These tech-

niques link conjoint analysis with business analytics tools which

brings interesting research opportunities for both the Operations

Research and Machine Learning communities.

One of the most interesting challenges in conjoint analysis is

the modeling of heterogeneity in consumers’ preferences.

Given the limited information per customer usually collected

by conjoint methods, the goal is to obtain robust individual-

level estimates by leveraging population-level information

across consumers. In this work, we present a novel SVM-based

approach that obtains all individual partworths in a single

optimization problem while simultaneously controlling for

heterogeneity in the same step. We focus on choice-based

conjoint, the most popular type of conjoint analysis, where

respondents are asked to compare among different alternatives

and choose one of them in repeated questions. Experiments on

simulated and real-world data show that the proposed

approach outperforms existing methods for choice-based

conjoint analysis via SVM.

The rest of the paper is structured as follows: Recent

developments on SVMs for choice-based conjoint analysis are

reviewed in the next section. The proposed method for

conjoint analysis based on SVMs is introduced in the section

that follows. Section Results provides experimental findings
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using synthetic data and two empirical conjoint studies. The

main conclusions can be found in the last section, together

with future developments derived from this research.

2. Previous work on support vector machines for choice-
based conjoint analysis

Originally developed for classification, support vector machi-

nes (Vapnik, 1998) provide important advantages for predic-

tive modeling, such as a nonlinear decision function, absence

of local minima, an superior generalization of new objects

thanks to the structural risk minimization principle (Vapnik,

1998). This method has been successfully applied in several

domains, such as credit scoring (Schebesch and Stecking,

2005) and churn prediction (Verbeke et al, 2012).

Several SVMs formulations have been presented in the last

decade in order to achieve better predictive performance in

conjoint estimation. Support vector machines were first

adapted for choice-based conjoint analysis by Cui and Curry

(2005), and subsequently improved to handle preference

heterogeneity by Chapelle and Harchaoui (2005) and Evge-

niou et al (2005, 2007). Additionally, Toubia et al (2007a)

discussed the use of polyhedral optimization models to

estimate customer preferences for choice-based conjoint.

Next, we describe support vector machines for individual

utility estimation in a choice-based context, and subsequently

present some remarks about modeling heterogeneity.

Customer i’s preferences are modeled by a linear utility

function uiðxÞ ¼ w>
i x, i ¼ 1; . . .;N, where the weight vector

wi is called partworth. Each customer evaluates K different

product profiles and chooses one in each of T choice

occasions. Each product profile is characterized by J attributes,

each one defined over nj levels, j ¼ 1; . . .; J.

From the customer choices we obtain information of the

form x1it; . . .; x
K
it �; yitÞ

��
, where xkit 2 RJ and yit 2 1; . . .;Kf g

for 1� i�N, 1� t� T , and 1� k�K. The choice yit ¼ k

means that consumer i prefers the kth option among the K

profiles described by x1it; . . .; x
K
it �

�
, that is, uiðxyitit Þ� uiðxbitÞ,

8b 2 1; . . .;Kf g n yitf g (Chapelle and Harchaoui, 2005). Fol-

lowing previous research, we assume we can rearrange the

data such that all customers choose the first profile at occasion

t, i.e., yit ¼ 1, 1� i�N, and 1� t� T . Then, the inequalities

can be rewritten as follows:

w>
i x1it � xkit
� �

� 0; ð1Þ

where 1� i�N, 2� k�K, and 1� t�T . Following the

structural risk minimization principle (Vapnik, 1998), the

Euclidean norm of wi controls the shrinkage of the partworth

solution, which essentially limits the set of possible coeffi-

cients, reducing the complexity of the problem, and subse-

quently the risk of overfitting.

The Euclidean norm is a widely used method of regular-

ization of ill-posed problems (Tikhonov and Arsenin, 1977),

an issue that often arises in conjoint estimation (Evgeniou

et al, 2007). Indeed, due to this property, it has been adopted

as the default formulation for SVMs (Cui and Curry, 2005;

Evgeniou et al, 2005). In its formulation for conjoint analysis,

the use of the Euclidean norm has an interesting implication:

having a set of constraints that reflect the agreement between

the choice data and the estimated decision rule (the estimated

utility of the chosen alternative should be higher than the

estimated utilities of the remaining alternatives in the choice

set), the l2-regularizer chooses the parameters in the feasible

polyhedron that are the furthest from all constraints. This

allows satisfying the hardest comparison in a robust and

efficient manner (Evgeniou et al, 2005). It can be shown that

the margin with which the constraints are satisfied, which also

corresponds to the radius of the largest inscribed sphere, is

equal to 1

jjwjj2 (Vapnik, 1998). Hence, by minimizing the

Euclidean norm we maximize the margin with which the

chosen alternative is preferred over the other alternatives,

conferring robustness to the estimation process. It implies that

the solution is robust to small variations of the estimated

parameters.

A set of slack variables nkt is introduced for noise penalization
at fitting the estimated utilities compared to the actual choices.

