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The U.S. pharmaceutical industry spent upwards of $18 billion on marketing drugs in 2005; detailing and drug
sampling activities accounted for the bulk of this spending. To stay competitive, pharmaceutical managers

need to maximize the return on these marketing investments by determining which physicians to target as well
as when and how to target them.

In this paper, we present a two-stage approach for dynamically allocating detailing and sampling activities
across physicians to maximize long-run profitability. In the first stage, we estimate a hierarchical Bayesian,
nonhomogeneous hidden Markov model to assess the short- and long-term effects of pharmaceutical marketing
activities. The model captures physicians’ heterogeneity and dynamics in prescription behavior. In the second
stage, we formulate a partially observable Markov decision process that integrates over the posterior distribu-
tion of the hidden Markov model parameters to derive a dynamic marketing resource allocation policy across
physicians.

We apply the proposed approach in the context of a new drug introduction by a major pharmaceutical firm.
We identify three prescription-behavior states, a high degree of physicians’ dynamics, and substantial long-
term effects for detailing and sampling. We find that detailing is most effective as an acquisition tool, whereas
sampling is most effective as a retention tool. The optimization results suggest that the firm could increase its
profits substantially while decreasing its marketing spending. Our suggested framework provides important
implications for dynamically managing customers and maximizing long-run profitability.
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1. Introduction
The pharmaceutical industry is under significant pres-
sure to consider its costs very carefully� � � � Currently,
much budget is spent despite marketers being unable
to identify which combination of activities has the
greatest growth potential, and without knowing what
specific effect individual activities are having on physi-
cians over time. Managing Director of Campbell Belman
Europe Andrée Bates (2006)

Marketing is essential to company growth. The U.S.
pharmaceutical industry spent upwards of $18 billion
on marketing drugs in 2005 (Donohue et al. 2007),
representing approximately 6% of industry sales rev-
enues. Detailing and drug sampling activities account
for the bulk of this spending. To stay competitive,
pharmaceutical marketing managers need to opti-
mally allocate these resources and ensure that they
achieve the highest possible return on investment for
the firm.
Marketing resource allocation decisions are com-

plex. Pharmaceutical firms need to determine which

physicians to target as well as when and how to
target them. Optimizing these decisions requires
insights into (i) physicians’ heterogeneity in prescrip-
tion behavior and their responsiveness to marketing
activities, (ii) the evolution of physicians’ preferences
over time, and (iii) the short- and long-term impact of
marketing activities on prescription behavior. Perhaps
because of these complexities, there is evidence that
pharmaceutical firms do not allocate their market-
ing budgets optimally (Manchanda and Chintagunta
2004, Narayanan et al. 2005). This research offers
a first step in providing pharmaceutical marketing
managers with a state-of-the-art model and optimiza-
tion procedure for dynamically targeting marketing
activities to individual physicians.
Previous research suggests that physicians are

heterogenous and may exhibit dynamic prescrip-
tion behavior, particularly for a new drug (e.g.,
Janakiraman et al. 2008, Narayanan et al. 2005). This
research stream has also shown that pharmaceutical
marketing actions can have both short- and long-term

909



Montoya, Netzer, and Jedidi: Dynamic Allocation of Pharmaceutical Detailing and Sampling
910 Marketing Science 29(5), pp. 909–924, © 2010 INFORMS

effects (Manchanda and Chintagunta 2004, Mizik and
Jacobson 2004, Narayanan et al. 2005). Thus, account-
ing for physicians’ heterogeneity and dynamics in pre-
scription behavior and the enduring impact of mar-
keting activities are critical for optimizing marketing
decisions. Ignoring physicians’ dynamic behavior can
result in misleading inferences regarding the temporal
pattern of elasticities. Similarly, a myopic firm is likely
to underallocate marketing resources with primarily
long-term effects.
In this paper, we present an integrative approach

for dynamically targeting and allocating marketing
activities to physicians. We first model the dynamics
in physicians’ prescription behavior while account-
ing for the short- and long-term effects of marketing
actions and physicians’ heterogeneity. We then use the
estimation results to derive an optimal1 dynamic mar-
keting resource allocation policy. Specifically, we use a
nonhomogeneous hidden Markov model (HMM) that
accounts for the dynamics in prescription behavior
and the enduring effect of marketing actions. We cap-
ture physicians’ dynamic behavior by allowing them
to transition over time among a set of latent states of
prescription behavior. To model the long-term impact
of marketing actions, we allow the nonhomogeneous
transition matrix to be dynamically affected by these
actions. Finally, integrating over the posterior distri-
bution of the physician-level, time-varying parame-
ter estimates, we implement a partially observable
Markov decision process (POMDP) to dynamically
allocate pharmaceutical marketing resources across
physicians. Although implemented within a pharma-
ceutical context, our approach can be readily used in
other domains where firms have access to longitudi-
nal, customer-level data, such as retailing, telecommu-
nication, and financial services firms.
We demonstrate the managerial value of the pro-

posed approach using data from a major pharma-
ceutical company. In this application, we find a high
degree of physicians’ heterogeneity and dynamics
and substantial long-term effects for detailing and
sampling. Specifically, we find that detailing is most
effective as an acquisition tool, whereas sampling is
most effective as a retention tool. The optimization
results suggest that the firm could increase its profits
substantially while decreasing its marketing efforts by
as much as 20%.
The rest of this paper is organized as follows.

Section 2 reviews the relevant literature. Section 3
describes the pharmaceutical data we use in our
empirical application. Section 4 presents the model-
ing approach. Section 5 reports the empirical results.
Section 6 presents the optimization procedure, and §7

1 Throughout this paper, we use the term “optimal” to refer to our
approximate solution to the optimization problem.

discusses the derived resource allocation policy. Sec-
tion 8 concludes this paper and discusses limitations
and future research directions.

2. Literature Review
In this section, we briefly review the pharmaceutical
literature and other work related to the different com-
ponents of our approach: dynamics in physician pre-
scription behavior, the long-term effect of marketing
activities, and marketing resource allocation.
The pharmaceutical marketing literature shows

that physicians can be dynamic in their prescription
behavior. Such dynamic behavior can arise from inter-
nal factors such as state dependence (Janakiraman
et al. 2008, Manchanda et al. 2004) and learn-
ing (Narayanan and Manchanda 2009, Narayanan
et al. 2005), or from the long-term effect of market-
ing actions such as detailing and sampling (Gönül
et al. 2001, Janakiraman et al. 2008, Manchanda
and Chintagunta 2004, Mizik and Jacobson 2004,
Narayanan et al. 2005, Narayanan and Manchanda
2009). Erdem and Sun (2001) demonstrate that
dynamics in consumer behavior and the long-term
effect of marketing actions need to be accounted for
simultaneously to properly quantify their marginal
effects. In a pharmaceutical context, Janakiraman et al.
(2008) show that ignoring physicians’ habit persis-
tence may bias the estimates of the effectiveness of
marketing actions.
In this paper, we account for physician dynam-

