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Abstract Over the course of a repeated game, players often exhibit learning
in selecting their best response. Research in economics and marketing has
identified two key types of learning rules: belief and reinforcement. It has been
shown that players use either one of these learning rules or a combination of
them, as in the Experience-Weighted Attraction (EWA) model. Accounting
for such learning may help in understanding and predicting the outcomes of
games. In this research, we demonstrate that players not only employ learning
rules to determine what actions to choose based on past choices and outcomes,
but also change their learning rules over the course of the game. We investigate
the degree of state dependence in learning and uncover the latent learning
rules and learning paths used by the players. We build a non-homogeneous hid-
den Markov mixture of experts model which captures shifts between different
learning rules over the course of a repeated game. The transition between the
learning rule states can be affected by the players’ experiences in the previous
round of the game. We empirically validate our model using data from six
games that have been previously used in the literature. We demonstrate that
one can obtain a richer understanding of how different learning rules impact
the observed strategy choices of players by accounting for the latent dynamics
in the learning rules. In addition, we show that such an approach can improve
our ability to predict observed choices in games.
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1 Introduction

Research in economics and marketing often relies on the notion that agents
operate in equilibrium. However, it is unlikely that such an equilibrium is
reached instantaneously in a single period game. It may be more intuitive to
think of equilibrium as a limiting state achieved after an evolutionary process
that unfolds over time (Camerer et al. 2003). The question of how equilibrium
arises has been the focus of attention in the rich literature dealing with learning
in behavioral games (e.g., Camerer 2003; Fudenberg and Levine 1998). This
literature suggests that over the course of repeated competitive interactions,
agents exhibit dynamic behavior by learning from their own actions and
outcomes and from those of their competitors (Kunreuther et al. 2009; Roth
and Erev 1995). Several types of learning rules have been explored, including
belief, reinforcement, and imitation learning. In belief learning, players form
their beliefs based on the opponent’s prior decisions. In reinforcement learn-
ing, strategies that paid off in the past get reinforced. Imitation learning implies
that players may learn by imitating the action of others. Previous research
has demonstrated via experiments that accounting for such learning rules
helps in understanding and predicting the outcomes of games. Specifically, it
has been shown that players’ choice of game strategies is consistent with the
above learning rules or with generalizations of these, such as the Experience-
Weighted Attraction (EWA) learning model (Camerer and Ho 1999).

In this research we argue and demonstrate that in repeated strategic decision
making, an additional source of dynamics may arise from shifts in the learning
rules that are used by a player. That is, over the course of a repeated game,
players can not only learn what actions to choose based on past choices and
outcomes (e.g., Kunreuther et al. 2009), but can also change their learning rules
over time (Stahl 2003). For example, a player may shift from exploration to
exploitation behavior depending upon the outcome feedback in the game. We
extend previous studies that have examined the existence of multiple types
of learning by allowing players to switch over time between different latent
learning rules. The use of particular learning rules and the dynamics in their
deployment over a repeated game may depend upon the type of game, the
outcomes of the game in the previous rounds, and may also vary across players.
Accordingly, we address the following questions: (i) Do players dynamically
shift between learning rules over repeated plays of a game? (ii) Can past
outcomes trigger such transitions between learning rules? (iii) Do different
games exhibit different learning dynamics? and (iv) Is there heterogeneity in
the learning dynamics across players?
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The learning rule used by a player on any given round is not observable
as experimental data reveals only the strategies chosen by the players and the
resulting outcomes. We therefore build a non-homogeneous hidden Markov
mixture of experts (NH-HMME) model to capture the latent transitions
among different learning rules (belief and reinforcement learning) over the
course of the game. Such transitions between different learning rules could be
induced by the outcome of the game over time. Conditional on a state, players
make strategy choices that are probabilistically consistent with their current
learning rule.

A proper accounting of such rule dynamics is not possible unless we allow
for unobserved sources of heterogeneity that govern the different choices (i.e.,
learning rules and game strategies) made by players (Wilcox 2006). We use
a Bayesian approach (Kunreuther et al. 2009) to specify a hierarchical NH-
HMME model that captures heterogeneity in the parameters that underly
each learning rule as well as in the parameters that govern the rule transition
process. Our approach also allows us to probabilistically uncover the deploy-
ment of these rules and the specific learning paths used by different players
over the course of a game.

We empirically validate our model using data from six repeated games:
Continental divide coordination game (Van Huyck et al. 1997), the median-
action order statistic coordination game with several players (Van Huyck et al.
1990), mixed strategies (Mookherjee and Sopher 1997), R&D patent race
(Rapoport and Amaldoss 2000), pot games (Amaldoss et al. 2005), and p-
Beauty contest (Ho et al. 1998). We demonstrate varying degrees of learning
rule dynamics across games and players and show that our modeling approach
provides an enriched understanding of how learning unfolds over the course
of the game. We find that past outcomes, in particular whether the player
left money on the table in the previous round of the game, have a strong
and heterogeneous effect on the learning rules employed by players. In some
cases, these outcomes may trigger a shift in the learning rule, whereas, in other
situations, they may reinforce the learning rule that is in use. We also find
that these additional insights about the learning process come at no cost in
terms of predictive ability when compared to several benchmark models that
are common in the literature.

The rest of the paper is organized as follows. Section 2 provides an overview
of the existing learning models. Section 3 describes our NH-HMME model that
represents the dynamics in learning rules. Section 4 presents the results of the
proposed model and compares it to several benchmark models using data from
the six behavioral games. Finally, Section 5 concludes the paper and discusses
limitations and future research directions.

2 Learning models

The literature on behavioral games has proposed multiple approaches by
which agents can learn from experience. Some of the learning rules that
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have been studied include: reinforcement learning (Erev and Roth 1998; Roth
and Erev 1995), belief learning (Camerer and Ho 1998, 1999), fictitious play
(Brown 1951), imitation (Hück et al. 1999), and anticipatory (sophistication)
learning (Selten 1991). Hybrid models that combine multiple learning rules
such as the EWA model (Camerer and Ho 1999; Camerer et al. 2002a) have
generally demonstrated improved predictive ability over models that utilize
a single learning rule. In this research, we focus on the two elementary
learning rules most prominently studied in the literature: belief learning and
reinforcement learning. We investigate how agents may switch between these
two learning rules over the course of a repeated game and compare our
proposed approach to popular alternatives including the EWA model, which
also combines and generalizes both these learning rules. We briefly review
these learning rules next.

2.1 Game setting

We follow the standard notation to specify the game setting (see e.g., Camerer
and Ho 1999). Players are indexed by i (i = 1, 2, . . . , n). Player i’s strategy
space consists of discrete choices indexed by j ( j = 1, 2, . . . , J). The game is
repeated for several rounds indexed by t (t = 1, 2, . . . , T). At each round, all
players choose their strategies or actions. Let s j

i denote strategy j for player i
and si(t) be the strategy actually chosen by player i in round t. After playing her
own strategy, the player observes the strategies (choices) made by the other
players, s−i(t). The vector of selected strategies (si(t), s−i(t)) determines the
payoff received by the player πi(si(t), s−i(t)). It is commonly assumed that each
possible strategy j has an intrinsic value to the player, given by its “attraction”.
The attraction of strategy j for player i before the period t play is given by
Aij(t − 1). The players start the game with initial values for the attractions
Aij(0), which are then updated at each round, based on the outcome of the
round. The different learning rules vary with respect to how these attractions
are updated over the course of the game.