This leads to the following quadratic programming problem,

which is estimated for each customer i ¼ 1; . . .;N (Chapelle and

Harchaoui, 2005; Evgeniou et al, 2005):

min
wi;n

1

2
wik k2þC

XT

t¼1

XK

k¼2

nkt

s.t. w>
i x1it � xkit
� �

� 1� nkt ; t ¼ 1; . . .; T ; k ¼ 2; . . .;K;

nkt � 0; t ¼ 1; . . .; T ; k ¼ 2; . . .;K:

ð2Þ

The parameter C determines the trade-off between model fit

and shrinkage, which can be set via cross-validation (see eg,

Evgeniou et al, 2005; Toubia et al, 2007a). The individual

partworths wi are obtained for each customer i ¼ 1; . . .;N

from this formulation, which has a single (global) optimum.

Formulation (2) can be transformed into a kernel-based

problem by computing its dual and then applying the Kernel

Trick to obtain nonlinear utility functions (Evgeniou et al,

2005). These nonlinear utility functions are linear in the

parameters but nonlinear in the product characteristics. Thus,

they reflect nonlinear changes in preferences due to changes in

the product profile. The detailed derivation of this formulation

can be found in Maldonado et al (2015).

max
a

PT

t¼1

PK

k¼2

akt �
1

2

XT

t;s¼1

XK

k¼2

aktaks Kðx1t ; x1s Þ
�

þKðxkt ; xksÞ � Kðx1t ; xksÞ � Kðxkt ; x1s Þ
�

s.t. 0� akt �C; t ¼ 1; . . .; T ; k ¼ 2; . . .;K:

ð3Þ

The previous formulation has the following issue: the infor-

mation needed to estimate individual partworths is usually not
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sufficient due to the small size of the questionnaires.

Consequently, several strategies have been proposed for the

SVM formulation to pool information across consumers,

similarly as Hierarchical Bayesian models do (see eg, Gelman

and Pardoe, 2006). The idea is to capture general patterns at

the population level and use them to adjust the individual

partworths, reducing the risk of overfitting.

The heterogeneity in consumers’ preferences can be mod-

eled simply by constructing the individual partworths and then

computing population partworths as their average, i.e., w ¼
1=N

P
i wi (Evgeniou et al, 2005). The final individual

partworths are obtained based on a weighted sum between

the population partworths and the original individual part-

worths. The trade-off between both terms is controlled by a

parameter ci 2 ½0; 1�, i.e., ciwi þ ð1� ciÞw (Evgeniou et al,

2005). Similar approach for heterogeneity control was fol-

lowed by Maldonado et al (2015), where a feature selection

strategy was proposed to identify consumer preferences and

the most relevant attributes in the same process. Unlike our

model, and following (Evgeniou et al, 2005), Maldonado

et al (2015) use a two-step approach.

Alternatively,Chapelle andHarchaoui (2005) proposeda single

optimization problem that simultaneously obtains all individual

partworths based on population patterns. The model follows:

min
wi;n

wik k2þC

qi

X

t2Qi

XK

k¼2

nkt
2 þ Ĉ

P

j 6¼i

qj

X

t 62Qi

XK

k¼2

nkt
2

s.t. w>
i x1it � xkit
� �

� 1� nkt ; t ¼ 1; . . .; T ; k ¼ 2; . . .;K;

nkt � 0; t ¼ 1; . . .; T ; k ¼ 2; . . .;K;

ð4Þ

where C and Ĉ are trade-off parameters that control hetero-

geneity: if C
Ĉ
¼ 1, then the partworths are modeled to be equal,

i.e., the population is assumed to be homogeneous, while C

Ĉ
�

1 considers no heterogeneity (Chapelle and Harchaoui, 2005).

The set Qi contains the set of questions answered by customer

i. The authors also propose using squared hinge loss instead of

the traditional hinge loss function.

Evgeniou et al (2007) presented an approach called LOG-

Het that jointly estimates the individual partworths based on

information from all consumers. Unlike SVMs where the

hinge loss is used to maximize fit and the Euclidean norm for

shrinkage, they use the logistic error function and suggest

shrinking the weights toward a vector w0, whose components

are also decision variables. That is

min
wi ;w0 ;D

PN

i¼1

ðwi � w0Þ>D�1ðwi � w0Þ �
1

c

XN

i¼1

XT

t¼1

ex
1
itwi

PK
k¼1 e

xk
it
wi
;

ð5Þ

where D is constrained to be a positive semidefinite matrix

scaled to have trace equals to 1, and c is a trade-off parameter

which can be obtained via cross-validation.

The work by Evgeniou et al (2007) has appealing

characteristics: instead of obtaining first the individual-level

parameters and next updating such partworths, it incorporates

the heterogeneity control in the model explicitly by shrinking

the partworths toward a population mean. A single optimiza-

tion problem takes into account all available information and

allows the estimation of robust individual-level partworths.

The model proposed by Chapelle and Harchaoui (2005) also

uses a single optimization model, but it adds slack variables

related to the other consumers in the objective function for

each respondent. The heterogeneity control process is less

explicit and intuitive for this model, where the relationship

between C and Ĉ is not easy to determine.