ics through a nonhomogeneous HMM (Netzer et al.
2008), in which the states are defined by both physi-
cian behavior and external factors such as market-
ing activities. From a methodological point of view,
our paper belongs to the small but growing num-
ber of HMM applications in marketing. HMMs have
been used to study the dynamics in consumer atten-
tions (Liechty et al. 2003), Web search behavior
(Montgomery et al. 2004), competitive environment
(Moon et al. 2007), customer relationships (Netzer
et al. 2008), and service portfolio choice (Schweidel
et al. 2010). The nonhomogeneous HMM simultane-
ously captures physicians’ dynamics, physicians’ het-
erogeneity, and the short- and long-term effects of
marketing activities. It captures dynamics by allow-
ing physicians to dynamically transition among a
set of prescription states. The long-term effects of
detailing and sampling are often captured in the lit-
erature by the exponential decay or the cumulative
detailing stock (e.g., Gönül et al. 2001, Manchanda
and Chintagunta 2004) approaches. In our HMM,
marketing actions can have a “regime shift” effect
on physicians’ behavior (i.e., they affect the physician
transition to a different state of behavior), thus pro-
viding a more flexible approach for capturing their
long-term effect.
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Despite the rich body of research investigating
physicians’ responses to detailing and sampling, little
work has been devoted to the optimal dynamic alloca-
tion of these marketing activities. In this research, we
formulate a POMDP (see Littman 2009 for a review;
Aviv and Pazgal 2005, Knox 2006, and Hauser et al.
2009 for marketing applications) that uses the pos-
terior distribution of the HMM parameters as input
to dynamically allocate marketing resources across
physicians and maximize long-run profitability. Sev-
eral papers in the marketing literature have used such
a two-step approach (i.e., estimation followed by opti-
mization) to optimize advertising effort (e.g., Dubé
et al. 2005, Hitsch 2006), catalog mailing (Simester
et al. 2006), and pricing (e.g., Nair 2007, Dubé et al.
2009). Our optimization approach advances the mar-
keting resource allocation literature (e.g., Jedidi et al.
1999, Lewis 2005, Naik et al. 2005) by accounting for
the short- and long-term effects of marketing activ-
ities as well as physicians’ heterogeneity and latent
dynamics when allocating detailing and sampling to
physicians over time.

3. Data
Our data comprise physician-level new prescriptions
as well as detailing and sampling activities received
over a 24-month period after the launch of a new
drug used to treat a medical condition in post-
menopausal women. Monthly new prescriptions are
measured for both the new drug and the total cate-
gory.2 Detailing activity corresponds to the monthly
number of face-to-face meetings in which pharma-
ceutical representatives present information about the
drugs to physicians. Sampling activity corresponds
to the monthly number of free drug samples offered
to physicians by the pharmaceutical representatives.3

Our sample consists of 300 physicians who have
received at least one detail and one sample during the
first 12 months of the data. These data are compiled
from internal company records and pharmacy audits.
Table 1 presents descriptive statistics of the data.

On average, a physician writes 22.5 new prescriptions
in the category per month, 1.62 of which correspond
to the new drug. Each physician receives an aver-
age of 2.18 details and 9.07 samples of the new drug
per month. Furthermore, an average physician was
detailed in 87% of the months, suggesting a relatively
nontargeted detailing allocation by the pharmaceu-
tical firm. Finally, there is variability in prescription
behavior across physicians as well as in the number
of details and samples received.

2 Throughout this paper, “prescriptions” refer to only new prescrip-
tions made by the physician, excluding refills.
3 The sponsoring pharmaceutical firm did not use direct-to-
consumer advertising for marketing the new drug.

Table 1 Descriptive Statistics

Mean Std. dev. Lower 5% Upper 95%

New drug prescriptions 1�62 1�35 0�54 3�21
Number of details 2�18 0�63 1�22 3�71
Number of samples 9�07 3�30 4�17 16�33
Months detailed (%) 0�87 0�15 0�35 1�00
Category prescriptions 22�50 13�05 10�10 37�79
New drug share 0�08 0�06 0�03 0�14

Note. Average monthly values computed for each physician across the sam-
ple of 300 physicians.

Figure 1 shows the monthly evolution of the total
volume of new drug prescriptions, details, samples,
and share of new prescriptions for the 24-month span
of our data. The figure suggests an increasing trend
in the level of new prescriptions of the new drug
but relatively stable detailing and sampling activities
by the firm. In addition, the share of the new drug
increases from almost 0% in the first month to about
10% in the last month, closely following the increase
in prescriptions of the new drug. Thus, the increase
in the volume of prescriptions for the new drug can-
not be attributed to category expansion. Furthermore,
because the new drug reaches only 10% share by
month 24, it is evident that demand for the new drug
has not reached saturation by the end of our observa-
tion period.
Several questions arise from Figure 1. (i) How

did the marketing actions (detailing and sampling)
influence physicians’ prescribing behavior? (ii) Do
these marketing activities have primarily short-term
or enduring effects? (iii) Could the firm have imple-
mented a better targeting policy? We address these
and other questions in the following sections.

Figure 1 Total Number of New Drug Prescriptions, Details, Samples,
and Share of New Prescriptions per Month
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4. The Nonhomogeneous Hidden
Markov Model

In this section, we describe the use of a nonhomo-
geneous HMM to capture physicians’ dynamics in
prescription behavior and the short- and long-term
effects of marketing actions.
An HMM is a Markov process with unobserved

states. In our application, the hidden states repre-
sent a finite set of prescription-behavior states. For
instance, assume two prescription-behavior states. At
the low prescription-behavior state, physicians make
only a few prescriptions for the new drug, possibly
because of the need to acquire information about the
drug. Consequently, physicians in this state may be
responsive to information-based marketing initiatives
(e.g., journal advertising). In contrast, physicians at
the higher prescription-behavior state are likely to be
affected by retention-type marketing initiatives (e.g.,
sampling).
Physicians stochastically transition among these

states through a Markovian first-order process. The
transitions between states are functions of market-
ing activities and physicians’ intrinsic propensities to
switch. For example, detailing may educate physi-
cians about the drug and move them from the low
prescription-behavior state to the higher one. Thus,
the HMM model can capture the long-term effect of
marketing activities through their impact on the tran-
sition probabilities. Marketing initiatives also affect
physician behavior in the short term. We capture
this effect by relating the marketing variables to
the observed prescription behavior through a state-
dependent component.
Let Yit be the number of prescriptions of the new

drug written by physician i in month t� In the HMM,
the joint probability of a sequence of decisions up
to time t �Yi1 = yi1� � � � �Yit = yit� is a function of
three main components: (1) the initial hidden states
membership probabilities (�i), (2) a sequence of tran-
sition probabilities among the prescription-behavior
states (Qit), and (3) a set of prescription probabilities
conditioned on the prescription-behavior states (Mit).
We describe our formulation of each of these compo-
nents next.

4.1. Initial State Membership Probabilities
Let s denote a prescription-behavior state (s =
1� � � � � S). Let �is be the probability that physician i
is initially in state s, where �is ≥ 0 and

∑S
s=1 �is = 1.

Such a probability can depend, for example, on the
physician’s prior exposure to detailing and sampling
activities for other drugs made by the pharmaceu-
tical firm. That is, physicians with higher levels of
exposure to marketing activities prior to the launch
of the new drug are likely to be in more favorable
states of prescription behavior initially. Because we do

not have access to such information and because our
application involves a new drug, we assume that all
physicians start at state 1, which corresponds to the
lowest prescription-behavior state, in the first month.4

Thus,

�′
i = ��i1��i2� � � � ��iS� = �1�0� � � � �0�� (1)

4.2. The Markov Chain Transition Matrices
The transition matrix Qit governs physician i’s tran-
sitions among the states after period 1. We model
Qit as a function of detailing and sampling activities.
Let zit = �f 	Detailingit
� f 	Samplingit
� be the vector
of marketing actions where Detailingit and Samplingit

correspond to the number of details and samples
that physician i receives in month t, respectively, and
f 	x
 = 	ln	x + 1
 − �
/� , where � = mean	ln	x + 1


and � = std	ln	x + 1

. We log-transform detailing
and sampling to capture the potentially diminishing
returns of their effectiveness (Manchanda and Chin-
tagunta 2004). We normalize these variables to ensure
a proper identification of the prescription-behavior
states.
Let Xit ∈ �1� � � � � S� denote physician i’s state mem-

bership at time t. Then each element of the transition
matrix, corresponding to the probability that physi-
cian i switches from state s′ to s in period t, can be
written as

qis′st = P	Xit = s � Xit−1 = s′�zit−1
� (2)

where qis′st ≥ 0,
∑S

s=1 qis′st = 1. Thus, the propensity
to transition from one state to another is a func-
tion of unobserved factors that can be captured by a
transition random-effect coefficient and a set of mar-
keting actions zit−1 in period t − 1� Note that we
use zit−1 to ensure temporal precedence of detail-
ing and sampling to the physician’s transition among
states between period t − 1 and period t� In con-
trast, one should use zit in situations where marketing
actions can transition customers in the same period
(i.e., in-store promotions). Alternatively, the customer
transition could also depend on the cumulative past
exposure to marketing activities, such as stock vari-
ables for detailing and sampling (

