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Abstract. We propose a hidden Markov model (HMM) approach to identifying on-shelf
out-of-stock (OOS) by detecting changes in sales patterns resulting from unobserved states
of the shelf. We calibrate our model using point-of-sale (POS) data from a big-box retailer.
We validate our approach using visual inspections that monitor the state of the shelf and
compare them to the HMM’s predictions. We test the proposed approach on 14 products
and 10 stores. We specify our model using a hierarchical Bayes approach and use a Monte
Carlo–Markov chain methodology to estimate the model parameters. We identify three
latent states in which one of them characterizes an OOS state. The results show that the
proposed approach performs well in predicting out-of-stocks, combining high detection
power (63.48%) and low false alerts (15.52%). Interestingly, the highest power of detection
is obtained for medium-incidence products (77.42%), whereas the lowest false alarm rate is
obtained for lower-incidence products (7.32%). Our HMM approach outperforms several
benchmarks, particularly for lower-incidence products, which are not typically monitored
using visual inspections. Using only POS data, our method uncovers useful information
that provides actionable metrics that managers can use to evaluate the quality of demand
forecasting and product replenishment at the store–product level.
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1. Introduction
Product availability is a key component of service ex-
ecution because, in addition to the location, customers
decide fromwhich store to buy based on the assortment
of products and prices that the store offers. Thus, re-
tailers need to monitor carefully that the proposed
offer is available to consumers when they visit the
store. However, big-box retailers carry thousands of
products, and thus, monitoring the availability of their
products on a daily basis is a complex task. On-shelf
out-of-stock (OOS) is used in grocery retailing to de-
scribe the situation in which consumers do not find
the products they wish to purchase on the shelf of
a supermarket during a shopping trip. Retailers have
been struggling with considerable OOS for decades
with important consequences. Gruen andCorsten (2007)
estimate an overall average OOS rate of 8.3%, which
costs retailers, on average, 4% of their annual sales.
Importantly, these authors indicate that 70%–75% of
OOS are a direct result of retail store practices (either
underestimating demand or having ordering processes/
cycles that are too lengthy) and shelf-restocking prac-
tices (the product is at the store but not on the shelf).
The (mis)alignment of the forecasting planning with

the demand could determine the incidence of OOS,
whereas the promptness of restocking procedures could
determine the duration of each OOS event.
Despite recent developments in improving inventory

systems the problems of shelf stockouts and inventory
inaccuracy still remain unsolved. The complexity in
keeping accurate inventories increases mainly with
demand variability, poor performance of inventory and
replenishment systems, number of products to moni-
tor, product variety, inventory density, and lack of staffing
among many other factors (DeHoratius and Raman 2008,
Bensoussan et al. 2016). An additional problem that
forecast and inventory systems need to deal with is the
existence of phantom stockouts (Ton and Raman 2010,
Chen 2014). Phantom stockouts occur when there is no
product available in the store but the inventory system
indicates a positive inventory. This creates immediate
problems as the replenishment system does not order
new products because of the existence of zero demand
with (hypothetically) positive inventory. As the product
is truly not available, customers cannot buy the product,
creating a vicious circle. In addition, forecasting systems
based on those datamay consider these zero-sale periods
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as normal no-demand periods making it difficult to
detect abnormal low levels of sales resulting from OOS.

On-shelf availability is a key performance indicator
in the retail industry. Consequently, retailers use var-
ious techniques to verify their on-shelf product avail-
ability. These have evolved over time according to the
number of products being monitored and the devel-
opment of technological improvements. Visual inspec-
tions are used to measure the presence of a limited
number of products at different periods of time man-
ually, typically once a day only for the top products.
These inspections help to adjust inventory systems and
trigger replenishment orders when the product is not
present. When implementing these visual inspections,
retailers or manufacturers incur high costs because of
the personnel involved in this task.More recently, image
recognition and radio-frequency identification (RFID)
technologies have been introduced with limited success
because of the high costs of the required devices and
technological limitations. Item-level RFID implementa-
tions remain prohibitively expensive for many appli-
cations and often do not provide perfect visibility into
inventory positions because of technological limitations
and other practical considerations (Mersereau 2015).
Indeed, the costs of RFID are still often much larger
than the costs of current identification technologies,
such as visual inspections. Although RFID technologies
are attractive for numerous companies, most of them
still prefer to start with pilot projects and return-on-
investment analyses to evaluate their costs and profits
(Sarac et al. 2010). Consequently, the use of these tech-
nologies is limited to only the more important products.
Because of the relatively high cost of a tag, it is not
economically feasible to tag many fast-moving consumer
goods individually (Hardgrave et al. 2011). Instead, in
this research, we develop a methodology that can be
applied to a large number of products because it requires
only transactional point-of-sale data to determine on-
shelf product availability.

We develop a hidden Markov model (HMM) that
uncovers the underlying state of the demand for a
product using the observed sales pattern. Indeed, the
observed sales correspond to a partially observed state
of the demand resulting from possible shortages in the
offer. In our HMM, one of the hidden states corre-
sponds to the OOS condition, whereas the other states
capture the different states of the underlying demand.
We exploit the information coming from different
stores for the same product and specify a hierarchical
Bayes model. We estimate the parameters using a
Monte Carlo–Markov Chain simulation approach. We
implement our methodology on 14 products and 10
stores using 15 months of daily sales data. We validate
the model using data collected through visual in-
spection of the shelf for a period of 14 days for the same
products and stores. For those periods, we contrast the

model’s prediction regarding the state of the shelf and
the observed state of the shelf. Overall, the model
identifies 63.48% of the OOS with a false alarm rate of
15.52%, outperforming several benchmarks, including
the model then in use by the retailer. The HMM ap-
proach provides a higher advantage when considering
lower- and medium-incidence products, which are not
typically monitored using visual inspections. In addi-
tion, the estimated transition matrix from the HMM
reflects how frequently the demand moves to an OOS
state and how quickly each store reacts to stockouts,
summarizing management performance regarding
demand planning and product replenishment.
We hope to contribute to the operationsmanagement

literature by the development of a method based on
a well-grounded econometric model that is effective
in detecting OOS using partially observable demand.
Managerially, we provide an automatic method for
detecting on-shelf OOS based on sales data. This offers
an accurate view of the shelf availability to the retailer
and the product supplier and uncovers interesting
patterns regarding demand planning and product
replenishment to compare store performance across
products.

2. Literature Review
On-shelf OOS has been an active subject of research in
recent decades. There are basically two streams of re-
search. The first stream investigates consumer response
to OOS (see, e.g., Campo et al. 2000, Fitzsimons 2000,
Campo et al. 2003, and Che et al. 2012). Researchers in
this area have proposed that consumers facing an OOS
can switch to another product, buy the missing item in
a competing store, defer the purchase to the next
shopping occasion, or drop the purchase altogether
(Corstjens and Corstjens 1995). The studies reveal that
product switching is the predominant reaction fol-
lowed by size switching (Campo et al. 2003, VanWoensel
et al. 2007). The second stream of research investigates
the causal effects of different factors on OOS. Among
the many factors that have been studied are brand/
store loyalty, urgency of need to buy the product, and
consumer type (for a thorough review, see Aastrup and
Kotzab 2010).
On-shelf OOS is closely related to the problem of