2.2 Reinforcement learning

Reinforcement learning (Erev and Roth 1998; Roth and Erev 1995) relies
on the notion that in choosing their game strategies, agents pay attention
only to the history of their own payoffs. Specifically, these models suggest
that chosen strategies are reinforced cumulatively by the received payoff. The
reinforcement model is strongly rooted in the psychology literature dating
back to “the law of effect” of Thorndike (1898), which suggests that actions
that have led to positive outcomes in the past are likely to be repeated. In the
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reinforcement learning model, the attraction of strategy j for individual i after
playing period t, AR

ij (t), is obtained via the following updating rule:1

AR
ij (t) =

{
φi AR

ij (t − 1) + πi(s
j
i , s−i(t)), If s j

i = si(t)

φi AR
ij (t − 1), If s j

i �= si(t)
, (1)

where, the parameter φi is the forgetting or recency parameter that depreciates
player i’s previous attraction. The second term in the first row in Eq. 1 captures
the notion that chosen actions with higher payoffs are reinforced more and the
second equation indicates that the unchosen actions are not reinforced at all.

Even though the reinforcement learning rule is considered as a “low ra-
tionality” rule because the player does not account for decisions made by
other players, or as a “nearly pure-inertia” model (Erev and Haruvy 2005;
Haruvy and Erev 2002), due to its lack of positive reinforcement of non-
played strategies, it has been shown to provide robust predictions in mixed
strategy equilibria games (Erev and Roth 1998; Roth and Erev 1995). While
reinforcement learning stems from basic psychological principles and has been
shown to fit well the data from several games, it forecloses the opportunity
to learn from sources other than direct reinforcement of past actions. It has
also been demonstrated that providing respondents with information about the
other player’s actions expedites convergence to equilibrium (Mookherjee and
Sopher 1994; Van Huyck et al. 2007). This suggests that learning mechanisms
that are based on competitive information can also underly observed strategy
choices.

2.3 Belief learning

Belief learning models (Brown 1951; Fudenberg and Levine 1998) postulate
that players keep track of past actions of other players and form beliefs based
on the action history of opponents to determine the best response based on the
expected payoffs. Belief models vary in terms of how far into the history the
player looks in order to form her beliefs. For example, the Cournot model
(Cournot 1960) assumes a single period history, whereas the fictitious play
(Fudenberg and Levine 1998) assumes that all past actions are counted equally
in forming beliefs. We follow the derivation in Camerer and Ho (1999) in
defining a general belief model that nests several of the known belief models
including Cournot and weighted fictitious play.

1The model could be extended to capture more elaborate reinforcement behaviors (e.g., Erev and
Roth 1998; Roth and Erev 1995).
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According to the belief learning rule, the attraction of strategy j for individ-
ual i can be updated by

AB
ij (t) = φi AB

ij (t − 1)Ni(t − 1) + πi(s
j
i , s−i(t))

φi Ni(t − 1) + 1
, (2)

where, φi is a decay parameter for past attractions, πi is the payoff function, and
Ni(t) represents the game experience, updated by Ni(t) = φi Ni(t − 1) + 1. The
pre-game experience, Ni(0), is a parameter that is estimated from data. For
φi = 0, Eq. 2 reduces to the Cournot model and for φi = 1, Eq. 2 characterizes
the fictitious play model with equal weight to each period in the history. Thus,
while in the reinforcement learning model the player learns only from the
history and consequences of her own actions, in the belief learning model
the history of play for all players and the forgone payoffs are taken into
consideration in learning. Previous research has compared these two types
of learning models in terms of their ability to predict game outcomes. The
evidence in this regard, however, is mixed (Camerer 2003, p. 304).

2.4 Experience-weighted attraction

The experience-weighted attraction (EWA) model (Camerer and Ho 1999)
is one of the leading models of individual learning. It combines the most
appealing aspects of reinforcement and belief models. In the EWA model, a
player’s learning occurs from considering both forgone payoffs of the unchosen
strategies and the reinforcement of the chosen strategies. Accordingly, the
EWA model nests the reinforcement and several belief learning models (e.g.,
Cournot and weighted fictitious play). While the EWA model combines the
belief and reinforcement rules, it is not simply a convex combination of these
rules. The EWA model provides a relatively parsimonious representation for
several learning models. At the same time, its parameters make psychological
sense and facilitate an understanding of the learning mechanism employed by
players. A host of studies using 31 different datasets that span diverse game
types (Camerer and Ho 1998, 1999; Camerer et al. 2002a) have demonstrated
the superior fit and predictive ability of the EWA model relative to the
reinforcement, belief and other learning models.

According to the EWA model, the attraction of strategy j for individual i
can be updated by2

AEW A
ij (t) = φi AEW A

ij (t − 1)Ni(t − 1) + [δi + (1 − δi)I(s j
i , si(t))]πi(s

j
i , s−i(t))

ρi Ni(t − 1) + 1
,

(3)

where, φi is a discount or decay factor of past attractions, δi measures the
weight given to forgone payoffs relative to actual payoffs, ρi captures the

2Note that in some EWA papers ρi is replaced by φi(1 − κi). We decided to keep the original
notation used in Camerer and Ho (1999). The transformation of the results is straightforward.
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decay of past experiences, and I(s j
i , si(t)) is an indicator function equals 1,

if si(t)=s j
i , and 0, otherwise. Ni(t) is updated according to Ni(t) = ρi Ni(t −

1) + 1 and Ni(0), the initial experience, is a parameter that is estimated. The
EWA model reduces to the reinforcement and belief models under different
restrictions on its parameters. When δi = 0, ρi = 0 and Ni(0) = 1, it reduces to
the reinforcement learning model shown in Eq. 1, and it is equivalent to the
belief learning model, shown in Eq. 2, when δi = 1 and φi = ρi.

Several variants of the original EWA model (Camerer and Ho 1999) have
been considered in the literature. For example, Camerer et al. (2002a) extend
the EWA to allow for sophisticated learning behavior and strategic teaching.
Ho et al. (2008) adapt the EWA to partial payoff information games. Camerer
and Ho (1998) and Camerer et al. (2007) allow the parameters of the EWA
model to vary over time. Camerer and Ho (1998) allow the parameters to
monotonically increase or decrease over the course of the game, whereas, in
Camerer et al. (2007) the EWA parameters vary over time as a function of
player experience.