∑t
l=1 zil). However,

using stock variables would substantially complicate
the formulation of the POMDP resource allocation
problem (see §6). In our empirical analysis, we have
tested these specifications and found that a model
with zit−1 fits the data best.
We follow Netzer et al. (2008) in parametrizing

the nonhomogeneous hidden-state transitions as an

4 A more general specification of estimating the vector �i did not
provide significant improvement in fit.
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ordered logit model. Thus, the transition probabilities
in Equation (2) are given by

qis1t = exp	̂is1−�′
is ·zit−1


1+exp	̂is1−�′
is ·zit−1


�

qis2t = exp	̂is2−�′
is ·zit−1


1+exp	̂is2−�′
is ·zit−1


− exp	̂is1−�′
is ·zit−1


1+exp	̂is1−�′
is ·zit−1


�

���

qisSt = 1− exp	̂isS−1−�′
is ·zit−1


1+exp	̂isS−1−�′
is ·zit−1


� (3)

where �̂iss′� s′ = 1� � � � � S − 1� is a set of ordered logit
thresholds parameters specific to state s that delin-
eates the regions of switching, and �is is a vector of
regression weights intended to capture the effect of
marketing activities on the propensity of physician i
to transition from state s to other states. To constrain
the ordering of the thresholds, we set ̂is1 = is1� ̂iss′ =
̂iss′−1 + exp	iss′
 ∀ i� s� and s′ = 2� � � � � S − 1, such that
̂is1 ≤ ̂is2 ≤ · · · ≤ ̂isS−1.

4.3. Conditional Prescription Behavior
Conditional on being in state s in month t, we assume
that the number of new prescriptions of the new drug
written by physician i, Yit� follows a binomial distri-
bution with parameters Wit and pist� that is,

Pist	Yit =yit �Xit =s�zit
=
(

Wit

yit

)
p

yit

ist 	1−pist

Wit−yit � (4)

where Wit is the total number of new prescriptions
in the category written by physician i in month t.
Because the new drug is prescribed for a very specific
disease that needs to be medically treated, category
prescription is not likely to be affected by the intro-
duction of the new drug and its associated marketing
efforts. Accordingly, we treat Wit as exogenous.5

To capture the short-term impact of marketing
actions, we reparametrize pist� the probability of
physician i to prescribe the new drug in month t� as

pist = exp	�̂0
s + �′

iszit


1+ exp	�̂0
s + �′

iszit

� (5)

where �̂0
s is the intrinsic probability of prescrib-

ing given state s and zit includes the transformed

5 To test if Wit is indeed exogenous to the marketing activities, we
calculated for each physician the correlations between the number
of details and samples he or she received for the new drug and
his or her category prescriptions (Wit) across the 24 months. The
average correlations between category demand (Wit) and detailing
and sampling are 0.026 and 0.023, respectively; both correlations are
statistically insignificant. This analysis suggests that in the context
of our empirical application, category demand may not be affected
by marketing efforts.

Detailingit and Samplingit variables. To ensure identifi-
cation of the states, we impose the restriction that the
choice probabilities are nondecreasing in the behav-
ioral states. That is, �̂0

1 ≤ · · · ≤ �̂0
S is imposed by setting

�̂0
1 = �0

1� �̂0
s = �̂0

s−1 + exp	�0
s 
 ∀ s = 2� � � � � S at the mean

of the vector of covariates, zit .
There are several advantages for using the binomial

distribution in the current application. First, account-
ing for category prescriptions allows us to control
for variation in patients’ category demand. For exam-
ple, consider a physician who experiences a sudden
increase of patients in a particular month for non-
marketing reasons (e.g., practice expansion). In such a
case and in contrast to the binomial model, a prescrip-
tion volume model (e.g., Poisson) would attribute
the change in new prescriptions to marketing activi-
ties. Second, category prescriptions help to control for
seasonal or time-specific effects that may affect the
market or the specific physician. Third, the binomial
distribution can easily handle extreme values of share
of new prescriptions observed in our data (0 and 1).
Following standard notation in HMMs (McDonald

and Zucchini 1997), we write the vector of state
dependent probabilities as a diagonal matrix Mit .
To summarize, the nonhomogeneous HMM cap-

tures the dynamics in physician prescription behavior
and allows marketing activities to have both short-
and long-term effects. To capture dynamics, we allow
physicians to stochastically transition among latent
prescription-behavior states. The marketing actions
are included in the state-dependent decision (zit in
Equation (5)) to capture their short-term effect. This
means that conditional on a physician’s current state,
marketing interventions may have an immediate
effect on prescription behavior. Additionally, the mar-
keting actions are included in the transition probabil-
ities (zit−1 in Equation (2)) to capture their long-term
effect. This means that marketing interventions can
move a physician from one state to another, possi-
bly more favorable, state. Such a regime shift may
have a long-term impact on the physician’s decisions
depending on the stickiness of the states.

4.4. Model Estimation
Let 	Yi1� � � � �Yit� � � � �YiTi


 denote a sequence of Ti

drug prescription observations for physician i 	i =
1� � � � �N 
. Given the HMM structure, the likelihood
function for a set of N physicians can be succinctly
written as

L=
N∏

i=1

P	Yi1�����Yit�����YiTi

=

N∏
i=1

�′
iMi1

Ti∏
t=2

QitMit1� (6)

where 1 is an S × 1 vector of ones. To ensure
that cross-individual heterogeneity is distinguished
from time dynamics, we specify the HMM param-
eters �i = �is1� � � � � isS−1��is��is�

S
s=1 at the individ-

ual level and use a hierarchical Bayesian Markov
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chain Monte Carlo (MCMC) procedure for parame-
ter estimation (see the electronic companion, avail-
able as part of the online version that can be found
at http://mktsci.pubs.informs.org, for the complete
specification of the prior and the full conditional
distributions). To be able to interpret and compare
physicians’ behavior across states, we set the intrinsic
probabilities of prescribing � = ��0

s �
S
s=1 in Equation (5)

to be common across physicians.
HMMs are shown to be parametrically and non-

parametrically identified under mild identification
restrictions (Ephraim and Merhav 2002, Henry et al.
2009, Ryden 1994). Our model specification, however,
differs from extant HMMs because it allows both
the state-dependent vector and the transition matrix
to be a function of covariates in a heterogeneous
random-effect framework. Accordingly, we ran sev-
eral simulations to demonstrate the ability of our esti-
mation algorithm to recover the model’s parameters
and the number of states under different modeling
and data scenarios. Using the context of our pharma-
ceutical study to simulate data, we find that our esti-
mation procedure does well in recovering the model’s
parameters and the number of states, even for smaller
sample size and number of time periods than the
ones observed in our data. Specifically, we could fully
recover the true number of states and all the model
parameters for a sample size N ≥ 100 and number of
time periods T ≥ 8� Further details of the simulation
analyses are available upon request from the authors.