Our methodology follows the ideas of LOG-Het to model

preference heterogeneity, shrinking the weights toward a

vector w0. However, our SVM approach minimizes the

Euclidean norm of wi to reduce complexity, and uses the

hinge loss to maximize fit. Similarly to Evgeniou et al (2007),

our approach shrinks the weights toward an aggregated

partworth vector to model heterogeneity in consumers’

preferences. Unlike LOG-Het, in our proposal we solve a

single, strictly convex optimization problem to obtain all

individual-level partworths. To solve the nonconvex LOG-Het

formulation (5), Evgeniou et al (2007) solve several convex

problems iteratively in order to find an adequate approximate

solution. Our approach represents an important advantage in

terms of efficiency, and it allows the inclusion of kernel

functions to capture nonlinear preferences.

The proposed methodology solves a single optimization

problem by combining the three objectives that are relevant in

the estimation of preference decision models: model fit to the

stated preferences, reduction of model complexity, and

heterogeneity control. The gain of solving the problem

simultaneously is threefold:

(i) Efficiency It is more efficient since it does not require

the additional step of computing the population part-

worth a posteriori. This provides gains in computational

time that are linear in the number of individuals.

(ii) Shrinkage The idea of the shrinkage is to borrow

information across subjects. That is, each individual has

a prior equal to the population parameter and deviates

from it according to her stated preferences. As the

population partworth is jointly optimized in our

proposal, instead of using simply the average of all

individual partworths (that should be obtained inde-

pendently), the information of all subjects provided can

be correctly incorporated in the estimation of the

individual preferences.

(iii) Multiobjective optimization The single optimization

approach represents a more coherent formulation of the

multiobjective optimization problem, in which the

trade-off between the three objectives should be tuned

simultaneously according to the desired weights and/or

via cross-validation using a single-grid search strategy.
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The proposed procedure is further described in the following

section.

3. Proposed method for support vector conjoint analysis

In this section, we present a novel choice-based conjoint

approach based on support vector machines. The idea is to

solve a single convex quadratic optimization problem based on

three objectives: complexity reduction, model fit, and hetero-

geneity control. Our method relates the minimization of the

Euclidean norm for the individual partworths and the shrink-

age of them toward an aggregated partworth vector w0, while

maximizing the fit by minimizing the hinge loss.

The main goal is to improve the SVM formulation for CBC

presented in Evgeniou et al (2005), where the individual

partworths are obtained independently. Our approach extends

to some extent the ideas of LOG-Het (Evgeniou et al, 2007)

for heterogeneity control to SVM, which has several advan-

tages for dealing simultaneously with complexity control and

model fit. Additionally, the kernel version of our approach

represents, to the best of our knowledge, the first kernel-based

approach reported in the literature for choice-based conjoint

that controls for preference heterogeneity.

The primal formulation for linear partworth estimation is

first presented, while the dual formulation of this problem

is derived subsequently. The kernel version of the model

for nonlinear preferences is described at the end of the

section.

3.1. Support vector conjoint analysis: linear version

Let us consider the following quadratic programming problem:

min
wi;w0;n

k
it

1

2

XN

i¼1

ð wik k2þh wi�w0k k2ÞþC
XN

i¼1

XT

t¼1

XK

k¼2

nkit

s.t. w>
i ðx1it�xkitÞ�1�nkit; i¼ 1; . . .;N; t¼ 1; . . .;T; k¼ 2; . . .;K;

nkit�0; i¼ 1; . . .;N; t¼ 1; . . .;T ; k¼ 2; . . .;K;

ð6Þ

where h and C are positive parameters that control the

relationship between complexity, heterogeneity, and fit.

Proposition 1 (see Appendix A) shows that the proposed

quadratic problem (6) is strictly convex. This result is key for

our modeling approach since it implies that the optimization

procedure behind our method guarantees a single optimal

solution for partworth estimation.

3.2. Dual formulation for linear support vector conjoint

analysis

Next, the dual formulation of problem (6) is presented (see

Appendix B for the detailed derivation). This formulation is

useful to obtain a kernel-based formulation to uncover

nonlinear preferences. Such formulation enhances the flexi-

bility of the model, potentially leading to higher predictive

performance. This formulation is given by

max
akt 2<N

PT

t¼1

PK

k¼2

akt
>
e� 1

2Nðhþ 1Þ
eQðhÞ1=2

XT

t¼1

XK

k¼2

Xk
t a

k
t

�����

�����

2

s.t. 0� akt �Ce; t ¼ 1; . . .; T; k ¼ 2; . . .;K:

ð7Þ

3.3. Kernel-based support vector conjoint analysis

In order to obtain the kernel-based formulation associated to

Problem (6), we first develop the quadratic term of the

objective function of Problem (7). That is,

~QðhÞ1=2
XT

t¼1

XK

k¼2

Xk
t a

k
t

�����

�����

2

¼
XT

t¼1

XK

k¼2

XT

t0¼1

XK

k0¼2

ðakt Þ
>ðXk

t Þ
> ~QðhÞXk0

t0 a
k0

t0

¼
XT

t¼1

XK

k¼2

XT

t0¼1

XK

k0¼2

ðakt Þ
>Uhðxk1t; xk

0

1t0 Þak
0

t0 ;

where the elements of the matrix Uhðxk1t; xk
0
1t0 Þ 2 RN�N are

given by

½Uhðxk1t; xk
0

1t0 Þ�ij

¼
ðN þ hÞ x1it

>
x1it0 � x1it

>
xk

0

it0 � xkit
>
x1it0 þ xkit

>
xk

0

it0

� �
; i ¼ j;

h x1it
>
x1jt0 � x1it

>
xk

0
jt0 � xkit

>
x1jt0 þ xkit

>
xk

0
jt0

� �
; i 6¼ j:

8
><

>:

Since the training samples appear in the previous formulation

only in the form of inner products of the form x1it
>
xk

0
it0 , we can

apply the Kernel trick (Schölkopf and Smola, 2002) by

replacing them with Kðx1it; xk
0

it0 Þ, where K : Rn �Rn ! R is

any function satisfying the Mercer’s condition (Mercer, 1909).