2.5 Rule learning

While the above learning rules focus on the updating of attraction functions,
they assume that the learning rule itself is static. An alternative approach
focuses on the dynamics in the usage of learning rules (rule learning approach
Stahl 1999, 2000, 2001). The idea behind rule learning is that players can switch
among learning rules over the course of a game. For instance, rules that have
been used in the past and/or performed well in the past are more likely to be
repeated by players. Salmon (2004) shows evidence for such rule switching,
which he calls learning to learn behavior, by using experiments that varied
the amount of information that is provided to players about the outcomes
of the games and via interviews during the game. Because of computational
difficulties in estimating the most general form of rule learning, applications
involving rule learning have commonly studied population learning and have
typically allowed only a limited number of rule transitions over the course of
the game. Stahl (1999, 2000, 2001), using several experimental games, shows
strong empirical evidence that players switch between multiple learning rules
based on the previous outcomes of the game.

In this paper, we propose a hierarchical non-homogeneous Hidden Markov
Mixture of Experts (NH-HMME) model for such rule learning. This approach
allows players to transition between reinforcement and belief learning sub-
models over the course of the game. The mixture of experts approach is
popular in machine learning (Jordan and Jacobs 1994; Peng et al. 1996), where
the sub-models are conditional distributions that are called experts. In our
context, the sub-models, or experts, correspond to the two learning rules.
The more familiar hidden Markov model can be thought of as a special case
of the NH-HMME model, where the conditional distributions, or experts,
come from the same family of distributions, but with different parameters.
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The proposed NH-HMME model can be considered as a specific instantiation
of the general approach for rule learning proposed by Stahl (2001, Eq. 2),
providing a behaviorally sound structure to the dynamics of rule learning.
In the NH-HMME model, players can change their learning rule after every
round in the game instead of employing a limited number of possible switches
in the learning rule (e.g., Stahl 2000, 2001; see Haruvy and Stahl 2012 for
an exception). Additionally, the non-homogenoeus nature of the HMME
captures the effect of past outcomes on the tendency to stay in or transition to
other learning rules. The Markovian nature of the NH-HMME model allows
us to capture the “law of effect” via the “stickiness” of the learning rule states.
We now describe the proposed model in more detail.

3 Non-homogeneous hidden Markov mixture of experts model
of learning rules

A HMME model involves a latent Markov process with unobserved states
that represent the different learning rules that can be used by a player. We
assume two states. One state represents the use of a reinforcement learning
rule and the other the use of a belief learning rule. Players stochastically
transition between these two states according to a first-order Markov process.
We allow the transition probabilities between states to vary across players
to reflect the heterogeneity in the intrinsic propensities of players to switch
between learning rules. Additionally, to capture the effect of past outcomes
on such transitions, we allow for non-homogeneous (time-varying) transition
probabilities (Montoya et al. 2010; Netzer et al. 2008). The resulting model is
a NH-HMME, which is a flexible model that can capture the game outcomes
that may trigger a transition between the learning rules. For example, positive
outcomes in previous rounds may encourage players to keep using the same
learning rule, whereas disappointing outcomes may motivate changes in the
learning rule. We schematically illustrate the proposed NH-HMME model in
Fig. 1.

Let si(t) be the game strategy (action) that is chosen by player i in
round t. In the NH-HMME model, the joint probability of a sequence of
decisions, {Si(1) = si(1), . . . , Si(t) = si(t)}, up to time t, is a function of three
main components: (1) the initial player-specific hidden states membership
probabilities, given by a vector ωi, (2) a set of player-specific time-varying
transition probabilities between the different learning-rules (states), given by
a transition matrix Qit, and (3) individual-level conditional probability models
for choosing each strategy conditioned on the state (learning rule) represented
by a diagonal matrix, Mit. We describe our formulation of each of these
components next.

3.1 Initial state membership probabilities

Let z ∈ {R, B} denote a latent learning rule state (z = R, for Reinforcement
and z = B, for Belief). Let ωiz be the probability that player i is initially (i.e.,
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Fig. 1 Non-homogeneous
hidden Markov mixture of
experts model of learning
rules

in the first round of the calibration period) in state z, where ωiz ≥ 0 and∑
z∈{R,B} ωiz = 1. These initial probabilities may reflect previous game playing

and rule usage experience by players and are inferred from the data. We collect
these initial probabilities into a vector ωi, such that

ω
′
i = [ωiR, ωiB] = [ωiR, 1 − ωiR]. (4)

We reparameterize ωiR in Eq. 4 using the inverse-logit transformation,

ωiR = exp(ω̃iR)

1 + exp(ω̃iR)
,

where, ω̃iR is an unconstrained parameter that represents the likelihood of
beginning the repeated game with the reinforcement rule.

3.2 The Markov chain transition matrix

The transition matrix Qit describes the law that governs player i’s subsequent
transitions between the states, i.e.,

Qit =
[

qitRR qitRB = 1 − qitRR

qitBR = 1 − qitBB qitBB

]
. (5)

We model Qit as a function of the player’s experience in previous rounds.
Let Zit ∈ {R, B} be a random variable that denotes player i’s state membership
at time t and xit−1 be the vector of the covariates that represent the outcomes
of the game that is observed by player i, prior to round t. Element qitz′z of the
transition matrix denotes the probability that player i switches from learning-
rule state z′ in round t − 1, to state z in round t, i.e.,

qitz′z = P(Zit = z|Zit−1 = z′, xit−1), (6)

where, qitz′z ≥ 0,
∑

z∈{R,B} qitz′z = 1.
A player’s propensity to transition from one state to another is a function of

the observed outcomes in the previous rounds (xit−1) and intrinsic tendencies
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that are captured by random-effect intercepts. We can reparametrize each
element in the transition matrix in Eq. 6 using the inverse-logit transformation
to obtain:

qitRR = exp(τiR + ρ
′
iRxit−1)

1 + exp(τiR + ρ
′
iRxit−1)

,

qitBB = exp(τiB + ρ
′
iBxit−1)

1 + exp(τiB + ρ
′
iBxit−1)

(7)

where, τiz represents the tendency for player i to remain in state z from one
period to another, and ρiz is a vector of regression weights intended to capture
the effect of previous outcomes on the propensity of player i to keep using the
learning rule in state z. In our application, we explore alterative functions of
the game outcomes that could affect the transition between learning rules.

3.3 Conditional choice model

Conditional on being in a particular state z, at round t + 1, the probability
of choosing a game strategy is specified using a logit model.3 Specifically, we
assume that player i chooses strategy Si(t + 1), with a probability Pizt+1(Si(t +
1)) that depends on the learning rule being used. Specifically, we can write

Pizt+1(Si(t + 1) = j|Zit+1 = z) = exp(λiz Az
ij(t))∑

k exp(λiz Az
ik(t))

(8)

where, Az
ij(t) is individual i’s attraction for strategy j before playing round t + 1

as given by the learning rule that state z represents. For state 1, which is the
reinforcement learning state, the attraction after round t, AR

ij (t), is provided in
Eq. 1. For state 2, which is the belief learning state, AB

ij (t) is provided in Eq. 2.
The state-specific constant λiz scales these attractions.