inventory inaccuracy because the availability of a pro-
duct on the shelf is directly related to the quality of the
inventory management carried out by the retailer.
Indeed, inventory inaccuracy is a significant cause of
OOS. Inventory management with partial information
is a classical topic of operations research (e.g., Azoury
1985, Lovejoy 1990), in which this partial information
may be due to inventory inaccuracy. For instance,
DeHoratius et al. (2008) developed an inventory man-
agement tool that accounts for record inaccuracy using
a Bayesian belief of the physical inventory level. They
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model the interaction between the inventory records and
sales explicitly. More recently, HMMs have been used to
model unobserved inventory considering transactional
data. Bayraktar and Ludkovski (2010) developed an
analytical approach for inventory management with
partially observed demand using an HMM. They ana-
lyzed the conditions for optimal inventory control nu-
merically when demand is partially observed. Kök and
Shang (2007) investigated inspection and replenishment
policies for systems with inventory record inaccuracy.
They proposed an inventory-based policy that triggers
audits when the inventory records are below certain
thresholds. Both the threshold levels and the base stock
level depend on the level of inaccuracy. Chen (2014)
proposed two partially observable Markov decision
models for demand shrinkage and replenishment exe-
cution. The author derived a probabilistic belief model
about the actual inventory level based on the system
inventory records and historical sales data. Bhan (2015)
proposed an HMM to represent the evolution of the
inventory in a retail store. Similar to Chen (2014), Bhan
(2015) investigated the properties of the developed
model and the proposed estimation algorithm theo-
retically. In these HMMapproaches tomodel inventory
evolution, the hidden states correspond to the unobserved
number of units in the inventory. Thus, these authors
do not attempt to characterize the observed evolution
in demand empirically because the number of states
is, in principle, large, and the potential covariates
involved in characterizing the transitions among the
states could complicate the estimation of HMM with
a large number of states. Indeed, despite the extensive
research investigating optimal inspection policies for
detecting on-shelf OOS, there is a lack of empirical studies.
There are, however, a few exceptions. Papakiriakopoulos
et al. (2009) developed a rule-based decision support
system for automatically detecting OOS based on sales
data, whereas Papakiriakopoulos and Doukidis (2011)
proposed a machine-learning algorithm that learns
from past OOS history and classifies the current state
of the shelf. In these two cases, the algorithms de-
veloped are supervised in nature as they learn from
history and, thus, require historical information of past
OOS, which are typically unobserved or unrecorded.

Our work is related to Chuang et al. (2016) who
investigated the effectiveness of using external audits
to detect OOS. Similar to their work, we offer an un-
supervised method that requires only POS data, which
allows monitoring a large number of products. In
contrast to Chuang et al. (2016), who used a negative
binomial model to describe demand and a statistical
process-control approach to trigger alerts, we use an
HMM that models sales evolution and triggers alerts
simultaneouslywhen the system reaches the OOS state.
Furthermore, following previous research, we model
demand as being driven by an underlying Markov

process that represents the state of the world (Song and
Zipkin 1993, Chen and Song 2001, Treharne and Sox
2002). However, we take advantage of the HMM ap-
proach to uncover unobserved OOS.

3. Data
We use two sources of information: sales data and on-
shelf product availability data. The first source of
information is used to develop the methodology and
calibrate the HMM model, and the second is used to
evaluate the proposed methodology using various
performance metrics. Note that we did not have access
to inventory data. In our multiple conversations with
the managers, they acknowledged that the use of their
inventory data were ineffective for OOS detection, and
therefore, they used another approach (the one de-
scribed in Section 4.8.1) to tackle this problem. Indeed,
past research shows that the number of existing units
available in the store (shelf + back room) does not al-
ways correlate with the number of units on the shelf
and may not be informative (unless both are zero)
(DeHoratius and Raman 2008, Fisher and Raman 2010,
Ton and Raman 2010). Therefore, our proposed model
does not consider inventory data. However, in Section
5.4.1, we describe how this information can be incor-
porated, if available, such that its contribution can be
tested empirically.

3.1. Sales Data
Our point-of-sale (POS) data contain information for all
transactions from February 18, 2013, to June 1, 2014, of
a big-box supermarket located in Latin America that
offers more than 70,000 SKUs per store. We used data
from February 18, 2013, to May 18, 2014, to calibrate
the model and from May 19, 2014, to June 1, 2014, to
validate the model and aggregate the information at
a daily level. We aggregated the information on a daily
basis for two reasons: (i) Managerially, this retailer
replenished most of the products in a period that was
longer than one day. Thus, it makes less sense to have
shorter periods if managers cannot react to them.
(ii) In the case of shorter periods, less information is
available, and therefore, it is more difficult to discern
when a zero-sale period corresponds to an OOS or if it
actually reflects normal behavior.We also investigated
a half-day period; however, the performance of the
models was significantly worse.
We considered the number of transactions that in-

volve product i at store j and day t (nijt) and the total
number of transactions at store j and day t (Njt). We
used incidence data (whether the ticket contained
a product) instead of sales data (the number of units
purchased) because incidence summarizes the avail-
ability of the product on the shelf. We studied P � 14
products in J � 10 stores in the same market area. We
selected the products with the help of the company to

Montoya and Gonzalez: HMM to Detect On-Shelf OOS Using POS Data
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–17, © 2019 INFORMS 3



cover a wide purchase-incidence range of products.
The stores were selected by the company so that all of
them were present in the same city (market area). In
this way, the same distribution center supplies all these
stores. In addition, unobserved factors could be better
controlled (those that would most likely affect all
stores, making the results more comparable). All 10
stores represent a subset of the total number of stores
within the market area with comparable sizes and
assortments.

Table 1 describes the average daily incidence (nijtNjt
×100)

for the products studied. It can be seen that, among
these products, the product with the highest average
incidence is paper towels with 0.975, which means that
approximately one of every 100 customers purchased
the product. At the other extreme, among the products
studied, the product with the lowest average incidence
corresponds to frozen potatoes; approximately 1.5 of
every 1,000 customers purchased the product.

In addition, Table 1 shows some degree of hetero-
geneity across stores for some products. The column for
heterogeneity ratio shows the ratio between the max-
imum and minimum incidence across stores for each
product. It can be seen that, in some cases, the maxi-
mum incidence is about six times larger than the
minimum across stores (juice powder). However, on
average across products, the store with the highest
incidence is about three times larger than the store with
the lowest incidence. Finally, the column for average
observed OOS reports the observed OOS information
obtained through visual inspection, which is described
in the next section. It corresponds to the percentage of
the measured occasions in which the product was not
found on the shelf. It can be seen that, on average, the
OOS rate is about 8% but with substantial heteroge-
neity. For instance, chocolate presented 48% OOS,
whereas frozen potatoes showed as low as an 0.8%

OOS on average across stores during the validation
period.
Before proceeding with a further description of the

data and model, it is instructive to take a look at the
sales data pattern for a particular SKU.
Figure 1 shows the sales time series for an illustrative

product and store. It can be seen that sales show
variability over time, including periods of zero sales.
These periods of zero sales can vary in their duration
and can be preceded by periods of either low or high
demand. The goal of the HMM is to detect such fluc-
tuations in demand and uncover the underlying state
that may motivate such observed sales’ behavior. It is
also important to control for other factors that may
affect sales but are not directly related to OOS, such as
seasonality, trends, and price promotions. There are
other factors that can also affect sales, such as space
allocation or on-shelf product popularity (scarcity ef-
fect). Indeed, several studies have shown previously
that the space allocated to the products, the location on
the shelf, or how popular the products are (inferred
from the percentage of units available on the shelf) can
induce the purchase of the product (see Gierl et al.
2008 and the references therein). Because we do not
have access to such information, these factors are not
included in the model.

3.2. On-Shelf Availability Data
We have daily on-shelf availability information col-
lected for the same products and stores from May 19,
2014, to June 1, 2014. Note that because the company
did not register this information on a regular basis,
we collected this information to evaluate the per-
formance of the model. This information, based on
visual inspections, determines whether the product
was available during the day at each particular store.
Specifically, 10 different inspectors checked exactly the

Table 1. Descriptive Statistics: Daily Incidence of Products, Heterogeneity, and Observed Out-of-Stock Across Stores

Product Average incidence (%) Heterogeneity ratio Average observed out-of-stock (%)

Canned mackerel 0.226 3.889 9.375
Canned tuna 0.297 2.136 13.043
Cheese 0.308 3.222 2.439
Chocolate 0.282 4.273 47.561
Dish detergent 0.766 4.031 4.800
Frozen potatoes 0.151 2.750 0.820
Lasagna 0.177 3.444 9.735
Milk 0.679 2.529 3.968
Paper towels 0.975 3.451 0.833
Juice powder 0.388 6.286 5.769
Shrimp 0.282 2.353 4.425
Soda 0.337 3.467 0.769
Sugar 0.322 4.333 4.839
Tea 0.746 2.780 3.419
Mean 0.424 2.803 7.985

Note. Heterogeneity ratio = max(incidence)/min(incidence) across stores.
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same SKUs visually across the 10 stores every day in
the same range of time during the inspection period.
To avoid partial OOS, when a SKU has multiple lo-
cations in the store and there is OOS in some of these
locations, the chosen productswere not on promotional
display during the inspection period. The collected
OOS information will be used to validate the predictive
ability of the developed approach to detect those
shelf OOS.