Typical choices for kernel functions are the Gaussian kernel

defined by Kðu; vÞ ¼ expð� u� vk k2=2r2Þ with r 2 R, and

the polynomial function Kðu; vÞ ¼ ðu>vþ 1Þd with d 2 N

(see eg, Maldonado et al, 2011; Schölkopf and Smola, 2002).

After choosing this kernel function, the above relation can be

rewritten as

½Uhðxk1t; xk
0

1t0 Þ�ij ¼

ðN þ hÞ Kðx1it; x1it0 Þ � Kðx1it; xk
0
it0 Þ

�

�Kðxkit; x1it0 Þ þ Kðxkit; xk
0
it0 Þ
�
; i ¼ j;

h Kðx1it; x1jt0 Þ � Kðx1it; xk
0
jt0 Þ

�

�Kðxkit; x1jt0 Þ þ Kðxkit; xk
0
jt0 Þ
�
; i 6¼ j:

8
>>>>>><

>>>>>>:

ð8Þ

Hence, taking into account the relation (8), the kernel-

based formulation for choice-based conjoint using SVMs is

given by
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max
akt 2<N

PT

t¼1

PK

k¼2

akt
>
e� 1

2Nðhþ1Þ
XT

t¼1

XK

k¼2

XT

t0¼1

XK

k0¼2

ðakt Þ
>Uhðxk1t;xk

0

1t0 Þak
0

t0

s.t. 0�akt �Ce; t¼ 1; . . .;T ; k¼ 2; . . .;K:

ð9Þ

Finally, from (20) it follows that the individual utility function

has the following form:

uiðxÞ ¼
1

Nðhþ 1Þ ðhþ NÞ
XT

t¼1

XK

k¼2

akitðKðx1it; xÞ � Kðxkit; xÞÞ
 

þ h
XN

j¼1;j 6¼i

XT

t¼1

XK

k¼2

akjtðKðx1jt; xÞ � Kðxkjt; xÞÞ
!

;

i ¼ 1; . . .;N:

ð10Þ

4. Results

We applied the proposed SVM-based approach for choice-

based conjoint to four simulated datasets and two empirical

applications. We refer as L-SVM h and NL-SVM h to the

proposed approach in its linear and kernel-based formulations,

respectively.

We compare the proposed methods with SVMs for

individual-level utility functions in its linear (L-SVM,

Formulation (4)) and kernel-based form (NL-SVM, Formu-

lation (3)), respectively. We also compared the proposed

approach with the SVM formulation for heterogeneity control

proposed by Evgeniou et al (2005) (L-SVM c), and the

mixed logit model approach (linear compensatory by aspects

or LCA) based on Hierarchical Bayesian Markov chain

Monte Carlo (MCMC) estimation method (see eg, (Rossi

et al, 2005)) and SVMs for choice-based conjoint. For the

Mixed logit model, we use a Markov Chain Monte Carlo

(MCMC) method to obtain random draws from the posterior

density. The MCMC methods involve sampling parameter

estimates from full conditional distributions of parameters.

Because the full conditional distributions do not have closed-

form expressions, we use the Metropolis–Hastings algorithm

to draw the parameters. In the MCMC procedure, we

iteratively draw from the full conditional distributions of

each parameter. The Metropolis–Hastings algorithm requires

the choice of the proposal distribution. Determining such

proposal distribution is difficult, and it is usually imple-

mented in an adhoc manner involving many trial and error

steps (Rosenthal et al, 2011). To facilitate rapid mixing of

the resulting Markov chain, we use an adaptive random walk

Metropolis–Hastings algorithm (Atchade, 2006) to determine

the tuning parameters. See (Rosenthal et al, 2011) for more

details about optimal proposal distributions and adaptive

MCMC methods.

4.1. Synthetic data and empirical datasets

In this section, we briefly present the datasets used in this

work.

4.1.1. Simulated data We used the simulation procedure

proposed by Arora and Huber (2001) and Toubia et al

(2007b): we generated four different datasets varying the

noise condition in consumer choices (low and high noise)

and the sparseness in consumer preferences (low and high),

as suggested in Maldonado et al (2015). In each dataset

N ¼ 200 respondents across T ¼ 12 choice occasions among

K ¼ 3 product profiles were simulated. The profiles were

constructed using an orthogonal design based on J ¼ 10

attributes with nj ¼ 4 levels each ðj ¼ 1; . . .; 10Þ. The

deterministic utility of each profile was simulated based

on a multivariate normal distribution with mean l ¼
ð�b;� b

3
; b
3
; bÞ; and covariance matrix R ¼ bI, where I is

the 4� 4 identity matrix.