5. Empirical Results
In this section, we report the results of estimating
the nonhomogeneous HMM model using the phar-
maceutical data set described in §3. We use the first
20 months of the data to calibrate the model and the
last four months for validation. We ran the hierarchi-
cal Bayes estimation for 300,000 iterations. The first
200,000 iterations were used as a “burn-in” period,
and the last 100,000 iterations were used to estimate
the conditional posterior distributions. The HMM
exhibits a high degree of autocorrelation between suc-
cessive MCMC draws. We therefore use the adap-
tive Metropolis–Hastings procedure (Atchadé 2006)
to improve convergence and mixing properties. Con-
vergence was assessed by running multiple parallel
chains following Gelman and Rubin’s (1992) criterion.

5.1. Model Selection
To infer the number of states that best represents our
data, we estimated the HMM for varying number
of states. Based on the log-marginal density (LMD),

Table 2 Selecting the Number of States

Validation
States LMD DIC/2 Log BF log-likelihood

1 −10�854 11�001 — −2�842
2 −9�037 9�207 1�817 −2�240
3 − 8�468 8�791 568 −2�171
4 −8�489 8�859 −21 −2�179

Note. The best model in each column is in bold.

the log Bayes factor (Log BF), the deviance infor-
mation criterion (DIC) value, and the validation log-
likelihood for the validation periods (periods 21–24)
criteria, we selected a three-state model (see Table 2).6

5.2. Predictive Validity
We compare the predictive validity of the selected
three-state HMM relative to four benchmark models:
two nested versions of the HMM; a latent class (LC)
model; and a recency, frequency, and monetary value
(RFM) model. The last two are commonly used in the
literature to capture heterogeneity and dynamics in
buying behavior. In all models, we assume that pre-
scriptions follow a binomial distribution and use an
MCMC approach to estimate the models’ parameters.
Nested HMM. We estimate two nested versions of

our full three-state HMM (full HMM-3). The first is a
fixed-parameter, three-state HMM, where the param-
eters do not vary across physicians (fixed-parameter
HMM-3). Comparing the full HMM to this model
allows us to assess the magnitude of heterogeneity
among physicians in the sample. The second is a
three-state HMM with a stationary transition matrix.
In this model the marketing activities are included
only in the conditional choice component (M), allow-
ing for only short-term effect of marketing actions
(stationary HMM-3). Comparing the full HMM to this
model allows us to assess the value of capturing the
long-term effect of detailing and sampling.
LC Model. The latent class model of Kamakura

and Russell (1989) captures heterogeneity in customer
behavior through a set of latent segments (or states).
However, unlike the HMM, the LC model cannot
capture dynamics because customers cannot transi-
tion among segments. Thus, the LC model can be
viewed as a special case of an HMM. We estimate this
model for three segments to emphasize the differences
between a model that accounts for heterogeneity only
and a model that accounts for both heterogeneity and
dynamics.

6 We also tested a four-state model with an absorbing no-
prescription (“defected”) state. The fit criteria for this model are
LMD= − 8517, DIC/2 = 8840, and validation log-likelihood =
−2195. Therefore, a model where physicians can move to a defected
state is rejected in favor of a model with three or four states.
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Table 3 Predictive Validity

Validation
Model LMD log-likelihood RMSE

Full HMM-3 −8�468 −2�171 0�075
Stationary HMM-3 −8�597 −2�177 0�077
Fixed-parameter HMM-3 −9�334 −2�232 0�089
RFM −9�084 −2�261 0�075
Latent class −10�495 −2�357 0�087

Note. The best model in each column is in bold.

RFM Model. One of the models most commonly
used to capture dynamics and manage the firm’s
customer base is the RFM model (Pfeifer and Car-
raway 2000). We construct the RFM variables as fol-
lows. Recency corresponds to the number of months
since the last new prescription. Frequency corre-
sponds to the average incidence of the new prescrip-
tion up to the current time period. Monetary value
is measured by the average number of monthly new
prescriptions of the new drug up to the current time
period. These variables are defined at the physician
level and are updated every month. Additionally, we
include the transformed detailing and sampling vari-
ables to account for the effect of marketing activities.
Based on the validation log-likelihood and the

RMSE criteria (see Table 3), the selected three-state
HMM (full HMM-3) predicted the holdout prescrip-
tion data best. Comparing the fit and predictive
ability of the full HMM-3 and the stationary HMM-3,
we conclude that by incorporating the effect of
detailing and sampling in both the transition and con-
ditional choice matrices, we not only capture and dis-
entangle the short- and long-term effects of detailing
and sampling but also better represent the physicians’
behavior. The relatively poor predictive ability of the
latent class model suggests a high degree of dynam-
ics in the physicians’ prescription behavior. Finally,
the RFM model shows a relatively good predictive
ability, albeit slightly worse than the full HMM-3.
Indeed, models that include lagged dependent vari-
ables as covariates, such as the RFM or the Guadagni
and Little (1983) models, tend to have good predictive
ability. However, these models provide little insight
into how the observed-state dynamics can be used to
assess the enduring effects of marketing activities and
to dynamically allocate these activities across physi-
cians, which is the main objective of our research.

5.3. The HMM’s Parameter Estimates
We now discuss the parameter estimates for the three-
state HMM (full HMM-3). In Table 4 we report the
posterior means and posterior standard deviations of
the parameters, as well as the 95% heterogeneity inter-
vals. We then use the parameter estimates to (i) inter-
pret the three HMM states, (ii) investigate physicians’

Table 4 Posterior Means, Standard Deviations, and 95%
Heterogeneity Intervals

Heterogeneity
interval

Parameter Posterior Posterior
label mean std. dev. 2.5% 97.5%

Transition matrix
Threshold parameters

Low threshold−state 1 �11 0�36 0�12 −0�34 1�53
High threshold−state 1 �12 1�67 0�13 1�10 2�05
Low threshold−state 2 �21 −1�80 0�14 −2�79 −0�72
High threshold−state 2 �22 1�53 0�11 0�52 2�31
Low threshold−state 3 �31 −1�98 0�23 −3�45 −1�16
High threshold−state 3 �32 0�77 0�19 0�07 1�30

Long term
Marketing effects

Detailing−state 1 �d
1 0�31 0�12 −0�36 0�88

Detailing−state 2 �d
2 0�02 0�15 −0�56 0�47

Detailing−state 3 �d
3 0�02 0�17 −0�64 0�44

Sampling−state 1 �s
1 0�18 0�11 −0�43 0�78

Sampling−state 2 �s
2 0�21 0�13 −0�26 0�82

Sampling−state 3 �s
3 0�28 0�17 −0�19 0�58

Conditional choice
State-specific effects

Intercept−state 1 �0
1 −4�98 0�11

Intercept−state 2 �0
2 0�83 0�05

Intercept−state 3 �0
3 0�19 0�04

Short term
Marketing effects

Detailing−state 1 �d
1 0�27 0�11 −0�72 1�05

Detailing−state 2 �d
2 0�00 0�05 −0�61 0�51

Detailing−state 3 �d
3 −0�04 0�09 −0�42 0�46

Sampling−state 1 �s
1 0�09 0�11 −0�73 0�98

Sampling−state 2 �s
2 0�06 0�05 −0�43 0�60

Sampling−state 3 �s
3 0�02 0�08 −0�42 0�51

Note. The 95% heterogeneity interval indicates that 95% of the physicians
have a posterior mean that falls within that interval.

dynamics, and (iii) disentangle the short- and long-
term effects of detailing and sampling.