To determine the probabilities of strategy choices in the first round, Piz1, we
follow Ho et al. (2002, Appendix 7) and define the vector of initial attractions
Az

i (0) based on the actual population frequency of choices in the first round of
the game (given the estimated λi). To keep the models comparable, we do not
use the first period to calibrate the other model’s parameters and to compute
the fit measures.4 Unlike Ho et al. (2002), we allow the attractions in the first
period to vary across players because of heterogeneity in λi.

3Alternative functional forms for the choice probabilities have been proposed in the literature
(see e.g., Camerer and Ho 1998, 1999; Erev and Roth 1998). However, the logit formulation has
consistently showed equal or better fit and prediction ability.
4Accordingly, the first period in the likelihood function in Eq. 9 corresponds to the second period
of the game.
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3.4 NH-HMME likelihood and heterogeneity

The likelihood function of observing a sequence of strategy choices over the T
rounds for player i can be written as

LiT(Si(1), ..., Si(T)) = ω
′
iMi1

T∏
t=2

QitMit1. (9)

where ωi is given by Eq. 4, Qit is given by Eq. 5, Mit is a 2 × 2 diagonal matrix
with the state specific probabilities in Eq. 8 representing the diagonal elements,
and 1 is a 2x1 vector of ones.

In any dynamic model it is imperative to capture individual differences to
disentangle player heterogeneity from dynamics (Heckman 1981; Keane 1997).
In the context of behavioral games, Stahl (1999, 2000, 2001) demonstrated
significant heterogeneity in the employment of learning rules across players.
Wilcox (2006) showed, based on simulated data, that ignoring heterogeneity
in the EWA model can lead to downward bias in the δ parameter (which
measures the weight given to foregone payoffs) in Eq. 3. This implies that the
EWA model tends to overstate the weight of reinforcement learning relative
to belief learning when heterogeneity is ignored, which is consistent with the
finding of spurious state dependence (Heckman 1981). Ho et al. (2008) found
similar results and a high degree of cross-player heterogeneity in the EWA
model parameters.

We allow for individual differences in two distinct ways. First, we allow
for the possibility that individuals differ in the parameters that govern the
updating of attractions in the reinforcement and belief submodels. This enables
us to capture differences in how previous attractions are depreciated (via φi

and Ni(0)) and in the scale parameters for the two rules. Second, we allow
the parameters of the transition matrix to be heterogeneous across players.
This captures differences in the propensity to employ different learning rules
as well as in the rule switching and retention probabilities.

Specifically, let θ i contain all the parameters in the state-specific attraction
functions, the initial state probabilities and the transition matrix for player i.
The elements of θ i are appropriate transformations of the original parameters
such that each element varies over the entire real line. We assume that θ i

is distributed multivariate normal, i.e., θ i ∼ N (μθ , �θ ). The elements in μθ

contain the population mean of the player-specific parameters, whereas, �θ

captures the variation and covariation among the parameters, both within
and across states.5 We estimate the individual-level parameters, as well as the

5One can allow for a richer specification of heterogeneity by using a mixture of normals (e.g.,
Allenby et al. 1998) or by using Mixtures of Dirichlet Process priors (MDP, e.g., Ansari and Mela
2003; Ansari and Iyengar 2006).
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population quantities, using a hierarchial Bayesian approach (see Appendix A
for details).6

3.5 Inferring latent states

One advantage of the NH-HMME formulation is that we can probabilistically
infer the learning rule employed by a player at each round of the game, a
posteriori. Given the parameter estimates and the entire sequence of T choices
made by player i, we use the forward-f iltering-backward-smoothing approach
(McDonald and Zucchini 1997) to calculate the probability that player i is in
state z at round t. This smoothing probability is given by

P(Zit = z|Si(1), . . . , Si(T))

= ω
′
iMi1(

t−1∏
k=2

QitMik)Qitmc
itzqr

itzMit+1(

T∏
k=t+2

QitMik)1/LiT , (10)

where, mc
itz is the zth column of the matrix Mit, qr

itz is the zth row of the matrix
Qit, and LiT is the likelihood of the observed sequence of actions up to time T
as given in Eq. 9.

4 Application to six behavioral games

We apply the proposed approach to six behavioral games previously used in
the literature: Continental divide coordination game (Van Huyck et al. 1997),
the median-action order statistic coordination game with several players (Van
Huyck et al. 1990), mixed strategies (Mookherjee and Sopher 1997), R&D
patent race (Rapoport and Amaldoss 2000), pot games (Amaldoss et al. 2005)
and p-Beauty contest (Ho et al. 1998).7

Details of each game can be found in Ho et al. (2007).8 Because our focus is
on studying the dynamics in the use of learning rules within a game, we include
only games that were played for at least ten rounds. This allows us a reasonable
chance of uncovering different dynamic patterns. These six games vary along
multiple dimensions. They support either mixed or pure strategy equilibria,
and differ in terms of whether they are dominance solvable or not. They also

6We conducted a series of simulations to analyze the empirical identification of the NH-HMME
parameters (Salmon 2001). We found that for data that mimics the data in our empirical
application, the model parameters can be correctly recovered (see Appendix B for details).
7For the p-Beauty game, we follow Camerer and Ho (1999) and assume that players knew only the
winning number and neglected the effect of their own choice on the target number. We modified
the computation of forgone payoffs accordingly.
8We thank Professor Teck-Hua Ho of University of California at Berkeley and the authors of the
corresponding papers for generously providing us with the behavioral games experimental data.
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differ in terms of the number of players, the number of rounds played and the
number of game strategies.

4.1 NH-HMME specification

In applying the NH-HMME model to data, one needs to specify the covariates,
xit−1, that influence the transition probabilities. There are many ways in which
the outcomes of the past rounds (either from the previous round or from
earlier rounds) of play may affect the choice of learning rules in any given
period. For instance, players could be affected by their own past outcomes or
those of other players.

We tested the effect of several covariates on the transition matrix. To test for
reinforcement-type outcomes, we examined whether the fact that one obtains
a positive payoff in the previous round (as measured by a binary indicator)
or the actual magnitude of the payoff in the previous round, influences rule
transitions. Nevo and Erev (2010) suggested that a surprising outcome may
trigger a change in the strategy choices made by a player. In the spirit of
their specification, we examined the impact of gains and losses in the previous
round relative to the player’s expectations (Erev and Haruvy 2012). These
expectations are captured by a player’s average payoffs up to that round.
Finally, to represent the impact of the actions of other players, we also
investigated the influence of past forgone payoffs (i.e., whether and how much
money the player left on the table in the previous round, given the action of
opponents).