The noise condition was varied by adjusting the parameter

b: the values of b ¼ 0:5 and b ¼ 2 for ‘‘high’’ and ‘‘low’’ noise

conditions were used, respectively (Arora and Huber, 2001).

Additionally, the sparseness is operationalized as follows, two

and six randomly selected attributes were generated to be

irrelevant (low sparseness and high sparseness conditions,

respectively) by their corresponding mean parameter of the

Gaussian distribution to zero (l ¼ 0) for each individual

(Maldonado et al, 2015). A high sparseness in consumer

preferences can be interpreted as customers ignoring a high

number of attributes (six out of ten) when evaluating the

different product profiles.

For each respondent, the dataset was split for calibration

purposes: the first 10 questions were used for training and

model calibration, while the final two decisions were used for

testing purposes.

Although in our proposal we explore linear and nonlinear

approaches, we decided to simulate data generated from linear

utility functions mainly for two reasons. First, we reported

these experiments in order to make our proposal comparable

with most of the CBC literature that consider this dataset,

although it may favor linear methods over kernel-based ones.

Secondly, nonlinear CBC estimation is a recent field of

research, and there is no standard methodology to generate

nonlinear utility functions.

4.1.2. Digital camera dataset This dataset comprises digital

cameras described across J ¼ 5 attributes with nj ¼ 4 levels

each. The following attributes describe this dataset: Price

(US$500, US$400, US$300, and US$200), Resolution (2, 3, 4,

and 5 Megapixels), Battery Life (150, 300, 450, and 600

pictures), Optical Zoom (29, 39, 49, and 59), and Camera

Size (SLR, Medium, Pocket, and Ultra Compact).

N ¼ 125 subjects from a customer panel answered 20

questions in an online CBC experiment. In each question,

Julio López et al—Simultaneous preference estimation and heterogeneity control



respondents evaluated four product profiles randomly assigned

and chose one of them. The product attributes were introduced

and described to the respondents before applying the ques-

tionnaire. The choices from the first 16 questions were used to

calibrate the models, while the remaining four were used to

test the estimated models. See Abernethy et al (2008) for

further details about this experiment.

4.1.3. Study time dataset The second empirical dataset

represents information collected for marketing research

purposes for an important American company. N ¼ 602

subjects evaluated products in an online CBC study. Each

product profile was described by J ¼ 10 unbalanced attributes

with between three and 15 levels. Due to the proprietary nature

of the dataset, the actual product and the specific attributes and

attribute levels cannot be revealed. The products in this dataset

are presented in choice sets with three alternatives, while each

respondent answered 12 choice questions. Ten of these

questions were used for training and calibration purposes,

while the remaining two were considered for testing.

4.1.4. Parameters’ calibration For the SVM-based

approaches, we need to calibrate the following parameters:

C, c [only for the heterogeneity control procedure suggested by
Evgeniou et al (2005)], and h (only for our proposal). For this

purpose, we use a leave-one-out cross-validation (LOOCV)

strategy on the training/calibration data. For each individual, a

subset of the training/calibration data comprising all questions

but one is used to estimate the individual partworths (training

step). Subsequently, the question left out is used to predict the

response (calibration or validation step). This process is

repeated so that each question in the training subset is left out

once and used for calibration purposes. The mentioned

parameters are set to the values that maximize the LOOCV

hit ratio. After the calibration procedure, the partworths are

estimated using the entire calibration set with the optimal

parameters found in the validation step, and the final

evaluation is performed in the test subset, which remains

unseen during the calibration step. This strategy has been used

previously in choice-based conjoint ( see eg, Evgeniou et al,

2005; Evgeniou et al, 2007; Toubia et al, 2007a).

The hit ratio has been widely used in choice-based conjoint

analysis in order to measure the accuracy of a solution (see eg,

Evgeniou et al, 2005; Evgeniou et al, 2007; Toubia et al,

2007a). In particular, the out-of-sample hit rate demonstrates

the capability of the corresponding model to predict individual

preferences. It is arguably the most intuitive performance

metric, since it computes the percentage of correct predictions

across the sample. It also provides a simple way of capering

the performance of different models, including nested and

nonnested formulations. In addition, the use of the holdout hit

rate based on an independent test set is particularly important

to avoid overfitting.

The following values for C, c, and h were studied in the

calibration step: C; c; h 2 f2�7; 2�6; . . .; 27g. These exponen-
tially growing sequences are recommended for grid search in

the machine learning literature (see eg, Hsu et al, 2010;

Maldonado and López, 2014). For kernel-based approaches we

explored the following widths: r 2 f1; 2; 4; 8g.

4.2. Results summary

Tables 1 and 2 summarize the results for all approaches and all

four simulated datasets. The best performance among all

methods in terms of test hit ratio is highlighted in bold type.

We use a Student t test for pairwise comparisons between the

best average performance in terms of holdout hit rate and the

remaining methods. The best approach and those that are not

significantly worse than the best at a 1 % level are highlighted

with an asterisk.