5.3.1. Interpreting the States. To characterize the
three states, we convert the intercept parameters
(�0

1��0
2��0

3) in Table 4 into prescription probabilities
(i.e., shares of new prescriptions) conditional on being
in each state (Equation (5)) with and without detailing
and sampling. The results in Table 5 suggest that, on

Table 5 State-Specific Share of New Prescription Estimates With and
Without Sampling and Detailing

No marketing Detailing Sampling
States activities only only

Inactive p1 0�004 0�007 0�004
Infrequent p2 0�062 0�062 0�067
Frequent p3 0�196 0�184 0�201

Note. The three columns “No marketing activities,” “Detailing only,” and
“Sampling only” represent the mean share of new prescriptions with no
detailing or sampling, with the average number of detailing, and with the
average number of sampling, respectively.
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average, the share of new prescriptions of physicians
in the first state is very close to zero. Accordingly, we
call this the “inactive” state. In the second state, physi-
cians present a somewhat more favorable prescription
behavior towards the new drug—prescribing to the
new drug 6% of their total volume of new prescrip-
tions in the category. Thus, we call this the “infre-
quent” state. In the third state, physicians frequently
prescribe the drug to their patients, with the new pre-
scription share nearing 20%. Consequently, we label
this state as the “frequent” state. Note that even in the
frequent state, the share of new prescriptions reaches
only 20%. This result suggests that, even at the fre-
quent state, physicians do not “run out” of patients
for whom to prescribe the drug. This result is typical
for a new drug. To further characterize the states, we
now focus on the prescription dynamics as physicians
transition among the three states.

5.3.2. Physicians’ Dynamics. Similar to Table 5,
Table 6 converts the mean posterior transition matrix
parameters to probability transition matrices, with
and without the effect of marketing activities.
Examining the left-hand side matrix in Table 6,

which represents the mean transition matrix with no
detailing or sampling, we observe a high degree of
stickiness in the inactive and infrequent states. That is,
on average, physicians in these states are very likely
to remain in the same state in the next period. In con-
trast, in the frequent state, physicians are more likely
to drop to the infrequent state than they are to stay
in the frequent state. Thus, consistent with Janakira-
man et al. (2008), who find a high degree of physician
persistence, we find that physicians are reluctant to
fully adopt the new drug as they stick to the inac-
tive and infrequent states. It should be noted that we
estimate random-effect parameters for the transition
matrix (Equation (3)). Thus, a separate set of transi-
tion matrices similar to the ones presented in Table 6
can be obtained for each physician.

Dynamics in State Membership. We further exam-
ined physicians’ dynamics by calculating the state
membership distribution across physicians over time.
We use the filtering approach (McDonald and

Table 6 Posterior Means of the Transition Matrix Probabilities Across
Physicians

No marketing Detailing Sampling
activities only only

0.75 0�25 0�00 0�62 0�38 0�00 0�70 0�30 0�00
0.17 0�78 0�05 0�16 0�79 0�05 0�13 0�81 0�06
0.15 0�46 0�39 0�15 0�45 0�40 0�10 0�41 0�49

Note. The detailing and sampling matrices are calculated assuming the firm
allocates the average number of details and samples to each physician.

Figure 2 Distribution of Physicians’ State Membership Over Time

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

Months

P
hy

si
ci

an
s

Inactive Infrequent Frequent

Zucchini 1997) to calculate the probability that physi-
cian i is in state s at period t. The filtering probability
is given by

P	Xit = s � Yi1� � � � �Yit
 = �iMi1

t∏
=2

QiM
s
i/Lit� (7)

where Ms
i is the sth column of the matrix Mi , and Lit

is the likelihood of the observed sequence of physi-
cian i’s decisions up to time t� which is given by Lit =
�′

iMi1
∏t

l=2QilMil1�
Figure 2 shows that the majority of physicians

quickly moved from the inactive state to the infre-
quent state and to a lesser extent to the frequent state.
It took approximately 10 months for the aggregate
distribution of physicians’ state membership to stabi-
lize at approximately 28%, 51%, and 21% in the inac-
tive, infrequent, and frequent states, respectively.

5.3.3. Disentangling the Short- and Long-Term
Effects of Detailing and Sampling. The nonhomoge-
neous HMM allows us to disentangle the total effect of
marketing activities into two components: immediate
effects and enduring effects. The immediate impact of
detailing and sampling can be assessed by the effect
that these activities have on the share of new pre-
scriptions, conditional on being in a particular state
(see Equation (5) and Table 5). On the other hand,
the enduring effect of detailing and sampling can be
assessed by their effect on the transitions between the
states (see Equations (2) and (3) and Table 6).
The results in Tables 4 and 5 show that, on average,

detailing and sampling have a relatively small short-
term effects. This result is consistent with the find-
ing of Mizik and Jacobson (2004). Furthermore, the
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short-term impact of detailing is strongest for physi-
cians in the inactive state; that is, consistent with
prior research (e.g., Narayanan et al. 2005), we find
that detailing primarily plays a role in affecting prod-
uct adoption. In contrast, when physicians are in the
frequent state, we find an average small negative
(although statistically insignificant) short-term effect
for detailing. This result is consistent with the finding
of Manchanda and Chintagunta (2004), who suggest
that physicians may be conscious about the pressure
being put on them by the companies’ sales force and
the possible physicians’ backlash as a result of exces-
sive marketing exposure.7

In contrast to their relatively small short-term
effects, detailing and sampling have, on average,
strong enduring effects. The results in Table 4 and
in the center and right matrices in Table 6 show
that detailing and sampling have substantial effects
in switching physicians from lower states to higher
ones. By comparing the transition matrices without
marketing interventions (left side of Table 6), with
detailing only (center of Table 6), and with sampling
only (right side of Table 6), we can see that detail-
ing has a strong effect in moving physicians away
from the inactive state and sampling is most effective
in keeping them in the frequent state. Thus, whereas
detailing may be more useful as an acquisition tool,
sampling is more useful as a retention tool. A possi-
ble explanation for this result is that when physicians
are in the inactive state, they are more receptive to
new information about the drug. Then, as they move
to the frequent state and are familiar with the drug,
physicians can primarily benefit from receiving free
samples to encourage them to keep prescribing the
drug. We take advantage of this behavior when opti-
mizing the detailing and sampling allocation.

Magnitude and Duration of the Marketing
Actions Effects. To assess the magnitude and dura-
tion of the impact of detailing and sampling, we
use the individual-level parameter estimates from the
HMM to simulate the effect of targeting one addi-
tional detail or sample to each physician on the num-
ber of prescriptions in the first month (short-term) or
the following 19 months (long-term) after targeting.
Figure 3 shows the percentage increase in prescrip-

tions over time. Relative to a no-detailing and no-
sampling policy, we find that in the long run, one
detail (sample) produces 0.55 (0.11) additional pre-
scriptions. We observe that in the long run the effect
of detailing is both stronger in magnitude and longer

7 Another explanation that cannot be ruled out is that competitors
may be aware of the favorable behavior of physicians in the fre-
quent state and can consequently increase their marketing efforts
to those physicians. However, there is no direct evidence of phar-
maceutical companies reacting in such a way.

Figure 3 Duration of the Effect of Marketing Actions
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in duration relative to the effect of sampling. In par-
ticular, the effect of detailing in the long term is
about five times the effect of sampling. However, the
short-term (one month) effect of sampling is 5.5 times
that of detailing. The duration of the effectiveness of
detailing and sampling is 10 and 5 months, respec-
tively, after which the increase in prescriptions as a
result of the marketing action is less than 1%. More-
over, only 25% (35%) of the total effect of detailing
(sampling) occurs in the first two months. Thus, a
model that ignores the long-term effect of detailing
and sampling is likely to severely underestimate their
effectiveness.
Similarly, the short-term elasticities for detailing

and sampling are much smaller compared with their
long-term elasticities (Table 7). Furthermore, in the
short term, sampling has a stronger effect relative to
detailing; in the long term, detailing has a stronger
effect. These elasticities are consistent in magnitude
with the elasticities reported by Manchanda and
Chintagunta (2004) and Mizik and Jacobson (2004).