4. Hidden Markov Model for OOS
In this section, we describe the use of an HMM to
capture dynamics in sales of a product resulting from
partially observable demand implied by on-shelf out-
of-stocks. An HMM is a Markov process with un-
observed states. In our application, the hidden states
represent the underlying state of the demand that can
be implied by the state of the shelf. That is, different
states capture the different unobserved levels of de-
mand, and one of the states represents the truncated
demand implied by OOS. For instance, let us assume
three states. The first state represents the OOS condi-
tion, and we expect to observe no sales if the demand is
in such state. The other two states may capture low and
high levels of demand that do not suffer from OOS.

The demand transitions stochastically among these
states through a Markovian first-order process. The
transitions represent the probability of switching from
one state to another. These probabilities capture in-
trinsic shifts in demand (e.g., from low demand to high
demand) as well as how quickly the store reacts from
an OOS (e.g., from OOS to low or high states). In
addition, the probabilities of moving from low or high
states to the OOS state may capture the performance of

the store regarding how frequently it moves from
regular demand (either low or high) to an OOS. This
may reflect the performance of the replenishment or
demand-forecasting systems. To separate intrinsic shifts
between the states of the conditional demand and shifts
caused by price promotions, we study the effect of price
promotions in the transition matrix. Demand can also
increase because of short-term promotions. These short-
term changes are captured in the conditional component
of the HMM.
Let nijt be the number of tickets that contain the

product i at store j on day t. In the HMM, the joint
probability of a sequence of observations up to time
t {nij1, . . . ,nijt} is a function of three main components:
(i) the initial hidden states probabilities (πij), (ii) a se-
quence of transition probabilities among the states of
demand (Qijt), and (iii) a set of incidence probabilities
conditioned on the (truncated) demand states (Mijt).
We describe our formulation of each of these com-
ponents next.

4.1. Initial State Probabilities
Let s denote a demand state (s � 1, . . . ,S). Let πs

ij be the
probability that the demand for product i at store j is
initially in state s, where πs

ij ≥ 0 and
∑S

s�1πs
ij � 1. This

probability can represent, for example, the typical per-
formance of the store regarding in-stock and fill rates.
One can prespecify these probabilities or estimate
them from the POS data. For instance, one can specify
equal probabilities for each state or another distri-
bution based on a theoretical basis. Another option is
to impose the steady-state probabilities derived from
the transition matrix as the initial probabilities. We
tried different specifications, but all of themyield similar

Figure 1. (Color online) Sales Time Series for an Illustrative Product
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results as is expected in cases of long time series
(MacDonald and Zucchini 1997). Therefore, we as-
sumed equal initial probabilities across states.

4.2. Transition Matrix
The transition matrix Qijt describes transitions among
the states after the first period. Let Xijt ∈ {1, . . . , S} de-
note product i’s demand state at time t and store j. Then
each element of the transition matrix can be written as

qs
′s
ijt � P(Xijt � s |Xijt−1 � s′, priceijt), (1)

where qs
′s
ijt ≥ 0,

∑S
s�1qs

′s
ijt � 1 and priceijt corresponds to

the price of product i in store j at time t. Thus, the pro-
pensity to transition fromone state to another is a function
of unobserved factors that can be captured by a random-
effect coefficient and the effect of price (priceijt). The
inclusion of price in the transition matrix helps us to dis-
entangle the transition pattern resulting from unobserved
factors, such as replenishment and fill-rate policies that
affect the probability of moving from one state to another
and the transition caused by price promotions. To esti-
mate such effects properly, we mean center the variable
priceijt to capture the effect of deviations from the regular
price. (Alternatively, we can center this variable with
respect to themost frequently observed price. This change
does not provide significant differences in the results.)

We follow Netzer et al. (2008) and Montoya et al.
(2010) in parameterizing the nonhomogeneous hidden-
state transitions as an ordered logit model. In our for-
mulation, the nonhomogeneous HMM is affected by
the product’s price, which affects the dynamic behavior
observed for this product. Thus, the transition proba-
bilities are given by

qs1ijt �
exp(τ̂s1ij − ρs

ijpriceijt)

1 + exp(τ̂s1ij − ρs
ijpriceijt)

qs2ijt �
exp(τ̂s2ij − ρs

ijpriceijt)

1 + exp(τ̂s2ij − ρs
ijpriceijt)

− exp(τ̂s1ij − ρs
ijpriceijt)

1 + exp(τ̂s1ij − ρs
ijpriceijt)

⋮

qsSijt � 1 − exp(τ̂sS−1ij − ρs
ijpriceijt)

1 + exp(τ̂sS−1ij − ρs
ijpriceijt)

, (2)

where {τ̂ss′ij , s
′ � 1, . . . ,S} are thresholds that repre-

sent the areas of switching and capture regular
transition patterns and ρs

ij captures the effect of
price on the propensity to transition from state s
to other states. To properly characterize the thresh-
olds, we impose τ̂s1ij ≤ τ̂s2ij ⋯≤ τ̂sSij by τ̂s1i j � τs1i j , τ̂

s2
i j � τ̂s1i j+

exp(τs2i j ), . . . , τ̂s Si j � τ̂s S−1i j + exp(τs Si j ).

4.3. Conditional Observed Incidence
Conditional on being in state s in period t, we assume
that the number of tickets that contain the product i at

store j (nijt) follows a binomial distribution with pa-
rameters Njt and pijts. That is,

Pijts
(
nijt|Xijt � s, zijt

) � (
Njt
nijt

)
pnijtijts(1 − pijts)Njt−nijt , (3)

where Njt corresponds to the total number of tickets at
store j and period t, andNjt helps to capture the overall
demand effects at the store level and, thus, is treated as
exogenous. To capture the different levels of (partially)
observed demand, we model the incidence conditional
probability pijts as

pijts � 1
1 + exp(−(α̂ijs + β′ijszijt))

, (4)

where α̂ijs is an intercept that corresponds to the
probability that a random customer includes product i
in the customer’s basket during the customer’s visit to
the store j at time t if the conditional demand is in state s
and zijt includes covariates that affect demand, such as
day of the week, holidays, month, and price. Following
standard notation in HMMs (MacDonald and Zucchini
1997, Netzer et al. 2008, Montoya et al. 2010), we write
the vector of state-dependent incidence probabilities as
a diagonal matrix Mijt.
To ensure the identification of different states and

mitigate the label-switching problem (Jasra et al. 2005),
we imposed a nondecreasing order of the intercepts
(α̂ij1 ≤ α̂ij2 ≤ . . . ≤ α̂ijS) by setting α̂ij1 � αij1, α̂ij2 � α̂ij1+
exp(αij2), . . . , α̂ijS � α̂ijS−1 + exp(αijS).
There are several advantages for using the binomial

distribution in the current application. First, accounting
for store volume (Njt) allows us to control for exoge-
nous variations in customer visits to the store that affect
overall demand unrelated to variations in demand for
specific products. For example, consider an increase in
overall demand because of a holiday season. A volume
model, such as a Poisson model, would attribute such
an increase to a change in the state of demand or to
marketing actions specific to the product and might
overestimate such an impact. Second, store volume
helps to control for seasonal or time-specific effects that
may affect the market. Third, the binomial distribution
can easily handle zero-incidence situations (nijt � 0),
which provides key information in our application.
Indeed, empirically, an equivalent HMM with condi-
tional Poisson distribution performs consistently worse
than the chosen binomial distribution.