Table 1 Empirical Comparison of the Preference Models (in percentages), low noise condition

Models Low noise

Sparsity

Low High

Hit rate Hit rate

Ina Outb Ina Outb

LCA 87.5 56.3 82 50.3
L-SVM 98.3 54.0 98.1 51.8
L-SVM c 96.7 60.0* 96.0 58.5*
NL-SVM 98.4 54.0 100 54.3*
L-SVM h 96.2 65.5* 97.4 59.0*
NL-SVM h 80.3 62.8* 77.0 54.3*

*Best predictive hit rate or not significantly different than the best at the 1 % level
aIn-sample hit rate
bOut-of-sample hit rate

Journal of the Operational Research Society



In Tables 1 and 2 it can be seen that the proposed approach

in its linear form (L-SVM h) achieves best average results in

terms of out-of-sample hit rate on three out of the four

simulated datasets, while SVMs with the heterogeneity

correction proposed by Evgeniou et al (2005) (L-SVM c)

has best predictive performance in the simulated data with

high noise and high sparsity, but the differences are not

significant compared to our proposal (second best). We can

also observe that the kernel-based formulation for SVM (NL-

SVM) has best in-sample performance, which is somehow

expected since it provides more flexibility than linear models,

but it shows signs of overfitting since it does not control for

heterogeneity. The proposed approach and L-SVM c reduce

this risk by incorporating general patterns into the construction

of the individual utility functions. The lower performance can

be also explained by the fact that the datasets were simulated

assuming linear decision rules.

Table 3 summarizes the results of all approaches applied to

the two real-world applications. The best performance among

all methods in terms of test hit ratio is highlighted in bold type.

We also indicate with one asterisk the best predictive hit rate

or not significantly different than the best at the 1 % level.

In Table 3, it can be seen that the proposed approach in its

linear form has again the best predictive performance in the

two empirical applications. The application in these two real

datasets also confirms the analysis obtained earlier for

simulated datasets: kernel methods and linear methods without

heterogeneity control have better in-sample performance than

the linear methods with heterogeneity control but worse

predictive performance, demonstrating the advantage of pool-

ing information across consumers to predict their preferences.

For the first empirical application, both proposed methods

achieve the best predictive performance, proving also that

nonlinear models can be useful in real-world applications.

Table 2 Empirical comparison of the preference models (in percentages), high noise condition

Models High Noise

Sparsity

Low High

Hit rate Hit rate

Ina Outb Ina Outb

LCA 76.4 43.5 73.3 41.2
L-SVM 98.0 47.3 99.7 44.0
L-SVM c 95.6 52.5* 95.6 52.8*
NL-SVM 99.1 49.3* 100 46.5
L-SVM h 88.3 53.0* 93.9 51.8*
NL-SVM h 71.9 51.5* 73.5 51.3*

*Best predictive hit rate or not significantly different than the best at the 1 % level
aIn-sample hit rate
bOut-of-sample hit rate

Table 3 Empirical Comparison of the Preference Models (in percentages)

Models Camera Study time

Hit rate Hit rate

Ina Outb Ina Outb

LCA 84.5 58.0* 70.4 57.2*
L-SVM 92.3 56.4 95.0 58.6*
L-SVM c 91.6 58.4 91.4 59.6*
NL-SVM 95.1 58.6* 92.8 58.8*
L-SVM h 89.3 61.2* 97.6 61.6*
NL-SVM h 92.4 61.0* 73.5 54.3

*Best predictive hit rate or not significantly different than the best at the 1 % level
aIn-sample hit rate
bOut-of-sample hit rate
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We note that the small number of observations for each

decision variable and the high number of parameter combi-

nations for validation may have negatively affected the

predictive performance of kernel methods due to overfitting.

We observed that nonlinear methods achieved higher training

and validation hit rates, but they also had a higher gap between

validation and test hit rate. Additionally, the choice of the

kernel function is still a matter of research, and an exhaustive

grid search using a broader range of possible Kernel functions

and their corresponding parameters may have led to different

conclusions.

In sum, although there is not a unique method that

completely outperform all others, we can conclude that overall

our proposed approach in its linear form has the best average

performance in terms of holdout hit ratio.

4.3. Sensitivity analysis to the tuning parameters

and complexity

Next, we analyze the influence of the parameters C, h, and r
on the performance of the proposed method. For illustration

purposes, we vary these parameters and monitor the leave-one-

out validation hit rates for the Camera dataset. To assess the

influence of C and h; we used the linear version of our

approach, while the kernel-based approach with Gaussian

kernel was used to explore the influence of parameter r.
Figure 1a–c present the LOOCV hit rates as a function of C, h,
and r, respectively. We vary one parameter at a time, while the

other parameters remained fixed on their optimal values.

Figure 1 presents relatively stable results for all parameters,

although C presents a higher variance for values below the
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Fig. 1 LOOCV hit rates for L-SVMh for different values of C, and h; LOOCV hit rates for NL-SVMh for different values of r (Camera
dataset).
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unit. We observe an important influence of these parameters in

the final outcome of the proposed approach, and therefore an

adequate grid search is highly recommended.