We tested these alternative covariates using the six games discussed above.
Our results indicate that a covariate that represents whether the player left
money on the table in the previous round (Erev and Roth 2007) performed the
best in terms of fit and interpretability. This is consistent with Nevo and Erev
(2010) who find that forgone outcomes have an effect on future playing behav-
ior when feedback is available. Specifically, this covariate, ForgonePayoffit−1,
can be written as

ForgonePayoffit−1 = I(0,∞)(max
k∈{J}

[π(sk
i , s−i(t − 1))] − π(si(t), s−i(t − 1))), (11)

where I(0,∞)(a) is an indicator function equal to 1 if a ∈ (0, ∞) and 0, otherwise.
This variable captures player i’s deviation from the (a posteriori) optimal
strategy in the previous round, given the strategies chosen by the other players.
Such forgone payoffs in the previous round could trigger a transition into
(or increase the likelihood of staying in) a belief learning state. Moreover,
foregone payoffs are likely to have a stronger effect for players who are in
the belief state, as these players are in a state of heightened sensitivity to such
forgone payoffs.

We also studied covariate specifications involving a longer history of play.
However, consistent with previous research, which suggests that the effect of
past outcomes decays fast and can be concisely captured by the outcomes in
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the previous round of the game (Crawford 1995), we found that these covariate
specifications were not well supported by the data.

4.2 Benchmark models

In addition to the NH-HMME model, we estimated ten benchmark models.
These include,

1. Reinforcement Learning: In this model, all players are assumed to follow
reinforcement learning, as in Eq. 1, for all rounds of the game.

2. Belief Learning: In this model, all players are assumed to follow belief
learning, as in Eq. 2, throughout the game.

3. EWA: In this model, all players are assumed to follow the EWA learning
model with static parameters, as in Eq. 3, over the course of the game.

4. EWA time-varying : This model follows Camerer and Ho (1998), who
allow the parameters of the EWA model to monotonically increase or
decrease over the course of the game.

5. Mixture of Experts (ME): In this model, players can use either the
reinforcement or the belief learning rule throughout the game and are
not allowed to transition between these rules over the course of the game.
This model is, therefore, a nested version of the proposed NH-HMME
model and is obtained by setting the transition matrix to identity.

6. HMME: This model is a nested version of the proposed NH-HMME
model in which the transition matrix is not a function of the covariates,
and therefore, is constant over time.

7. Forward HMME: This is a change-point model in which players can only
move from reinforcement to belief learning but cannot transition the
other way. In other words, only forward transitions are allowed in the
transition matrix in Eq. 5 and the belief learning state is an absorbing
state of the Markov chain.

8. Backward HMME: This is a change-point model in which players can
only move from belief to reinforcement learning but cannot transition
the other way. In other words, only backward transitions are allowed in
the transition matrix in Eq. 5 and the reinforcement learning state is an
absorbing state of the Markov chain.

9. HMM of 2 EWAs: This is a hidden Markov model with two states, where
each of the states represents a different parametrization of the EWA
model.

10. HMM of 3 EWAs: This is a hidden Markov model with three states, where
each of the states represents a different parametrization of the EWA
model.

It is important to note that all models capture individual differences by
allowing the player-specific attraction parameters as well as state transition
parameters (where applicable) to vary according to a population distribution.
This ensures a fair comparison of the benchmark models to our proposed
model.
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4.3 Parameter inference

We estimate all models using hierarchical Bayesian methods. These are em-
inently suitable in our context as they allow borrowing of strength across
players. Such shrinkage is crucial for proper estimation and improved pre-
dictive performance as most behavioral game data sets contain a limited
number of rounds of play. The highly nonlinear nature of the model in tandem
with the heterogeneity specification results in a posterior distribution that is
not available in closed form. We therefore use Markov chain Monte Carlo
(McMC) methods for parameter inference. In particular, to facilitate rapid
mixing of the resulting Markov chain, we use an Adaptive random walk
Metropolis-Hastings algorithm (Atchadé 2006). In each instance, we ran the
chain for 200,000 iterations of which, the first 100,000 are discarded as burn-in
and the remaining 100,000 iterations are used for posterior inference. We used
the first 70 % of the observations of each player for calibration and the last
30 % for validation in each game (Ho et al. 2008). Convergence was assessed
by monitoring the trace plots of the McMC output and by running multiple
parallel chains following Gelman and Rubin (1992). All parameters satisfied
the Gelman and Rubin convergence criterion.

4.4 Results

4.4.1 Model selection

Table 1 summarizes the overall in-sample and out-of-sample fit and predictive
ability of the estimated models averaged across the six games. For model
comparison, we use the log-marginal density (LMD) computed on the calibra-
tion data. Additionally, we report two metrics commonly used in the related
literature: in-sample and out-of-sample hit rates (HR) and mean squared
deviation (MSD) between the chosen strategies and the choice probabilities.
The LMD appropriately accounts for both model fit and complexity and the
HR and MSD measures allow us to assess the predictive performance of

Table 1 Average model fit
and prediction measures

LMD MSD Hit rate
Learning models In Out In Out

Reinforcement −2,082.1 0.030 0.026 44.4 47.0
Belief −2,017.4 0.030 0.028 42.6 43.3
EWA −1,950.5 0.029 0.026 45.5 47.1
EWA time varying −1,939.5 0.029 0.028 45.2 46.1
ME −1,993.5 0.030 0.026 44.7 46.1
Forward-HMME −1,977.9 0.030 0.026 45.3 46.8
Backward-HMME −1,990.2 0.030 0.026 44.7 46.2
HMM 2 EWAs −1,939.4 0.029 0.026 45.5 47.7
HMM 3 EWAs −1,984.0 0.030 0.026 44.3 47.8
HMME −1,941.0 0.029 0.026 46.3 47.6
NH-HMME −1,925.2 0.029 0.026 46.7 48.2
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different models on the calibration and holdout data. The measures for each
game are weighted by the number of players and the number of periods in the
game to compute the aggregate measures across games.

Table 1 reveals that (i) the NH-HMME model performs better than or equal
to the alternative models for all fit and prediction measures. (ii) consistent
with previous research (e.g., Camerer and Ho 1999) models involving a single
learning rule (Belief or Reinforcement) perform worse than models that com-
bine multiple rules (iii) generally, the NH-HMME, HMME, and time-varying
EWA models fit and predict the data better than static models, suggesting that
the observed data exhibit dynamics in learning rules; (iv) constrained versions
of the HMME model (forward and backward only) both fit and predict the
data worse than the HMME model; (v) the more complex models (HMM
of two and three EWAs), which allow for a different mixture of belief and
reinforcement learning in each state, do not add much beyond the standard
EWA or the HMME in terms of penalized fit, as their LMD statistics are
comparable. However, they slightly improve predictive ability.

Examining the fit and predictive performance measures (LMD, MSD and
Hit rates) of the different models for individual games (see Table 7 in
Appendix C) reveals that, while there is no one single model that performs
uniformly better than others across all games, the proposed model “wins”,
relative to other models on the most number of games. Consistent with the
findings of Camerer and Ho (1998), we find that the time-varying EWA has
fairly good fit for several games, but this comes at the cost of poor predictive
ability for some of the games (e.g., the continental divide game).