4.4. Out-of-Stock State
Recall that the hidden states represent different levels
of partially observable demand. To identify the OOS,
we constrain one of the states to represent such
a condition (we denote this OOS state by s � 0). The
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rationale behind this is that we expect that an OOS
implies a serious impact on the product’s sales, sub-
stantially reducing sales from their regular levels. In the
extreme case, we expect to observe zero sales when the
product is unavailable. However, given that an OOS
may occur at any time during the day and because it
is possible to observe sales during the day, therefore,
the probability of observing tickets that include the
product is not necessarily equal to zero. Consequently,
we allow for nonzero probability (albeit very small) in
the OOS state. Thus,

P(nijt |Xijt � 0) �
(
Njt
nijt

)
εnijt (1 − ε)Njt−nijt , (5)

where ε is a very small probability (yet not equal to zero)
to be determined empirically. That is, we estimate the
models for different values of ε and choose the one that is
small enough to discriminate among the states and large
enough to avoid numerical underflow (see Section 5.3.1).
In addition, we tested our constrained specification of an
OOS state empirically and estimate an unconstrained
HMM in which the OOS state is not imposed. In such
a specification, all states are free (see Section 5.1).

4.5. Bayesian Hierarchy and Estimation
Let (nij1, . . . ,nijt, . . . ,nijT) be a sequence of T daily tickets
for store j and product i. Given the structure of the
model, the likelihood function for product i considering
a set of J stores can be written as

Li � ∏
J

j�1
P(nij1, . . . ,nijt, . . . ,nijT) � ∏

J

j�1
π′
ijMij1 ∏

T

t�2
QijtMijt1,

(6)

where 1 is an S × 1 vector of ones. We take advantage
of the fact that the same product is present in all stores
of the same market, and consequently, we pool the
information across the stores. However, we allow for
heterogeneity at the store level to permit different
baseline sales, sensitivity to promotions, and the effects
of controls using a hierarchical Bayesian approach.
Given that the products studied are quite diverse, we
do not pool information across products but, instead,
estimate a completely independent model for each
product. To include heterogeneity across stores, we
specify the HMM parameters at the store level and use
a hierarchical Bayesian Markov chain Monte Carlo
(MCMC) procedure for parameter estimation. Specif-
ically, Φij � {τ̂ss′ij ,ρ

s
ij,αijs, βijs}∀s, s′ is the set of param-

eters for a product i and store j. We capture unobserved
heterogeneity across stores with the distribution of Φij
by allowing a multivariate normal distribution with
meanΦi0 and varianceViΦ. That is,Φij � Φi0 + ηij, where
ηij ~N(0,ViΦ). The hyperparameters Φi0 and ViΦ have a
multivariate normal and inverse Wishart distributions,

respectively. Finally, we derive the full conditional
distributions of the unknowns using the likelihood
function (Equation (6)) and the specified prior distri-
butions. As the full conditional distributions do not
have closed forms, we use a Metropolis–Hasting pro-
cedure to derive the posterior distributions. See Online
Appendix A for the specification of the priors and full
conditional distributions.

4.6. Inferring Latent States
One key property of the HMM formulation is that, after
observing sales, we can infer the state of the demand for
product i and store j probabilistically at each time t.
Specifically, given the parameter estimates and sales up
to time t, we use the filtering approach (MacDonald and
Zucchini 1997) to calculate the probability that demand
of product i at store j is in state s at time t. This filtering
probability is given by

P(Xijt � s |nij1, . . . , nijt) � π ′
ijMij1 ∏

t

τ�2
QijτM

s
ijτ/Lijt, (7)

where Ms
ijτ is the sth column of the matrix Mijτ and

Lijt � π ′
ijMij1∏

t
l�2QijlMijl1 is the likelihood of the ob-

served sequence of tickets that include the product i at
store j up to time t.

4.7. Performance Metrics
We develop an HMM to identify OOS using POS data.
To characterize the performance in identifying the OOS
we use type I error, false alarms, and predictive power
metrics. In addition, we evaluate the model fit and
predictive ability to the sales data. For that purpose,
we use log-marginal density (LMD) and validation
log-likelihood, respectively. Explanations of all these
metrics follow.

4.7.1. Identifying OOS. The focus of the current re-
search is on identifying the unobserved OOS state. For
this, we use Equation (7) to predict at which state the
product is at each period of time. We assign the state of
the demand to the state withmaximumprobability. We
generate alarms when the system is predicted to be in
the OOS state (we analyze alternative rules for gen-
erating alerts when the system is in the OOS state, see
Online Appendix B). To evaluate the performance of
the classification algorithm, we consider the confusion
matrix illustrated in Figure 2.
From this matrix, we define the following metrics

(Montgomery 2013):
Type I error is the percentage of observations that are

not OOS but that the model classifies as such. We want
it to be as close to zero as possible. This indicator is
calculated as False Positives

N′ .
False alarms are the percentage of instances that the

model classifies as OOS even though they are not OOS.
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We want it to be as close to zero as possible. This in-
dicator is calculated as False Positives

P .
Power of detection is the percentage of OOS that

the model identifies correctly. We want it to be as
close to one as possible. This indicator is calculated
as True Positives

P′ .
These classification metrics are the key performance

indicators for the proposed approach. Indeed, the re-
tailer’s goal is obtaining high detection power with low
false alarms. However, there is an important trade-off
between these two metrics because high detection
power could imply low performance regarding false
alerts. This occurs because, to detect as many OOS as
possible, the system should send alerts even when the
probability of such events is not high enough. This
implies that, in many cases, the system could classify
the state as an OOS incorrectly, which would increase
the false-alert metric. In contrast, if the system focuses
on low false-alert rates, the system would maximize
this indicator by sending alerts only when there is
a high probability of such an event. This conservative
behavior could leave many OOS undetected.

4.8. Benchmarks
4.8.1. Approach Used by the Retailer. We consider the
methodology the company was using to detect OOS
during the time horizon that covers our data as a bench-
mark. This methodology uses a statistical process control
approach that alerts when the system is “out of control.”
This occurs when sales fall below certain levels defined
by specific thresholds (control limits). These thresh-
olds are determined by first fitting a sales-incidence
model using historical transactional data controlling
for trend and seasonality and then using the model’s
residuals such that a low percentage of them fall
below those thresholds (e.g., α � 1% of the observa-
tions). Therefore, if the system is always in control, by
design, this approach would have a type I error of α
(Montgomery 2013).

To calibrate their forecasting model, the company
uses the same data (POS, price, and controls for

seasonality) as we do for the proposed HMM. And,
similar to our approach, the company defines daily
periods for monitoring the products at each store. One
important difference between the company’s approach
and the methodology proposed in this paper is that, to
implement their approach, the historical data need to
be cleaned from OOS. This is because, to detect OOS in
the validation sample, their forecast model needs to be
calibrated with data that reflect a system that is always
in control (one in which there are no OOS). A failure in
doing so may cause their model to neglect identifying
substantive drops in sales as OOS because such behavior
would be considered to be normal. The complexity of
eliminating OOS from historical data are that most
OOS are unobserved and are rarely recorded by the
company. This problem has been dealt with in various
forms in previous research. For instance, Chuang et al.
(2016) removed all historical data with zero sales.
Such a procedure may overestimate OOS because it
would probably assume that a zero-sale period cor-
responds to an OOS. Thus, applying that procedure
will produce a high false-alert rate (see Chuang et al.
2016, table 4 on p. 943, which implies a false alarm rate
of 40%, power 60%, and type I error 13%). The
company implemented an ad hoc procedure in which
they first used the historical purchase incidence (p) for
each product and store to compute the probability of
observing zero sales when N tickets have been re-
ceived during the time period (� (1 − p)N). If this
probability is lower than γ, the observation corre-
sponding to such a period is eliminated from the
historical data. If this condition is satisfied by con-
sidering more than one zero-sale period, all consec-
utive periods involved are removed. They evaluated
different values for γ and used the one that yielded
the best results, considering the performance metrics
across products. In contrast, our HMM does not re-
quire a data-cleaning procedure as the model is built
assuming the existence of unobserved OOS in the
historical data at least for one of the stores that was
analyzed for a particular product.

4.8.2. Other Benchmarks. In addition, we consider the
following three benchmarks:

1. Zero-sale heuristic: we used a simple decision rule
based on the assumption that zero sales are caused
exclusively by on-shelf OOS. For thismodel, an alarm is
triggered only if there are zero sales for the product–
store during the day.