5.4. Endogeneity
Pharmaceutical marketing resources are often tar-
geted based on physicians’ category prescription
volume (Manchanda and Chintagunta 2004). This
targeting approach may lead to an endogenous
relationship between prescription behavior and
marketing efforts. We used the approach proposed by
Manchanda et al. (2004) to check for the presence of
endogeneity in our study. Specifically, we estimated a

Table 7 Detailing and Sampling Elasticities

Marketing action Short term Long term Total

Detailing 0�002 0�652 0�654
Sampling 0�021 0�232 0�253
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simultaneous system of equations where the share of
new prescriptions is modeled using a one-state HMM.
Detailing is modeled as a Poisson process, where
the rate parameter is specified as a function of the
physician-level intercept and the detailing response
parameters from the share of new prescription model.
The system of equations can be written as

Yit ∼ Binomial	Wit� pit
� (8)

pit = exp	�0i + �1i · dit
/	1+ exp	�0i + �1i · dit

� (9)

dit ∼ Poisson	�it
� (10)

�it = exp	�0i + �1 · �0i + �2 · �1i
� (11)

where dit is the number of details received by physi-
cian i in month t. Endogeneity in detailing exists
if the parameters relating the number of details to
the physician’s propensity to prescribe the new drug
	�1
 and responsiveness to detailing (�2) are signif-
icantly different from zero. Estimating the full sys-
tem of Equations (8)–(11) using our data, we find
�̂1 = 0�029 and �̂2 = −0�085� Both coefficients are not
significantly different from zero. The 95% posterior
confidence intervals are, respectively, �−0�167�0�137�
and �−0�690�0�472�. Therefore, we fail to reject the
hypothesis that endogeneity is not present in our
study. Full details of this endogeneity analysis are
available in the electronic companion.
There are several reasons why this result runs

counter to previous findings in the literature. First,
our application involves a new product. Thus,
endogeneity is less likely in the earlier stages of the
drug’s diffusion, prior to observing actual response to
the marketing efforts for the drug. Second, unlike pre-
vious research, we model the share of new prescrip-
tions rather than number of new prescriptions. The
former variable is less likely to be endogenous because
the share of new prescriptions “controls” for the physi-
cian’s category prescription volume.
Next, we discuss how to use the parameter esti-

mates from the nonhomogeneous HMM to dynami-
cally allocate marketing resources across physicians.

6. The POMDP Procedure for
Resource Allocation

In this section we outline the formulation of a
POMDP and the optimization procedure we use to
derive the resource allocation policy.
Two aspects of the HMM that make the dynamic

optimization difficult are that the firm has uncertainty
regarding (i) the physicians’ state at any period t
and (ii) how the physicians may evolve over time
through the prescription-behavior states. In other
words, unlike most dynamic programming (DP) prob-
lems that use observed state variables (e.g., past pur-
chases), the state variable Xit in our model is only

probabilistically observed. To address the state uncer-
tainty, we formulate the dynamic optimization prob-
lem as a POMDP. A POMDP is a sequential decision
problem, pertaining to a dynamic Markovian setting,
where the information concerning the state of the sys-
tem is incomplete. Thus, the POMDP approach is well
suited for handling control problems of HMMs (see
Lovejoy 1991a for a survey).
In the POMDP approach, the first step is to define

the firm’s beliefs about physicians’ latent-state mem-
bership. We define bit	s
 as the firm’s belief that
physician i is in state s at time t. After observing the
physician’s decision (yit) and its own marketing inter-
vention decision (zit), the firm can update its beliefs in
a Bayesian manner. Specifically, using the Bayes’ rule,
the transition probability estimates (qis′st) from Equa-
tion (3) and the conditional choice probabilities (Pist)
from Equation (5), the firm’s beliefs about the physi-
cian’s state can be updated from period t to t + 1 as

bit+1	s �Bit�yit�zit−1�zit
=
∑S

s′=1bit	s
′
qis′stPist∑S

s′=1
∑S

l=1bit	s
′
qis′ltPilt

� (12)

where
∑S

s=1 bit	s
 = 1 and Bit = 	bit	1
� � � � � bit	S

′�
We model the pharmaceutical firm’s resource allo-

cation as a DP problem under state uncertainty. The
objective of the firm is to determine, for each period,
the optimal allocation of detailing and sampling so as
to maximize the sum of discounted expected future
profits over an infinite planning horizon. The opti-
mal resource allocation is the solution to the following
problem:

max
zit

E

{ 	∑
=t

�−tRi

}
� (13)

where � ∈ �0�1� is the discount rate, E�Rit� =∑S
s=1 bit	s
rist , and rist is the expected profit the firm

earns at period t if physician i is in state s and given
marketing intervention zit .
The firm’s optimal scheduling of marketing inter-

ventions is the solution to the dynamic program from
that time forward, and it needs to satisfy the Bellman
optimality equation (Bertsekas 2007):

V ∗
i 	Bit


=max
zit

E

{ 	∑
=t

�−tRi

}

=max
zit

{ S∑
s=1

bit	s
·rist

+�
S∑

s=1

∑
yit∈D

bit	s
P	yit �bit	s
�zit
�V
∗
i 	Bit+1
�

}
� (14)
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where V ∗
i 	Bit
 denotes the maximum discounted

expected profits that can be obtained for physi-
cian i given the current beliefs Bit � The optimal allo-
cation is thus

z∗
it	Bit


= argmax
zit

{ S∑
s=1

bit	s
 · rist

+ �
S∑

s=1

∑
yit∈D

bit	s
P	yit � bit	s
�zit
�V
∗
i 	Bit+1
�

}
� (15)

The Bellman optimality equation can be rewritten
as V ∗

i = �	V ∗
i 
� That is, the problem reduces to find

a fixed point of the mapping � . For the POMDP
case, � has been shown to be a contraction mapping;
thus, the problem has a unique fixed-point solution
(Lovejoy 1991b).
The exact solution to POMDPs involves com-

plex computations and can be found and confirmed
only for problems of low computational complexity
(Littman 2009). The complexity arises mainly from
the use of a continuous space of beliefs to represent
the uncertainty under the partial observability of the
Markov decision process. Exact algorithms like the
enumeration algorithm (Monahan 1982) or the wit-
ness algorithm (Kaelbling et al. 1998) are not practical
for solving our pharmaceutical problem because the
marketing decision variables (detailing and sampling)
and the outcome variable (physician’s prescriptions)
can take on a large number of values. Similarly, other
exact algorithms like linear support (Cheng 1988) or
incremental pruning (Cassandra et al. 1997) are not
possible because they lead to a large number of opti-
mization problems to be solved (Hauskrecht 2000).
Consequently, we use the approximation algorithm
proposed by Lovejoy (1991b) to solve our infinite-
horizon POMDP and find a closed-loop policy.
Lovejoy’s method combines two approximation

approaches: (i) value iteration, and (ii) value function
interpolation. Value iteration (Bellman 1957) has been
used extensively to solve infinite-horizon discounted
DP problems in general and POMDPs in particu-
lar (Lovejoy 1991a). The value function interpolation
(Hauskrecht 2000, Lovejoy 1991b) procedure has been
used to approximate the continuous state space of
beliefs using a grid of belief points and then interpo-
lating for other points in the state space. We adopt the
fixed-grid interpolation based on Freudenthal trian-
gulation (Lovejoy 1991b). The procedure constructs a
piecewise-linear function by evaluating only the ver-
tices of the triangulation. Sondik (1978) demonstrates
that the value function of a POMDP can be approxi-
mated arbitrarily closely by a convex piecewise-linear
function. Lovejoy (1991b) shows that his proposed
approximation algorithm is a contraction mapping,

and thus, any stationary point found will be the
unique fixed point, “in equilibrium” (Bertsekas 2007).8

Thus, in what follows, we use “optimal” to refer to the
approximate solution to the optimization problem.
One of the advantages of the Bayesian estimation

procedure is that it provides a full posterior distribu-
tion for each individual-level parameter. These distri-
butions reflect the uncertainty in the estimation. We
incorporate this uncertainty in the optimization pro-
cedure by integrating out the parameters’ distribu-
tion over the MCMC draws (Ansari and Mela 2003)
when solving the individual-level POMDP. Specifi-
cally, given the estimation results, the value function
in Equation (14) is calculated by

V ∗
i 	Bit
 =

∫
�

∫
�i

V ∗
i 	Bit � �� �i
f 	�
f 	�i
 d�d�i

≈ 1
K

K∑
k=1

V ∗
i 	Bit � �k� �ik
� (16)

where K is the number of retained MCMC draws, �k

is the set of fixed-effect parameters, and �ik is the set
of random-effect parameters from the kth draw of the
MCMC.
Next, we use the POMDP procedure and the poste-

rior distribution of the physician-level HMM param-
eter estimates to dynamically allocate detailing and
sampling for each physician in our sample.