Overall, we conclude that the fit and predictive performance of the NH-
HMME model is the best among the studied models and that both hetero-
geneity and dynamics are important for modeling data from behavioral games.
For the NH-HMME model, incorporating past outcomes improves the fit
and predictive ability of the dynamic model, and, as we discuss later, it also
enhances our understanding of the underlying learning process.

4.4.2 Parameter estimates

We now look at the parameter estimates of the proposed NH-HMME model.
Table 2 reports the posterior means and the 95 % central posterior intervals
for the population mean of the NH-HMME model’s parameters for each of the
six games.9 We focus our discussion on the parameters of substantive interest,
i.e., those that inform about the learning rule dynamics.

The high values of the diagonal elements of the transition matrix for all
games, (qRR and qBB), suggest that the states are relatively sticky. That is,
players exhibit, on average, a high propensity to repeat the learning rule from

9To ensure that N is non-decreasing over time, we follow the previous literature by imposing N0 ≤
1/(1 − ρ), where N0 = N(t = 0), for the belief, EWA, ME, HMMs, HMME, and NH-HMME
models (Ho et al. 2002). For the time-varying EWA, we impose this constraint by constraining ρt
to be non-decreasing in t.
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one round to the next. Relative to the pure equilibrium games, the mixed
equilibria games (e.g., mixed strategy and patent race) exhibit lower stickiness
to the belief rule state. This result is consistent with the findings that the
reinforcement model generally performs well in mixed equilibria games (Erev
and Roth 1998). The value of ωR indicates that for most of the games (except
for pot games and p-Beauty) players have a tendency to initiate game play
with belief learning. However, as the game progresses, players shift towards a
reinforcement rule. We elaborate on these dynamics in the next subsection.

As seen in Table 2, several of the parameters that capture the effect of
foregone payoffs on the transition matrix are significantly different from zero.
Thus, less than optimal actions may lead to a change in the learning rule being
used by players. We find stronger and more statistically significant effect for
the effect of leaving money on the table in the previous round on players in
the belief state relative to players in the reinforcement state. Indeed, in the
belief state players are postulated to be more attuned to forgone payoffs.

To illustrate the effect of leaving money on the table in the previous round
on the transitions between learning rules, we report in Table 3, the average
transition matrix Q, when xt−1 = 0 and when xt−1 = 1. The covariate value
xt−1 = 0 represents instances when, conditioned on the opponents actions, the
the best strategy was chosen in the previous round, and xt−1 = 1, represents
instances when the player did not play the payoff maximizing strategy in
the previous round. Each cell in Table 3 represents qzz′ , the probability of
transitioning from learning rule z to learning rule z′. We find that for five out of
the six games, leaving money on the table in the previous round substantially
increased the player’s likelihood of staying in the belief state, given that the
player was already in that state in the previous round. Moreover, when using
reinforcement learning within coordination games (continental divide and
median action), not playing the optimal strategy in the previous round induces

Table 3 Change in mean
transition matrices as a
function of forgone payoff

Q(xt−1 = 0) Q(xt−1 = 1)

R B R B

Continental divide R 0.63 0.37 0.25 0.75
B 0.39 0.61 0.09 0.91

Median action R 0.96 0.04 0.61 0.39
B 0.70 0.30 0.06 0.94

Mixed strategies R 0.81 0.19 0.96 0.04
B 0.73 0.27 0.29 0.71

Patent race R 0.72 0.28 0.64 0.36
B 0.57 0.43 0.42 0.58

Pot games R 0.81 0.19 0.88 0.12
B 0.08 0.92 0.35 0.65

p-Beauty contest R 0.47 0.53 0.48 0.52
B 0.34 0.66 0.23 0.77
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Table 4 Parameter estimates EWA

Parameter Continental Median Mixed Patent Pot p-Beauty
label divide action strategy race games contest

φ 0.78 0.95 0.99 0.92 0.61 0.85
(0.58, 0.91) (0.82, 0.99) (0.99, 1.00) (0.87, 0.95) (0.28, 0.83) (0.77, 0.91)

δ 0.88 0.92 0.31 0.58 0.14 0.62
(0.82, 0.92) (0.87, 0.95) (0.14, 0.56) (0.50, 0.67) (0.01, 0.54) (0.46, 0.78)

λ 6.89 10.88 0.32 0.79 0.17 0.97
(5.02, 9.65) (7.41, 15.99) (0.14, 0.83) (0.53, 1.22) (0.07, 0.40) (0.74, 1.31)

ρ 0.07 0.08 0.94 0.91 0.18 0.13
(0.01, 0.25) (0.02, 0.28) (0.77, 0.99) (0.83, 0.95) (0.01, 0.72) (0.05, 0.31)

N(0) 0.96 0.48 12.66 2.02 0.13 1.13
(0.63, 1.20) (0.07, 1.00) (3.15, 54.76) (0.45, 5.89) (0.01, 1.14) (1.03, 1.43)

a shift towards belief learning. For most games, the effect of the forgone-payoff
covariate on players in the reinforcement state is relatively small. Notice that
for the p-Beauty game, with 101 strategies to chose from, it is difficult for
players to evaluate whether money was left on the table in the previous round.
Furthermore, in this game players were not informed of the winning startegy
at each round (Ho et al. 1998). Accordingly, the effect of xt−1 on the transition
probabilities for the p-Beauty game in Table 3 is fairly small.

It is instructive to compare our NH-HMME results to those of the EWA
model. Table 4 reports the posterior means and the 95% central posterior
intervals of the population mean for the EWA model’s parameters. First, we
note that our parameters are somewhat different from the EWA estimates
reported in the previous literature because of our richer specification of cross-
player heterogeneity.10 For example, our δ estimates are generally higher than
those reported in the literature. This result is consistent with evidence of over-
estimation of reinforcement behavior in the absence of heterogeneity (Wilcox
2006). More important is the contrast between the EWA and NH-HMME
estimates. Of particular interest is the δ parameter which captures the weight
given to forgone payoffs relative to actual payoffs and thus reflects the relative
emphasis on belief learning in comparison to reinforcement learning behavior.
It is interesting to note that the EWA results suggest that players in both the
continental divide and median action games mainly use belief learning rules
(high δ’s), whereas, in the mixed strategy and pot games, players mainly use
reinforcement learning.

The NH-HMME model provides different insights. While indeed in both
the continental divide and median action games, player’s are likely to start
the game in the belief state (ωR is small), only in the continental divide game
are players more likely to stick to the belief state (qBB is much larger for
continental divide game relative to the median action game).

10Estimating our EWA models without heterogeneity resulted in estimates that are very similar
to those reported in the literature.
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The NH-HMME model allows us to understand such differences in dynam-
ics in learning rules given its ability to uncover the latent state at each round
of play. We discuss such dynamics in rule learning next.