2. Binomial model: we estimated a one-state HMM,
in which a binomial distribution characterizes the
number of tickets containing a certain product. Given
that this HMM has only one state (strictly speaking,
there is no hidden state in this formulation), we
needed a different criterion to trigger an alarm. In this
case, and similar to Chuang et al. (2016), an alarm is

Figure 2. Confusion Matrix to Evaluate the Classification
Performance of the HMM Model
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triggered if the observed number of sales corresponds to
a low probability event (p(sales)< β). In particular, we
implemented β � 0.01 and 0.05.

3. Binomial zero-sale (BZS) model: we followed the
approach proposed by Chuang et al. (2016) and esti-
mated a binomial model to determine the probability of
observing zero sales during Z consecutive days. If this
probability is lower than β for Z consecutive days, then
we trigger the OOS alarm. In particular, we imple-
mented β � 0.01 and 0.05 and Z � 1 and 2 days. Note
that Chuang et al. (2016) use a negative binomial (NB)
distribution to fit the sales data. The NB is also known
as a gamma–Poissonmodel, in which the heterogeneity
in the Poisson parameter follows a gamma distribution.
Instead of incorporating heterogeneity in this way and
estimating such a model using a maximum-likelihood
method, we use a hierarchical Bayesian approach to
allow for heterogeneity and an MCMC approach to
estimate the models.

5. Results
In this section, we report the results of estimating the
HMMmodel and benchmarks for detecting OOS using
POS data. We used the historical data to calibrate the
model and visual inspections for validation purposes.
We ran the hierarchical Bayes estimation for 500,000
iterations for each product independently. The first
300,000 iterations were used as a “burn-in” period, and
the last 200,000 iterations were used to estimate the
conditional posterior distributions. Convergence was
assessed by monitoring the trace plots of the MCMC
output. Estimating the model’s parameters for each
product takes less than two hours and, as this esti-
mation is independent for each product, this task can be
performed in parallel. Once the model is estimated,
inferring the state of the shelf for all products and stores
during the validation period takes less than oneminute.

5.1. Model Selection
We tested various specifications of the proposed HMM
(i) regarding number of states, (ii) including an OOS
state, and (iii) allowing for nonhomogeneous transi-
tions. To infer the number of states that best capture the
dynamic evolution of the demand and best identify the
OOS states, we estimated models with one, two, three,
and four states. In addition, we investigated relaxing
the need for a constrained OOS state. This allows for
a more flexible model that fits the data better but re-
quires estimating more parameters. More importantly,
the lack of structure of this flexible HMM formulation
may hurt the identification of the OOS states. Finally,
we also studied the contribution of allowing for non-
homogeneous transitions by removing price from the
transition matrix (see Equation (2)). This resulted in
13 different model variants.

We analyzed the performance of the models along
two dimensions. First, we turned our attention to the
focus of the current research regarding the identifica-
tion of the OOS state. We want the model to be able to
identify OOS states with high power and low type
I error and false alerts. Next, we explored the models’
performance regarding the sales data. We want the
models to be able to capture dynamics in sales. This is
not the focus of our research, but the models should be
able to represent sales properly. Following Bayesian
research, we used the log-marginal density computed
on the calibration data to evaluate model fit to the sales
data. The marginal density (likelihood) corresponds
to the likelihood of the data marginalizing over the
parameters (Sorensen and Gianola 2007). In Bayesian
statistics, it is approximated using the MCMC draws
(Chib and Jeliazkov 2001). The LMD is the log of such
a function, and it is typically a negative value. Thus,
the higher the value, the better the model represents
the data. In addition, to evaluate the predictive ability
of the different specifications, we included out-of-
sample log-likelihood (Gelman et al. 2014). Similarly
to LMD, a higher value indicates a higher predictive
performance.
Table 2 summarizes the performance of the HMMs

regarding the identification of the OOS as well as the fit
to and the prediction ability of the sales data.
Table 2 shows several results. First, considering

overall performance, we observe that the models that
do not specify an OOS state perform badly regarding
type I error and false alarms. This poor performance
may prevent the use of these specifications. Next,
allowing for nonhomogeneous transitions has mostly
a positive effect on reducing type I error and false
alarms and on increasing detection power (its biggest
contribution is in detection power). Finally, as the
number of states increases, the performance of fit and
predictive ability generally improves. Within models
with the same number of states, constraining the HMM
to have an OOS tends to deteriorate penalized fit
(LMD), but in contrast, it tends to improve predictive
ability (out-of-sample log-likelihood). Based on all these
performancemetrics, we selected themodel specification
with three states that incorporates an OOS and has
dynamic transitions. Such a model provides a type I
error of 0.85%, a false-alarm rate of 15.12%, and a de-
tection power of 63.48% on average across products.
In summary, we identified three sources of gains
for the selected specification: (i) imposing an OOS
structure is essential to capture OOS; (ii) three states
describe the demand well and simultaneously give
flexibility to capturing transitions to the OOS state
and detecting OOS; and (iii) allowing for prices to
influence transitions allows moving to the OOS, sep-
arating common transitions from those motivated by
promotions.
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5.2. Benchmark Comparison by
Purchase Incidence

To analyze the strengths and weaknesses of the dif-
ferent models, we segmented the 14 products into three
different groups based on their average purchase in-
cidence. The high group contains four products with an
average incidence higher than 0.6%. The medium
group has five products and an average incidence
between 0.3% and 0.6%. Finally, the low group has five
products with an average incidence lower than 0.3%.
Among the top 1,000 products for this retailer (considering
purchase incidence), high-, medium-, and low-incidence
products represent 13%, 30%, and 57%, respectively.
We compared the results of the chosen model to the
benchmarks described in Section 4.8. Recall that, as
described in Section 4.8.2, for the binomial and binomial
zero salesmodels, we tested two different values of β (1%
and 5%). In addition, for the BZS model we also tested
two different values of Z (one and two), representing the

number of consecutive days with zero sales. Table 3
presents the results obtained by all benchmarks across
the three groups of products.
We note that despite its simplicity, the zero-sale rule

detects a high percentage of OOS (54.78%). However,
this power of detection is achieved by triggering a high
number of false alarms (37%), making this approach
unreliable. This situation is similar for the binomial
model, whose false-alarm rate is higher than 75%
across all groups.
The BZS model yields low type I error and false-

alarm rates, which makes it a good candidate for OOS
detection. However, the power of detection of OOS is
lower than the best-performing models. Both versions
of the model (Z = 1, 2) maintain a low percentage of
errors and a power of detection between 30% and 40%
across the three product groups—results that are
consistent with the 37% obtained by Chuang et al.
(2016) with a similar approach. The 5% threshold

Table 2. Hidden Markov Model Selection

Number
of states

Out-of-stock
state

Nonhomogeneous
transitions Type I error False alarms Detection power log-Marginal

Out-of-sample
log-likelihood

1 No No 23.51 86.30 49.57 −316,050 −10,843
2 No No 43.35 92.85 44.35 −283,970 −10,404
2 No Yes 52.32 91.52 64.35 −275,130 −10,770
2 Yes No 2.03 28.97 66.09 −300,500 −13,334
2 Yes Yes 1.96 28.57 65.22 −311,370 −13,675
3 No No 26.92 88.39 46.96 −217,380 −8,928
3 No Yes 27.90 88.38 48.70 −268,640 −9,507
3 Yes No 0.98 17.86 60.00 −222,840 −8,094
3 Yes Yes 0.85 15.12 63.48 −222,720 −8,424
4 No No 25.34 93.48 23.48 −215,720 −8,867
4 No Yes 17.94 94.16 14.78 −216,970 −8,915
4 Yes No 0.92 17.50 57.39 −217,330 −8,488
4 Yes Yes 0.85 16.25 58.26 −217,520 −8,444

Notes. Out-of-sample performance metrics: type I error, false alarms, detection power. Model fit and predictive ability of sales: log-marginal
density and out-of-sample log-likelihood.