7. Optimization Results
We obtain an optimal forward-looking dynamic (FL
dynamic) policy for an infinite time horizon by
solving the POMDP problem described previously.
We compare the performance of the proposed pol-
icy to the performances obtained by three compet-
ing policies: (i) a no-marketing policy, (ii) a myopic
static policy, and (iii) a myopic dynamic policy. The
no-marketing policy does not allocate detailing or
sampling for the entire time horizon. Both myopic
policies consider only the short-term effects of detail-
ing and sampling and can be seen as a special case
of Equation (14) when � = 0. The myopic static pol-
icy neglects physicians’ dynamics in the planning
horizon, whereas the myopic dynamic policy consid-
ers only the short-term effect of detailing and sam-
pling in updating the firm’s beliefs in each period.

8 To further examine the accuracy of our approximation approach,
we applied our optimization procedure to Sondik’s (1978) POMDP
problem, for which the optimal solution is known. In addition,
we used a pharmaceutical problem that is similar to our empiri-
cal application to compare the approximate solution to an infinite-
horizon POMDP to a finite-horizon solution that can be solved
numerically. In both cases, our approach was able to recover the
optimal policy and accurately approximate the true value function.
Further details are available in the electronic companion.



Montoya, Netzer, and Jedidi: Dynamic Allocation of Pharmaceutical Detailing and Sampling
920 Marketing Science 29(5), pp. 909–924, © 2010 INFORMS

In other words, the myopic static policy identifies a
unique set of physicians based on their initial state-
membership probabilities and short-term responsive-
ness to detailing and sampling and repetitively targets
them during each period of the planning horizon.
The myopic dynamic policy does the same except
that the set of physicians to target, and the amounts
of detailing and sampling to allocate, are optimized
each month given the physicians’ updated state-
membership probabilities.
In solving the optimization problem, we make the

following assumptions:9 the retail price of a prescrip-
tion (including refills) p is $300, the cost of one detail
cd is $80, the cost of one sample cs is $30, and �
is 0.985 (i.e., 0.9 yearly). The profit rist in Equation
(14) can be specified as rist = pWitpist − cdDetailingit −
csSamplingit� where Wit is the total number of new
prescriptions in the category written by physician i
in month t, and pist is the share of prescriptions of
the new drug allocated by physician i in month t (see
Equation (5)). Additionally, we impose the constraint
that each physician needs to be detailed in order to
receive a sample. This constraint is common in the
industry (Manchanda et al. 2004) and was observed
in our data. To visualize the performance of each pol-
icy, we depict in Figure 4 the effect of applying each
policy on physicians’ behavior for the first 20 months
of the infinite planning horizon used to solve the DP
problem.
In Figure 4, the proposed FL dynamic policy per-

forms worse than the myopic policies during the first
couple of months as it invests in moving the physi-
cians base to higher states. However, within three
to four months the FL dynamic policy substantially
outperforms the alternative policies, demonstrating
the importance of accounting for dynamics in pre-
scription behavior and the long-term effectiveness of
detailing and sampling. Furthermore, the superior
profit performance of the myopic dynamic policy over
the static one emphasizes the importance of dynam-
ically allocating resources to physicians, even if only
short-term effects are considered. Finally, the results
in Figure 4 suggest that after six to eight months, the
profits from all policies stabilize.
Table 8 compares the resource allocation and prof-

its of the alternative policies over the first 20 periods

9 These estimates were determined based on discussions with the
data provider and industry standards. The cost of one detail con-
siders that three drugs are discussed during a 10- to 15-minute visit.
Sampling costs include the cost of the drug itself and packaging,
shipping, and storing costs. Based on treatment specifications for
this condition, we assume that one new prescription corresponds to
a treatment of three months on average. That is, an average patient
needs to obtain two additional refills of the drug. The procedure
presented in this section could be easily modified given an alterna-
tive cost structure.

Figure 4 Infinite Horizon Policy Performance Comparison
Over 20 Months
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of the infinite planning horizon. The FL dynamic pol-
icy resulted in a 33% return on investment (ROI) for
detailing and sampling. This is substantially higher
than the ROI obtained from the myopic static and
myopic dynamic policies (20% and 25%, respec-
tively). These differences in ROI performance can
be attributed to the failure of the two myopic poli-
cies to capture the long-term effect of detailing and
sampling. Accordingly, both policies allocate fewer
details and samples relative to the FL dynamic pol-
icy. The 8% (33%–25%) improvement in ROI for the
FL dynamic policy relative to the myopic dynamic
policy stresses the importance of accounting for the
long-term effect of detailing and sampling and the
firm’s forward-looking behavior. The 5% (25%–20%)
improvement in ROI for the dynamic myopic pol-
icy relative to the myopic static policy emphasizes
the importance of dynamically allocating resources as
physicians’ behavioral states change over time.
In summary, our results highlight the possibly sub-

stantial financial implications from simultaneously
accounting for the dynamics in consumer behavior
and the long-term effect of marketing actions when
allocating marketing resources.

7.1. Comparison with the Current Resource
Allocation Policy

We compare the FL dynamic policy to the policy cur-
rently applied by the company during the last four
months in our data (months 21–24). This analysis pro-
vides several insights. First, we find that the pharma-
ceutical firm is currently overspending on detailing
and sampling. Under the proposed FL dynamic pol-
icy, the firm should cut its overall spending by 20%.
This result is directionally consistent with the find-
ing of Mizik and Jacobson (2004) and the industry
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Table 8 Comparison of the Resource Allocation Policies

Discounted Discounted Profits
Policy Prescriptions Details Samples budget ($) profits ($) increasea (%)

No marketing 12�439 0 0 0 3�243�450 —
Myopic static 16�715 4�080 6�940 464�859 3�893�091 20
Myopic dynamic 17�567 4�322 7�930 507�243 4�069�117 25
FL dynamic 20�761 8�583 18�356 1�077�750 4�319�797 33

aThe percentage increase in profits for each policy is relative to a no-marketing policy.

cut on detailing and sampling efforts since the data
period. Second, despite the 20% cut in spending, the
FL dynamic policy allows the firm to increase its pre-
scriptions by 61.9%, generating an additional $412 in
profits per physician per month.
Our targeting approach requires first estimating the