4.4.3 Learning rule dynamics

In this section we analyze in greater detail the dynamics in the learning
behavior of players over the course of a game. We use Eq. 10 to compute the
smoothed estimates of the posterior probability of using each learning rule at
any round of the game. Figure 2 summarizes these probabilities by averaging
across all players. It should be noted that these are average dynamics across
players and that specific individuals may exhibit learning paths that diverge
substantially from the aggregate.

As can be seen from Fig. 2, there are substantial differences in the rule
dynamics across games. On average, the continental divide, median action,
mixed strategy and pot games exhibit stronger dynamics compared to the
patent race and p-Beauty games. Moreover, on average, players in games
such as mixed strategies and p-beauty seem to “stabilize” in the use of the
two underlying learning rules after a few rounds in the game. In contrast, in
games such as median action and pot games, the player population needs more
rounds to stabilize. The median action game provides an example of interesting
dynamics in the use of learning rules over the course of the game. The NH-
HMME model suggests that even though players in this game primarily use the
reinforcement learning rule, they are much more likely to use belief learning
early in the game. Owing to the strong stickiness of the reinforcement learning
state (96 %) relative to the belief learning state (30 %), once players move
to the reinforcement learning rule, they continue to use it subsequently (see
Fig. 2b). The relative attenuation of rule dynamics in the patent race game is
consistent with observed stickiness to the chosen strategy reported by Ho et al.
(2007). Similarly, the drift from belief learning to reinforcement learning in
the continental divide game is consistent with the pattern of shifts commonly
observed in the strategy choices of this game (Camerer et al. 2002b).

For the mixed strategies and pot games, the EWA model suggests a low
recognition of forgone payoffs in choosing game strategies. The parameter
δ, which captures the relative emphasis on foregone payoffs compared to
actual payoffs, is the lowest among all games. This reveals the emphasis on
reinforcement learning in these games. The NH-HMME results, corroborate
this fact but provide additional insights about the pattern of dynamics, which
differs across the two games. For the mixed strategies games, players are
likely to start the game in the belief state and transition over time to the
reinforcement state. In contrast, for the pot games, the likelihood of starting
the game in the reinforcement state is very high and players transition over
time to a moderate use of the belief state.

The above discussion focussed on the average dynamics in the use of
the learning rules across players. Recall, however, that our model allows
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Fig. 2 Population learning rules dynamics across games

us to estimate different parameters for each player. Figure 3 illustrates the
heterogeneity in individual-level rule dynamics across games. In particular, we
plot the values of qiRR and qiBB for each individual player in each game (at
xit−1 = 0).

It is clear from the figure that the games differ with respect to the degree of
heterogeneity in rule-dynamics. Specifically, the median action and pot games
exhibit relatively low levels of heterogeneity in the transition parameters. Play-
ers in the mixed strategies and the p-Beauty game are quite homogenous in
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Fig. 3 Heterogeneity in
dynamic learning across
games: CD—continental
divide; MA—median action;
MS—mixed strategies;
PR—patent race; PG—pot
games; and PB—p-Beauty
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their stickiness to the belief rule but are quite heterogenous in their stickiness
to the reinforcement rule. The high degree of heterogeneity among players
to both learning-rule states in the continental divide game may be attributed,
in part, to the sensitivity of this game to the initial conditions (early strategy
choices). Interestingly, the mixed equilibria games (e.g., mixed strategy and
patent race) exhibit high degree of heterogeneity, possibly due to different
players focusing on different equilibria. The high degree of heterogeneity in
the p-Beauty game can be attributed to the large number of strategies in this
games, leading to heterogenous outcome histories across players.

5 Conclusions and future work

Learning is fundamental to the understanding of how equilibrium arises in
strategic situations. Several models of learning, such as the reinforcement
and belief learning, as well as the EWA model which nests these learning
processes, have been developed to describe how players choose strategies in
behavioral games. These learning rules differ in the mechanisms by which
attraction functions are updated from one round of play to another. In this
paper, we proposed that players can transition between alternative learning
rules over the course of the game. This creates an additional source of learning
dynamics over and above what is captured via dynamic attraction functions.
Understanding these rule dynamics can provide additional insights about the
learning process and can also improve predictive performance.
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We proposed a NH-HMME model in which players can transition in a
Markovian manner between reinforcement and belief learning submodels
over the course of the game. Experiences in the game can trigger transi-
tions between the learning rules. We estimated our model using a hierar-
chical Bayesian approach to account for cross-player heterogeneity and to
empirically disentangle heterogeneity from dynamics. We fit the model to
six experimental games that have been previously studied in the literature.
We found that, on average, across the six games studied, the proposed NH-
HMME model provides better in-sample fit and out-of-sample predictions of
the strategy choices.

More importantly, the proposed model sheds light on how reinforcement
and belief learning rules are employed over the course of the game. The six
games differ in the extent to which each rule is used and in the dynamic
pattern of the usage of these rules. Such differences cannot be discerned from
traditional models that yield structural parameters that capture the gestalt, but
do not provide information about the shifts in the employment of learning
rules. For example, the mixed strategies games, which involve mixed equilibria,
exhibited a quick transition from belief to reinforcement rules. The continental
divide game, on the other hand, showed a much slower drift from belief to
reinforcement learning over the course of the game. We also found a high
degree of heterogeneity in the choice of learning rules across players. We
believe that understanding the path that decision makers take in learning from
their own decisions and the decisions of their opponents can aid the study of
managerial decision making (e.g., Goldfarb and Yang 2009).

There are several possible extensions to our paper. First, we examined only
the transition between specific forms of reinforcement and belief learning
rules. Future research could examine transitions among additional learning
rules (Stahl 1999, 2001). For example, one could examine whether players
are likely to transition between reciprocity and aspiration learning (Stahl and
Haruvy 2002). Second, future research could apply our modeling framework to
other behavioral games. This will facilitate a systematic understanding of the
dimensions that underly the differences in the pattern of latent rule dynamics.
We believe that the biggest opportunity is in games that involve a large number
of rounds. Third, one could examine the transferability of the parameter
estimates from one game to another (Haruvy and Stahl 2012). Fourth, the
observation that players “stabilize” their learning behavior in some games
could be further explored. A more complex NH-HMME model that allows for
more flexible dynamics in the transition probabilities, can help to improve our
understanding of players’ switching behavior between learning rules. Finally,
one can explore richer specifications for parameter heterogeneity, such as
mixture of normals or mixtures of Dirichlet process priors.
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Appendix A: NH-HMME prior and full conditionals distributions

We denote by θ i =
{
τiR, τiB, ρiR, ρiB, ω̃iR, λiR, λiB, φiR, φiB, N0

iB

}
, the set of

random-effect parameters. See Eqs. 4, 7 and 8 and the attraction functions for
the belief and reinforcement learning models.

A.1 Priors

The prior for the population mean μθ is assumed to be multivariate normal,
given by N(μ0, V0) and the prior for the population precision matrix is
assumed to be Wishart, �−1

θ � W(df0, S0), where, the hyper-parameters are
chosen so as to obtain proper, but diffuse priors.