As a reference, the training time is 22.6 seconds when h ¼ 0

(standard L-SVM for CBC) and 23.1 seconds for our proposal

(h[ 0) for the Camera dataset, which has the size of typical

CBC applications. For the Study time dataset, which could be

considered large in CBC studies, the training time is 110.0

seconds when h ¼ 0 (standard L-SVM for CBC) and 114.8

seconds for our proposal (h[ 0). The experiments were

performed on an HP Envy dv6 with 16 GB RAM, 750 GB

SSD, an i7-2620M processor with 2.70 GHz, and using

Microsoft Windows 8.1 Operating System (64-bits). We used

the QPC solver for quadratic programming in Matlab 7.12.

We acknowledge that, although the running times are

similar between L-SVM for CBC and our proposal, the

introduction of an extra parameter leads to additional exper-

iments to properly validate the model. We explored 15

different values for C and h in the calibration step, which

means a line search to estimate theta for a fixed C will require

15 more experiments, and the full grid search for our proposal

involves 159 15 = 225 different runs. Given the training times

reported before, these additional experiments can be per-

formed in tractable running times.

5. Conclusions and future work

In this work, we present a novel choice-based conjoint analysis

approach based on support vector machines. In contrast to the

original SVM formulation for CBC, the proposed method

solves a single optimization problem to construct all individual

partworths simultaneously, and pools information across

consumers by shrinking them toward a vector w0 that acts as

an aggregated partworth. The proposed work can be seen as an

extension to SVMs of LOG-Het, proposed by Evgeniou et al

(2007), which follows a similar strategy for preference

heterogeneity control, and improves the SVM formulations

proposed by Evgeniou et al (2005) [and used in Maldonado

et al (2015)] and Chapelle and Harchaoui (2005) by including

a more appealing heterogeneity control strategy. We identified

the following advantages of the proposed approach according

to our experiments presented in the previous section:

• It has higher predictive performance than alternative

choice-based conjoint approaches, thanks to its ability to

handle simultaneously three objectives in one single

optimization step: complexity reduction, model fit, and

heterogeneity control.

• The method solves a strictly convex quadratic problem,

which ensures a unique optimal solution for the problem.

This is important since the proposed procedure avoids

using time-consuming simulation strategies such as

MCMC to estimate the partworths.

• The kernel-based version of the proposed model confers

flexibility to the estimation process by allowing nonlinear

preferences. Furthermore, to the best of our knowledge,

this research represents the first work introducing kernel

methods for conjoint analysis dealing with heterogeneity

control. Strategies for heterogeneity control such as the one

proposed by Evgeniou et al (2005) have not been

extended to kernel methods.

We identify some research opportunities for future work. This

approach can be extended to other conjoint applications such

as menu-based conjoint or dynamic settings, such as adaptive

methods for choice-based conjoint analysis. The superior

predictive performance and computational efficiency are

appealing features for these applications. Additionally, the

method can be further extended to deal with clusters of

consumers instead of an unimodal representation of preference

heterogeneity. As suggested in Evgeniou et al (2007), the

existence of multiple groups of respondents can be included in

the modeling process by modifying the form of the shrinkage

strategy and the loss function.
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Appendix A

Strictly convexity of problem (6)

In order to prove that our Formulation (6) is strictly convex,

we first rewrite it in a compact form. For this, we follow the

derivation of Yajima (2005) for multicategory SVM. Let us

denote by

ew ¼ ½w>
0 ;w

>
1 ; . . .;w

>
N �

> 2 RJðNþ1Þ;

and

QðhÞ ¼

NhIJ � hIJ � hIJ � � � � hIJ
�hIJ ð1þ hÞIJ 0 � � � 0

�hIJ 0 . .
. . .

. ..
.

..

. ..
. . .

. . .
.

0

�hIJ 0 � � � 0 ð1þ hÞIJ

2

666666664

3

777777775

2 RJðNþ1Þ�JðNþ1Þ;

ð11Þ

where IJ denotes the identity matrix of size J. Then, the

quadratic term in (6) can be expressed as

XN

i¼1

ð wik k2þh wi � w0k k2Þ ¼ ~w>QðhÞ ~w: ð12Þ

Proposition 1 For any h[ 0, the matrix QðhÞ is symmetric

definite positive. Moreover,

QðhÞ�1 ¼ 1

N

hþ1

h
IJ IJ IJ � � � IJ

IJ
hþN

hþ1
IJ

h
hþ1

IJ � � � h
hþ1

IJ

IJ
h

hþ1
IJ

. .
. . .

. ..
.

..

. ..
. . .

. . .
. h

ðhþ1Þ IJ

IJ
h

hþ1
IJ � � � h

ðhþ1Þ IJ
hþN

hþ1
IJ

2

66666666666666664

3

77777777777777775

:

ð13Þ
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Proof It is clear that the matrix QðhÞ is symmetric definite

positive (cf. (12)). Now, we denote by Fi 2 RJ�JðNþ1Þ

and Ci 2 RJðNþ1Þ�J the i-th block (in row) and the i-th

block (in column) of QðhÞ and QðhÞ�1
, respectively.