Table 3. Benchmark Comparison

Binomial zero sales

Statistical
process
control

Hidden
Markov
model

Binomial 1% 5%

Performance metric
Incidence
group

Zero
sales 1% 5% Z = 1 Z = 2 Z = 1 Z = 2

Type I error High 1.27 32.42 78.39 0.21 0.21 0.42 0.21 0.42 0.42
Medium 2.48 16.99 44.60 1.06 0.53 1.24 0.53 2.65 1.42
Low 3.47 22.45 42.86 0.61 0.00 0.82 0.00 1.84 0.61
All 2.42 23.51 54.49 0.65 0.26 0.85 0.26 1.70 0.85

False alarms High 42.86 93.87 96.10 25.00 11.11 22.22 11.11 15.38 15.38
Medium 38.89 87.27 92.99 31.58 14.29 28.00 13.64 38.46 25.00
Low 34.00 76.92 83.33 13.64 0.00 16.00 0.00 23.08 7.32
All 37.00 86.30 91.63 22.22 9.30 22.03 7.69 28.57 15.12

Power of detection High 50.00 62.50 93.75 18.75 50.00 43.75 50.00 68.75 68.75
Medium 70.97 45.16 61.76 41.94 58.06 58.06 61.29 77.42 77.42
Low 48.53 48.53 72.34 27.94 19.12 30.88 30.88 44.12 55.88
All 54.78 49.57 66.09 30.43 33.91 40.00 41.74 56.52 63.48

Note. Products are grouped based on purchase incidence.
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seems to work better for both values of Z because it
detects a higher percentage of OOS without compro-
mising the false-alarm performance (β � 5% imposes
a less-strict condition on sales behavior to be consid-
ered abnormal, which generates more alerts). In par-
ticular, for two consecutive days (Z = 2), the 5%
threshold improves the results of the model, detecting
a greater number of OOS and keeping the number of
false alarms under control. Note that the power of
detection of the BZS model has an upper bound given
by the power of detection of the zero-sale model. This is
because the BZS is more conservative with the alerts
because it requires p< β to trigger an alert. In contrast,
the zero-sale model does not restrict the alerts and,
therefore, is able to detect more OOS.

In the BZS model, the increase in the number of
consecutive days with zero sales (Z) has two opposite
effects. First, themodel becomesmore conservative as it
requests two consecutive days of zero sales (Z = 2)
instead of one (Z = 1) to generate a candidate of OOS
that restricts the number of alerts and decreases, as
a consequence, the number of false alerts. Second, in
contrast, the model becomes less conservative re-
garding the threshold for generating the alarm for the
candidate of OOS. To understand this fact, recall that
in this model an alarm is triggered when P(observing
two zero-sale days) < β. In this case, we assume that
P(observing two zero-sale days) = P(zero-sale day 1)
P(zero-sale day 2). Thus, this independence between days
increases the probability that two consecutive days satisfy
the criterion (p< β) that allows generating more alarms
and, as a consequence, detecting more OOS. Empirically,
the results of this model improve when we request two
consecutive days with zero sales because it is more likely
that this situation is produced by an on-shelf OOS.

The proposed HMM strictly dominates the results
of the statistical process control model used by the
company on average across products. In particular, we
notice that this superior performance occurs in the
medium- and low-incidence groups; for the high-
incidence group, both approaches obtain the same
results. In fact, the HMM’s power of detection out-
performs each of the benchmarks except for the bi-
nomial model with the 5% threshold. Compared with
the statistical process control model, the largest gain of
the proposed HMM approach (besides its decrease in
false alarms) is obtained for the low-incidence group.
Indeed, because of their low presence in daily tickets, it
is harder to discriminate if low sales correspond to
normal sales behavior or if they correspond to OOS
situations. Therefore, an increase in the power of de-
tection of this group is an important result because, as
mentioned before,most of the products that the company
offers belong to this group of products. Finally, for the
HMMapproach (and also for most benchmarks), the best
performance in terms of detection of OOS is obtained for

medium-incidence products. It is likely that these prod-
ucts present OOS earlier in the day, affecting the sales
more strongly, which allows the models to detect such
a change in sales. Indeed, in our data, the products with
higher incidence tend to have a lower number of OOS.
Note that we have developed each approach in-

dependently with parameters typically used in past
research. However, to get a direct comparison between
the HMM and the BZS models, we explored different
threshold parameters to classify OOS for both HMM
and BZS such that the corresponding performance
indicators line up on one of these metrics. The results
show that for the same type I error (0.85%), the HMM
outperforms the BZS (Z = 1) model on both false alarms
(15.12% versus 23.21%) and power of detection (63.48%
versus 37.39%). Similarly, for the same false alarm rate
(14.29%), theHMMstrongly outperforms the BZS (Z = 2)
model on power of detection (62.61% versus 10.43%),
whereas the BZS (Z = 2) model slightly outperforms the
HMMon type I error (0.13% versus 0.79%). These results
allow us to support the finding that the HMM provides
a superior performance.
The superior performance of the HMM may yield

important gains for the retailer. First, let us analyze the
power of detection. If 1,000 products are monitored,
assuming an average OOS rate of 10% would imply
100 products OOS on a given day. A 1% extra detection
would imply detecting one additional OOS instance. If
we assume that the OOS would last only one day if
detected, average daily sales of the entire chain would
imply approximately $6.9MM in a year for a retailer
with 400 stores. For this computation, we considered an
average incidence of 0.424 every 100 sales and an av-
erage price of $2.24 for the analyzed products. Thus,
for a store with 5,000 sales per day, the average daily
revenue for one product is $47.41 = $2.24 × 5,000 ×
0.424/100. Next, the annual revenues for the whole
chain with 400 stores for an average product is
$6,921,552 = $47.41 × 365 days × 400 stores. Conse-
quently, as the proposed HMM yields an approxi-
mately 7% higher detection power than the model
used by the company, this yields about $48.45MM
(= $6.9MM × 7) in gains. Next, let us consider the type
I error. Once again, if 1,000 products are monitored,
assuming an average OOS of 10% would imply 100
products OOS (and 900 products not OOS) on a given
day. A 0.1% type I error implies that 0.001 × 900 = 0.9
products are incorrectly classified as OOS. This would
trigger an unnecessary replenishment for 0.9 products,
which we assume involves 0.5 hours of the replenish-
ment personnel. If we assume labor cost of $10 per hour,
a 0.1% lower type I error would yield $0.66MM (0.9
products/store × $5/(product-day) × 365 days × 400
stores) in savings. As the proposed HMM yields a 0.85%
lower type I error than the model used by the company
(0.85% versus 1.7%), this yields about $5.58MM in
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savings. Finally, let us consider the false-alert error. First,
the total alert rate (number of alerts/number of days) can
be computed as follows. Letα, β, and γ be the type I, false
alarm, and power of detection rates, respectively. Then,
from the confusion matrix in Figure 2, it is easy to
verify that the alert rate = 1

β

/( 1
γβ − 1

γ + 1
α

)
. Then, if 1,000

products are monitored, considering an alert rate of 5.2%
gives a total of 52 alerts. A 1% false alert implies that
0.01 × 52 = 0.52 products are incorrectly classified as
OOS. This would trigger an unnecessary replenishment
of about 0.52 products, which we assume involves 0.5
hours of the replenishment personnel. If we assume
labor cost of $10 per hour, a 1% lower false alert
would yield $0.38MM (0.52 products/store × $5/
(product-day) × 365 days × 400 stores) in savings. As
the proposed HMM yields a 13.45% lower false alarm
error than the model used by the company (15.12%
versus 28.57%), this yields about $5.14MM in savings.
Therefore, considering all the performance indicators
and because the false alerts are included in the alerts
associatedwith the type I error, theHMMgives a total of
$54.03MM (= $5.58MM + $48.45MM) additional gains
compared with the system in use by the company.

Note that we did not consider other related costs that
affect the entire supply chain, such as retail or manu-
facturer substitution because of constant OOS (Corsten
and Gruen 2003).

5.3. The HMM’s Parameter Estimates
We now present the HMM estimates for the chosen
model. Given that we estimate a separate model for
each product, we report detailed results for only one
product (dish detergent). In addition, to better illustrate
the results, we report the analysis for only one store
(store 1). We chose dish detergent mainly because its
observed OOS level is close to the median across the
analyzed products. In addition, its relatively high in-
cidence may help us to illustrate the dynamics un-
covered by the HMM. The analysis is equivalent for all
products and stores.