HMM parameters for every physician in the poten-
tial target market and then using the POMDP pro-
cedure to optimize the allocation of detailing and
sampling for each of these same physicians. Our opti-
mization approach accounts for uncertainty in the
parameter estimates by integrating over the posterior
distribution of the parameters. If one wishes instead
to estimate the HMM only for a sample of physi-
cians and then use the resulting posterior distribu-
tions of the parameters to optimize and target the
allocation of detailing and sampling to the full physi-
cian base, the percentage improvement of the poli-
cies in Table 8 relative to the no-marketing policy
(and the improvement of the FL dynamic policy over
the current policy) may be overstated (Mannor et al.
2007). As demonstrated by Mannor et al., because
model parameters are estimated with error on a spe-
cific sample, value functions estimated for optimal
policies using the same sample are on average posi-
tively biased.
We adapted the cross-validation approach of Man-

nor et al. (2007) to explore the extent to which the
POMDP procedure we employ overstates the profit
performance in such a context. First, we randomly
divided our sample of physicians into two subsam-
ples, a calibration sample and a validation sample,
and separately estimated our HMM for each subsam-
ple. Second, because our estimation produces full pos-
terior distribution for each physician, we followed
Ansari et al. (2000) and used the population distri-
bution of the parameters from the calibration sample
to infer the posterior distribution of the parameters
of each physician in the validation sample. We then
used these latter estimates to derive an optimal policy
for each physician in the validation sample. We used
this “calibration-sample optimal policy” to calculate
the value function of each physician in the validation
sample. Third, we used the validation sample param-
eters to derive the optimal policy for each physician
in the validation sample. We used the “validation-
sample optimal policy” to calculate the value function

of each physician in the validation sample. The dif-
ference between the value function calculated in the
second step and the value function calculated in the
third step provides an estimate for the bias.
Consistent with Mannor et al. (2007), we find

that the optimal FL dynamic policy and the myopic
dynamic policy resulted in value functions that are
biased upward by 10.2% and 8.2%, respectively (see
the electronic companion for more details about this
analysis). However, it is clear from Table 8 that even
after correcting for the bias suggested by Mannor
et al., the improvement of the FL dynamic policy over
the current and myopic policies remains substantial.
As noted in Mannor et al., biases that arise from func-
tional form and distribution assumptions are not cor-
rected by the approach proposed above.
As we show below, the superior performance of

the FL dynamic policy relative to the current policy
is due to better decisions on which physicians to tar-
get, when to target them, and how many details and
samples each physician receives.

7.1.1. Who Is Being Targeted. We compare the
physicians targeted by the current policy with those
targeted by the FL dynamic policy in terms of
their responsiveness (elasticities) to marketing actions.
Specifically, we simulate the effect of allocating one
detail or one sample in the first period of the planning
horizon (period 21) and compute the average elastic-
ities over the first four periods of the infinite plan-
ning horizon.10 We find that the FL dynamic policy
targets physicians with substantially higher respon-
siveness to detailing and sampling relative to the cur-
rent policy. The average detailing elasticities for the
physicians targeted by the current and FL dynamic
policies were 0.1 and 0.57, respectively. For sampling,
the elasticities were 0.07 and 0.22 for the current
and FL dynamic policies, respectively. Furthermore,
the elasticities corresponding to the current targeting
policy did not differ substantially from those corre-
sponding to a random targeting policy (calculated by
randomly shuffling the identity of the targeted physi-
cians). Specifically, we find that the current policy is
targeting physicians with low (and sometimes even

10 We cannot use a longer time horizon because there are only four
holdout periods for the current policy.
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Figure 5 Detailing Allocation per Prescription State
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negative) detailing and sampling coefficients. This
result is consistent with the findings of Manchanda
and Chintagunta (2004).

7.1.2. When to Target Resources. Because of the
dynamic structure of our model, the proposed
dynamic policy is capable of optimizing the timing of
the detailing and sampling allocation to each physi-
cian. Figure 5 shows the distribution of detailing,
allocated per state. We can observe that whereas
the current policy allocates details almost uniformly
across states, the FL dynamic policy allocates more
details to physicians who are in the inactive state.
Once these physicians have transitioned to the higher
state, the allocation of details decreases. These results
suggest that detailing should be used primarily as an
acquisition tool.

7.1.3. Detailing Depth vs. Breadth. We compared
the physicians targeted by the FL dynamic policy
with those targeted by the current policy in terms of
breadth and depth of detailing over time. Overall, we
find that the current policy targets almost twice as
many physicians as the FL dynamic policy but with
fewer details. Specifically, over the four-month period,
the current and FL dynamic policies have targeted,
at least once, 85% and 44% of the physicians every
month, with an average of 2.20 and 3.43 details per
month, respectively. Thus, it appears that the pharma-
ceutical company is pursuing a “shot gun” approach
to targeting, indiscriminately allocating details to
most physicians. In contrast, the FL dynamic pol-
icy appears to suggest a “rifle” targeting approach,
detailing fewer physicians more intensively. These lat-
ter physicians have higher responsiveness to detailing
and are more likely to be in the inactive state (state 1).
The emphasis of the FL dynamic policy on depth

over breadth is in line with our finding that detailing
is to be used primarily as an acquisition tool (see also
Narayanan et al. 2005). Thus, for a successful physi-
cian acquisition, detailers need to educate potential
adopters “in depth” about the uses and benefits of the
new drug.

In summary, the improved profitability of the pro-
posed dynamic policy relative to the current policy
can be attributed to (i) the targeting of physicians
with higher responsiveness to marketing resources,
(ii) the timing of these resources depending on the
physicians’ behavioral states, and (iii) a better trade-
off between breadth and depth of resource allocation.

8. Conclusions
This paper presents an integrative nonhomogeneous
HMM model and a POMDP dynamic programming
approach to dynamically target and allocate detail-
ing and sampling across physicians. The HMM model
accounts for physicians’ heterogeneity and captures
the dynamics in physicians’ behavior and the long-
term effect of marketing activities.
The application of our modeling framework in the

context of a new pharmaceutical drug introduction
reveals several insights. First, we find three latent
prescription-behavior states that characterize physi-
cians’ dynamic prescription behavior. Second, for the
particular drug studied, both detailing and sampling
have long-term impact on physicians’ prescription
behavior. Third, detailing is particularly effective
as an acquisition tool, moving physicians from the
inactive state, whereas sampling is mostly effective
as a retention tool, keeping physicians in a high
prescription-behavior state. Fourth, sampling has a
stronger short-term effect than detailing, but detail-
ing has a stronger long-term effect. Fifth, we demon-
strate that ignoring the dynamics in physician buying
behavior and the long-term effects of marketing activ-
ities leads to suboptimal allocation of marketing inter-
ventions. Specifically, using a counterfactual analysis,
we demonstrate that a dynamic policy can lead to a
substantial increase in profitability relative to the cur-
rent and myopic policies and that the firm should cut
its marketing spending by 20% relative to the current
policy. The optimal dynamic allocation of sampling
and detailing involves first moving physicians away
from the inactive state to the frequent state and then
retaining these physicians in the frequent state.
We highlight several limitations and directions that

future research could explore. First, in our empirical
application, we find no evidence of endogeneity in
the detailing and sampling of the new drug. In gen-
eral, if endogeneity is present, one could integrate into
our modeling approach a targeting process equation
along the lines of Manchanda et al. (2004). Second, an
alternative source of dynamics not considered in this
research comes from the belief that physicians have
foresight regarding their prescription-behavior evo-
lution and the firm’s marketing resource allocation.
One could extend our modeling framework by for-
mulating a structural model of state dependence with



Montoya, Netzer, and Jedidi: Dynamic Allocation of Pharmaceutical Detailing and Sampling
Marketing Science 29(5), pp. 909–924, © 2010 INFORMS 923

forward-looking behavior (Erdem and Keane 1996).
Third, our optimization procedure did not consider
geographical, multiphysician practices and intertem-
poral constraints on the sales-force allocation. Such
constraints can be added to the optimization proce-
dure. Generally, though, because salespeople detail
multiple drugs, the firm often has flexibility in the
detailing allocation for any particular drug. Fourth,
recent studies have suggested that social interactions
among physicians can influence their prescription
behavior (Nair et al. 2010). Future research could
extend our modeling approach to account for such
effects. Finally, although we have applied our model
in a pharmaceutical setting, our approach can be
readily used in other application areas where firms
individually target multiple marketing activities and
possess longitudinal, customer-level transaction data.

9. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mktsci.pubs.informs.org/.
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