Then,

F1C1 ¼ IJ ; F1Ci ¼
1

N
Nh� Nhþ h2N

hþ 1

� 	
¼ 0;

i ¼ 2; . . .;N þ 1;

FiC1 ¼ 0; FiCi ¼ IJ ; FiCj ¼
1

N
ðh� hÞ ¼ 0; i 6¼ j:

Thus, the result follows. h

Appendix B

Dual formulation of problem (6)

Let us denote by nkt ¼ ðnk1t; . . .; nkNtÞ 2 RN , and by Xk
t ¼

0

Xk
t


 �
2 RðNþ1ÞJ�N with

Xk
t ¼

x11t � xk1t 0 0

0 . .
. . .

. ..
.

. .
. . .

.
0

0 � � � 0 x1Nt � xkNt

2

666664

3

777775
2 RNJ�N :

Then, the constraints of the problem (6) can be expressed as

follows

nkt � 0; Xk
t

>
~w� e� nkt ; t ¼ 1; . . .; T ; k ¼ 2; . . .;K:

With this notation, the Lagrangian function associated to

formulation (6) is given by

Lð ~w; nkt ; akt ; skt Þ ¼
1

2
~w>QðhÞ ~w

þ
XT

t¼1

XK

k¼2

Cðnkt Þ
>e� akt

>ðXk
t

>
~w� eþ nkt Þ

h

�ðnkt Þ
>skt

i
:

ð14Þ

Then, Problem (6) can be written equivalently as

min
~w;nkt

max
akt ;s

k
t

fLð ~w; nkt ; akt ; skt Þ : akt ; skt � 0;

t ¼ 1; . . .; T ; k ¼ 2; . . .;Kg:

Hence, the dual formulation (see eg, Bertsekas, 1982) of (6) is

given by

max
akt ;s

k
t

min
~w;nkt

fLð ~w; nkt ; akt ; skt Þ : akt ; skt � 0;

t ¼ 1; . . .; T ; k ¼ 2; . . .;Kg:

The above expression enables us to compute the dual problem

based only on the Lagrange multipliers a. The first-order

conditions of the inner minimization problem yields to

r ~wLð ~w; nkt ; akt ; skt Þ ¼QðhÞ ~w�
XT

t¼1

XK

k¼2

Xk
t a

k
t ¼ 0; ð15Þ

rnkt
Lð ~w; nkt ; akt ; skt Þ ¼Ce� akt � skt ¼ 0: ð16Þ

Since skt � 0, from (16) it follows that akt �Ce for t ¼ 1; . . .; T ,

and k ¼ 2; . . .;K.

Remark 1 Note that using (1), (15), and the notation of Xk
t ,

we have that

w0 ¼
1

N

XN

i¼1

wi:

On the other hand, by using (15) and (16) in (14), we obtain

that

Lð ~w; nkt ; akt ; skt Þ ¼
XT

t¼1

XK

k¼2

akt
>
e� 1

2
QðhÞ1=2 ~w
���

���
2

:

Since QðhÞ is nonsingular, it follows from (15) that the above

expression can be written as

Lð ~w; nkt ; akt ; skt Þ ¼
XT

t¼1

XK

k¼2

akt
>
e� 1

2
QðhÞ�1=2

XT

t¼1

XK

k¼2

Xk
t a

k
t

�����

�����

2

:

ð17Þ

The following result allows us to rewrite the above equality.

Proposition 2 For h[ 0, let eQðhÞ ¼ NIJN þ hJ 2 RJN�JN ,

where IJN denotes the identity matrix of size JN and

J ¼
IJ � � � IJ

..

. . .
. ..

.

IJ � � � IJ

2

664

3

775 2 RJN�JN :

Then, there exists a symmetric matrix eQðhÞ1=2 satisfying

ð eQðhÞ1=2Þ2 ¼ eQðhÞ.

Proof Let

eQðhÞ1=2 ¼
ffiffiffiffi
N

p
IJN � 1�

ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
ffiffiffiffi
N

p J : ð18Þ

Note that J 2 ¼ NJ. Then,
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ð eQðhÞ1=2Þ2 ¼ NIJN � 2ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
ÞJ

þ ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
Þ2

N
ðNJ Þ ¼ NIJN þ hJ :

h

By using the relation (13), Proposition 2, and the definition of

Xk
t , the expression (17) reduces to

Lð ~w; nkt ; akt ; skt Þ ¼
XT

t¼1

XK

k¼2

akt
>
e� 1

2Nðhþ 1Þ

eQðhÞ1=2
XT

t¼1

XK

k¼2

Xk
t a

k
t

�����

�����

2

:

Hence, the dual formulation is given by

maxakt 2RN

PT

t¼1

PK

k¼2

akt
>
e� 1

2Nðhþ 1Þ
eQðhÞ1=2

XT

t¼1

XK

k¼2

Xk
t a

k
t

�����

�����

2

s.t. 0�akt �Ce; t ¼ 1; . . .;T ; k ¼ 2; . . .;K:

ð19Þ

Remark 2 From (15) and (13), it follows that

w0 ¼
1

N

XN

i¼1

XT

t¼1

XK

k¼2

ðx1it � xkitÞakit;

and

wi ¼
1

Nðhþ 1Þ ðhþ NÞ
XT

t¼1

XK

k¼2

ðx1it � xkitÞakit

 

þh
XN

j¼1;j 6¼i

XT

t¼1

XK

k¼2

ðx1jt � xkjtÞakjt

!

;

ð20Þ

for i ¼ 1; . . .;N.
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