As the raw parameter estimates are of less interest,
we report the transformed parameters of the transition
matrix given by Equation (2) and conditional state
probabilities given by Equation (4). All covariates zijt in
Equation (4) are fixed to zero, representing the base
levels for the controls and mean price. In addition, we
report the effect of price on the transition matrix and on
the conditional probabilities (see Table 4).

5.3.1. Interpreting the States. Recall that the chosen
model considers three states; the first corresponds to
the OOS state, and thus, its purchase probability p0 is
not estimated. Accordingly, we tested different values
for ε in Equation (5) ranging from 10−3 to 10−6. The
chosen value of 10−5 provides the best results for

discriminating the OOS state from the other states and
does not run into underflow problems when com-
puting the likelihood in Equation (6). Next, in the low
state, the purchase probability is 0.913%, whereas in the
high state the purchase probability is 1.428%.Weobserve
that the demand in the high state is 56% higher than the
demand in the low state (0.913% versus 1.428%).
Table 5 shows the purchase probabilities for the

different demand states at different prices.We note that
the low demand state is more price sensitive than the
high demand state. That is, when the system presents
a low demand, an increase of 5% in the price would
reduce the demand to close to zero, whereas a decrease
of 5% in the price would leverage the demand to 29%.
Thismight be becausewhen dish detergent is at the low
state (when we observe a lower number of sales at the
regular price), an increase in demand because of a price
discount may be explained by the arrival of more price-
sensitive customers who are willing to buy the product
when the price decreases. However, at the high state,
when sales are already high at the regular price, there is
less room to increase demand by decreasing the price.
This may explain why some discounts are introduced
when demand is low to boost demand.

5.3.2. Transition Dynamics. Table 6 shows the transi-
tion matrix for product dish detergent at store 1. We
observe that all states are relatively sticky as the prob-
ability of staying at the state is higher than the probability
of transitioning to another state. Specifically, the persis-
tence probabilities are 0.744, 0.535, and 0.566 for the OOS,
low, and high states, respectively. The probability of
staying at the OOS state once the system is OOS is high
although the probabilities of reaching such a state are
low (0.022 and 0.013 from the low- and high-demand
states, respectively). This may indicate relatively good
precision in the forecasting system but poor performance
of the restocking system. (We analyze these managerial
aspects further in the next section). To analyze the effect
of price on transition dynamics, we computed the tran-
sition matrix at different prices (see Table 6).
The top panel in Table 6 shows the transition matrix

at the mean price. The transition matrix when there
is a 5% reduction in price is in the middle panel. We
observe that this decrease in price increases the prob-
ability of staying at the OOS state. However, if the
system is at any of the other states, this price reduction
increases dynamics among these states. Interestingly, if
the system is at the high state, the price reduction in-
creases the probability of moving to the OOS state. This
is consistent with reports suggesting that promotions
increase OOS. The bottom panel in Table 6 shows the
transition matrix when there is a 5% increase in price.
Price increases make the OOS slightly less sticky,
whereas, if the system is at the other states, it tends to
stay at the same demand states.
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5.4. Model Extensions
5.4.1. Inventory Data. Our HMM approach can ac-
commodate additional information easily if it is
available. For instance, one critical piece of information
relates to the availability of inventory data that can
complement the information already incorporated in
the proposed HMM. To illustrate this extension, let δist
be a dummy variable that takes the value one if in-
ventory is zero and zero otherwise. This variable can be
incorporated in the transition matrix in Equation (2)
similarly to the addition of other covariates. Replen-
ishment data, if they are available, can be incorporated
in the same way as inventory information.

5.4.2. Inspection Data. Inspection data can also be in-
corporated into our HMM framework in the following
way. Given that this information reveals the true state of
the system, one can incorporate such information by
breaking the likelihood function into two parts: before

and after the inspection. Thus, the first part of the se-
quence ends at the known state, and the second part of
the sequence begins at the known state. Specifically,
suppose that the visual inspection reveals that product i
was OOS at store j on day t∗. Equation (6) can be modi-
fied to accommodate the known state at period t∗, in
the hidden sequence, as follows

Li � ∏
J

j�1
π′
ijMij1 ∏

t∗−1

t�2
QijtMijtq · 0

ijt∗m
00
ijt∗q

0 ·
ijt∗+1Mijt∗+1

· ∏
T

t�t∗+2
QijtMijt1,

(8)

where q·0
ijt∗ and q0·

ijt∗+1 indicate the first column and first
row of the transition matrix, respectively, and m00

ijt∗ cor-
responds to the binomial distribution for the OOS state.
We have described the previous procedure for il-

lustration purposes. However, the extension to more
periods with known states can be done by introducing

Table 4. Posterior Means, Standard Deviations, and 95% Confidence Intervals for Dish
Detergent at Store 1

Parameter label Posterior mean
Posterior standard

deviation 2.5% 97.5%

Transition matrix
q00 0.744 0.046 0.640 0.827
q01 0.162 0.028 0.115 0.230
q02 0.093 0.039 0.027 0.185
q10 0.022 0.009 0.010 0.044
q11 0.535 0.040 0.454 0.612
q12 0.441 0.040 0.365 0.521
q20 0.013 0.004 0.006 0.022
q21 0.421 0.044 0.344 0.514
q22 0.566 0.043 0.473 0.643

Conditional probabilities
p0 0.00001 — — —
p1 0.00913 0.00078 0.00770 0.01074
p2 0.01428 0.00072 0.01293 0.01587

Effect of price on transitions
ρ0 0.232 0.532 −0.560 1.531
ρ1 −0.684 1.240 −1.809 2.103
ρ2 1.912 0.592 0.509 2.923

Effect of price on conditional probabilities
β
p
1 −4.259 0.608 −9.282 −0.978

β
p
2 −0.290 0.327 −0.526 −0.130

Note. Recall that s � 0 represents the out-of-stock state.

Table 5. State-Specific Purchase Probabilities at Different Prices for DishDetergent at Store 1

Purchase probability as a function of price

States Mean price 5% decrease 5% increase

Out-of-stock p0 0.00001 0.00001 0.00001
Low p1 0.00913 0.29215 0.00020

(0.00770, 0.01074) (0.02145, 0.97694) (0.00000, 0.00375)
High p2 0.01428 0.01850 0.01094

(0.01293, 0.01587) (0.01564, 0.02367) (0.00904, 0.01307)

Note. In parentheses, 95% confidence intervals.
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two additional matrices, A and B, such that we extract
only the components of the transition matrix that are
feasible given the information provided by the visual
inspection. For instance, if the audit reveals that the

product is OOS in period t, thenAt �
[
1 0 0
1 0 0
1 0 0

]
and Bt �[

1 1 1
0 0 0
0 0 0

]
are such thatAt+Qt gives only the first column

with nonzero values andQt+1+Bt+1 gives only the first
row with nonzero values for the respective transition
matrices;+denotes element-wise multiplication. Note
that, as seen in Equation (8), transitions after the
visual inspection period also have to be constrained,
such that only transitions from the known state are
allowed. Alternatively, if the audit reveals that the

product is available in period t, then At �
[
0 1 1
0 1 1
0 1 1

]

and Bt �
[
0 0 0
1 1 1
1 1 1

]
because we know the product is

not OOS, but the system can be at any of the other
remaining states. Therefore, with these new matrices,
the likelihood can be written as

Li � ∏
J

j�1
π′
ijMij1 ∏

T

t�2
[Aijt+Qijt+Bijt]Mijt1. (9)

5.5. Managerial Insights
In this section, we demonstrate how the HMM esti-
mates can be used to compare OOS performance across
stores. Using the transition matrix, we can determine
the long-term behavior of the demand for a product in

a particular store. Specifically, at the average price,
we can determine the probability that the conditional
demand of the product is at any of the three states:
OOS, low demand, or high demand. These probabili-
ties correspond to the steady-state probabilities. Given
that these probabilities add up to one, they can be
represented in the simplex space. For instance, the
steady-state probabilities for product tuna at store 1
are (π0,π1,π2) � (0.08, 0.42, 0.50). This implies that in
8% of the purchase occasions on random days it is
expected that the product will be in the OOS state (see
Figure 3).
These probabilities allow comparing the perfor-

mance across stores to detect any abnormal behavior at
particular stores for the same product. In addition, we
can detect systematic failures at some stores. Figure 4
illustrates these probabilities for some other products.
For instance, chocolate in store 3 has poor performance
compared with that in the other stores because it is
more likely that the product is OOS at that store
compared with the other stores. Similar figures for the
remaining products can be seen in Online Appendix C.
Similarly, for a given store, the store manager can

analyze the behavior of the corresponding products.
Figure 5 illustrates the underlying performance for
different stores. For instance, at store 1, all products
except cheese perform similarly. In the case of store 3,
all products except chocolate show a relatively high
variance between the corresponding low and high states
but are homogeneous regarding the OOS state.
The steady-state probabilities summarize the prob-

ability of products being at each state. As shown earlier,
the probability of being at the OOS state is of particular
interest. However, the steady-state probabilities do not
reveal if being at the OOS state is caused by a high
probability of moving to the OOS because of constant
shortages in stock or because the replenishment pro-
cedure is inefficient once the system is in the OOS state.

Table 6. Transition Probabilities at Different Prices for Dish
Detergent at Store 1

Transition matrix at mean price
Out-of-stock Low High

Out-of-stock 0.74 0.16 0.09
(0.64, 0.83) (0.11, 0.23) (0.03, 0.19)

Low 0.02 0.53 0.44
(0.01, 0.04) (0.45, 0.61) (0.37, 0.52)

High 0.01 0.42 0.57
(0.01, 0.02) (0.34, 0.51) (0.47, 0.64)

Transition matrix at 5% decrease in price
Out-of-stock Low High

Out-of-stock 0.77 0.15 0.08
(0.61, 0.94) (0.05, 0.22) (0.01, 0.22)

Low 0.02 0.40 0.58
(0.00, 0.18) (0.18, 0.81) (0.10, 0.81)

High 0.07 0.72 0.19
(0.01, 0.21) (0.52, 0.80) (0.08, 0.47)

Transition matrix at 5% increase in price
Out-of-stock Low High

Out-of-stock 0.69 0.19 0.11
(0.53, 0.86) (0.08, 0.35) (0.05, 0.19)

Low 0.04 0.63 0.31
(0.00, 0.09) (0.15, 0.80) (0.12, 0.84)

High 0.00 0.12 0.88
(0.00, 0.01) (0.05, 0.34) (0.65, 0.95)

Note. In parentheses, 95% confidence intervals.

Figure 3. (Color online) Steady-State Probabilities

Notes. (Product,Store)=(Tuna,1).{OOS,Low demand, high demand} =
{0.08, 0.42, 0.50}.
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Disentangling these two possible causes could help
store managers to expedite the solution. We explore these
conditions next.

The transition matrix associated with each store
summarizes the average performance regarding the
frequency of products moving to the OOS state from
any other state and how quickly they can move away
from this state. Accordingly, to compare the perfor-
mance of the store for a given product, we define two
metrics related to demand planning and replenish-
ment. To determine the performance regarding de-
mand planning, we consider the probability of moving
from any state other than OOS to the OOS state. These
probabilities represent how frequently the conditional
demand moves to the OOS state. We compute the
metric as DP � 1 − π1 · q10 − π2 · q20, where π1 and π2
are the corresponding steady-state probabilities for
low and high states, respectively. Similarly, to determine

the performance regarding replenishment, we consider
the probability of a productmoving away from the OOS
state. These probabilities represent how frequently the
conditional demand moves from the OOS state to the
other states. We compute the metric as R � 1 − q00,
where q00 represents the probability of staying at the
OOS state an extra day. Note that both metrics are
constructed to be between zero and one; zero represents
a poor performance, and one represents an excellent
performance.
For example, consider the product tuna. For this

product, we obtain the transition matrix for each store
at the average price. Then, we compute the perfor-
mance metrics demand planning and replenishment as
described previously. The resulting comparison is il-
lustrated in Figure 6(a).
Figure 6(a) shows that stores differ significantly in

their replenishment performance, ranging from 0.18 to

Figure 5. (Color online) Steady-State Probabilities by Store

Notes. (a) Store 1. (b) Store 3. Each circle represents the steady-state probabilities of a product at the store.

Figure 4. (Color online) Steady-State Probabilities by Product

Notes. (a) Chocolate. (b) Powder juice. Each circle represents the steady-state probability of the product for a particular store.
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0.66 for theworst- and best-performing stores, respectively.
However, there is not much difference regarding de-
mand planning as the probability of moving to the OOS
is relatively low for all stores. Similarly, Figure 6(b) il-
lustrates the performance for chocolate across stores. In
this case, stores show differences on both dimensions. In
replenishment, the performance moves from 0.21 to 0.82
for the worst- and best-performing stores, respectively.
For demand planning, the performance moves from 0.78
to 0.96 for the worst- and best-performing stores, re-
spectively. Similar figures can be obtained for the other
products (see Online Appendix D).

6. Conclusions and Future Research
This paper presents an HMM approach to identifying
on-shelf OOS using point-of-sale data. For each product,
theHMMmodel accounts for heterogeneity across stores
and captures the dynamics in demand and the effect of
pricing activities.We used a hierarchical Bayesmodeling
approach and an MCMC procedure to estimate the
model parameters. We applied our modeling frame-
work in the context of a big-box supermarket analyzing
14 products and 10 stores for a period of approximately
15months. This application reveals several insights. First,
we find that an HMM with three latent states performs
best consideringOOSdetection and false alerts. The states
relate to different demand levels that show different
sensitivity to pricing decisions. Second, constraining the
HMM to have an OOS state performs substantially
better than allowing for flexible HMM states consid-
ering OOS detection metrics. The enhancement in per-
formance greatly compensates for the slight deterioration
in fit measures caused by a simpler HMM structure.
Third, the chosen HMM outperforms several bench-
marks, including the approach used by the sponsoring
supermarket to detect OOS. Fourth, the HMM transition

matrix reveals underlying dynamics among the states of
demand and the unobserved OOS state. In particular,
products differ in the probability ofmoving from the two
demand states (either low or high) to the OOS state.
A high probabilitymay relate to poor performance of the
forecasting system that results in frequent shortages in
demand. Similarly, products differ in the probability of
staying in the OOS state once the system is there. A high
probability may relate to poor performance of the re-
plenishment system that results in long periods of zero
sales. Consequently, stores and products can be com-
pared not only by considering OOS detection metrics,
but also by using the product behavior uncovered by the
HMM’s transition matrix. It would be interesting to link
this uncovered information with operational details that
the companymay have regarding, for example, forecasting
and replenishment policies.
We note some limitations and some directions that

future research could explore. Our model does not
consider potential information of other stores to im-
prove OOS detection in a particular store. In our ap-
plication the correlation among stores regardingOOS is
not significant. However, some stores could be more
informative than others regarding OOS, which can be
analyzed empirically. Second, to keep the parsimony
of the model under control, we decided not to include
the correlations among products, mainly because the
products belong to different categories in which there is
no clear theoretical complementarity or substitution
patterns. However, one could add another hierarchy at
a product category or department level to try to capture
such correlations. Third, although we have applied our
model in a supermarket setting, our approach could be
used by other retailers who have difficulty in contin-
uously monitoring the state of their shelves.

Figure 6. Comparison of the OOS Performance Across Stores

Notes. (a) Canned tuna. (b) Chocolate.
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More generally, our HMM approach can be useful
for detecting other retail execution failures with POS
data. For instance, pricing errors or missing pricing
information, planogram compliance, or staff failure can
also be tracked with POS data. The fundamental idea is
to use the signal given by abnormal sales patterns and
link it to the execution problem under study through
the HMM framework. Fourth, the proposed approach
provides an alternative method to decensoring the data
to be used for either improving forecasting models
for demand planning or for detection by other OOS
identification methodologies that require data process-
ing such as the existing approach used by the retailer.
Finally, because of data limitations, our model does not
incorporate inventory data. This information may be
helpful in fitting the sales data, but its contribution in
detecting OOS is not clear. However, if this information
is available, it would be interesting to test its contribution
empirically because the inventory dynamics might help
to better anticipate and diagnose OOS situations. An
open question remains for future researchers as to how
best to incorporate such data if available.
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