We use the following uninformative prior hyperparameters for the two-state
NH-HMME model: μ0 = [0, 0, 0, 0, 0, −0.3, −0.3, 0, 0, 0], V0 = Inθ Xnθ , df0 =
nθ + 2, S0 = (df0 − nθ − 1)Inθ , Where, N is the number of individuals, and
Inθ denotes an identity matrix of rank nθ , which represents the dimensionality
of μθ .

An appropriate selection of the priors is particularly critical in this model
since the parameters are transformed to an exponential scale. Moreover, we
model heterogeneity using a hierarchical structure, where the variance of μθ

and �θ are added at each individual draw of each θ i. This increases the variance
of the transformed variables. Accordingly, we chose prior hyperparameters for
μθ and �θ such that their priors are diffused in the transformed space.

A.2 Posterior

The posterior distribution is proportional to the product, p(data|{θ i})
p({θ i}|μθ , �θ)p(μθ )p(�θ), where, p(data|{θ i}) is the sampling density condi-
tional on the individual-level parameters and p({θ i}|μθ , �θ ) = ∏

i p(θ i|μθ , �θ )

is the joint distribution of the individual-level parameters. The posterior is not
available in closed form as the likelihood is not conjugate to the priors, and
hence we use McMC methods to sample from the joint posterior.

A.3 Full conditionals

1. The full conditional distribution for the individual-level parameters θ i is
unknown and can be written as

p(θ i|μθ , �θ , datai) ∝ p(datai|θ i) exp
(

− 1
2
(θ i − μθ )

′�−1
θ (θ i − μθ )

)
.

We use a Metropolis-Hastings step to draw from it. In particular, we use
a Gaussian random-walk M-H where the candidate vector of parameters
ϕ(c) for θ i at iteration t is drawn from N(θ (t−1), σ 2(t−1)
(t−1)) and accepted
using the M-H acceptance ratio. The tuning parameters σ 2(t−1) and 
(t−1)
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are adaptively chosen to yield an acceptance rate of approximately 30 %.
We use the method proposed by Atchadé (2006) to adapt these tuning
parameters.

2. The full conditional for the population mean is given by a multivariate
normal distribution, i.e., μθ � N(μn, Vn), where, V−1

n = V−1
0 + N�−1

θ and
μn = Vn[μ0V−1

0 + Nθ̄�−1
θ ], N being the total number of players.

3. The full conditional for the population precision is a Wishart distribu-
tion, i.e., �−1

θ � W(df1, S1), where, df1 = df0 + N and S−1 = ∑N
i=1(θ i −

μθ )(θ i − μθ )
′ + S−1

0 .

Inference is based on making multiple draws from the above full conditional
distributions. An initial set of draws are discarded as burn-in iterations to
reduce the impact of atypical starting values for the parameters on final
inference.

Appendix B: Simulation

We conduct a simulation exercise to study the empirical identification of the
NH-HMME parameters.

Data generation We use a procedure similar to the one used by Salmon
(2001). In the context of the continental divide game used in our empirical
application, we simulate 70 individuals playing the game for 15 periods. In
the continental divide game, individuals play in groups, in each round, each
member of the group chooses an integer between 1 and 14. At the end of
the round, the median of the numbers chosen by the members of the group
is revealed and the payoffs are computed.

We simulate individuals using the proposed NH-HMME in which indi-
viduals transition between reinforcement and belief learning rule states. To
provide a realistic test of parameter recovery, the parameter values used in
the simulation correspond to the values estimated in the empirical application
for that game. We then estimated five models: (i) Reinforcement, (ii) Belief,
(iii) EWA, (iv) EWA time varying and (v) NH-HMME. Notice that the first
two models are nested versions of the NH-HMME, and correspond to a NH-
HMME with only one state. Table 5 summarizes the performance of each
model regarding fit and predictive ability.

Table 5 Model selection

Learning model LMD MSD-in MSD-out HR in HR out

Belief −1084.8 0.050 0.050 38.1 43.9
Reinforcement −1404.6 0.052 0.048 45.0 53.9
EWA −1000.9 0.046 0.045 46.6 50.4
EWA time varying −992.0 0.044 0.057 47.7 42.5
NH-HMME −958.9 0.044 0.044 49.9 56.1
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Table 6 Transformed
parameter estimates. Data
generated according to a
NH-HMME

Par. label True pars 2.5 % 50 % 97.5 %

φR 0.26 0.07 0.20 0.37
λR 20.29 13.64 27.94 68.39
φB 0.84 0.73 0.84 0.91
λB 42.66 27.67 40.10 59.04
NB 5.69 1.42 4.34 10.15
q11 0.63 0.44 0.65 0.79
q22 0.61 0.54 0.69 0.81
ρR −1.61 −2.83 −1.75 −0.66
ρB 1.84 0.55 1.39 2.33
wR 0.13 0.08 0.17 0.30

As expected, the results in Table 5 confirm that the NH-HMME is the model
that fits the data best. This model also predict best the holdout sample.

We now explore the identification of the NH-HMME parameters. Table 6
shows the parameters estimated for the NH-HMME model. The estimation
procedure did very well in recovering the true parameter values that were used
to generate the data. We can observe that the true values for all parameters
fall within the 95 % highest posterior density (HPD) interval estimated by the
NH-HMME.

Finally, we analyze membership recovery. Figure 4 shows the true and the
estimated average membership probability for each round of the game. We
can see that the estimated model does well in recovering the true underlying
learning rules states.

Fig. 4 Recovery of the population learning rule states
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Appendix C: Fit and predictive ability for each game

Table 7 Model fit and prediction measures

Continental divide Median action
LMD MSD Hit rate LMD MSD Hit rate

Learning models In Out In Out In Out In Out

Reinforcement −1370.7 0.052 0.034 45.1 66.4 −291.1 0.060 0.033 67.9 86.4
Belief −1062.0 0.048 0.042 42.0 54.6 −232.8 0.045 0.017 74.1 94.4
EWA −1022.3 0.046 0.034 48.1 64.6 −215.0 0.042 0.022 79.3 90.7
EWA time varying −967.8 0.042 0.037 50.9 60.7 −180.8 0.035 0.026 80.2 89.5
ME no dynamics −1094.1 0.049 0.041 46.0 56.4 −236.9 0.045 0.025 77.2 90.1
F-HMME −1062.0 0.047 0.039 47.3 56.8 −222.6 0.046 0.018 78.1 92.0
B-HMME −1101.2 0.049 0.041 45.4 55.7 −239.9 0.046 0.024 75.3 90.7
HMM 2 EWAs −1035.5 0.046 0.032 47.1 67.1 −213.4 0.045 0.016 77.2 93.2
HMM 3 EWAs −1114.3 0.050 0.033 42.9 66.1 −227.3 0.047 0.018 74.4 90.7
HMME −1018.9 0.045 0.035 50.1 66.1 −210.7 0.039 0.023 80.2 90.1
NH-HMME −1009.5 0.045 0.033 49.4 65.7 −197.3 0.038 0.022 80.2 89.5

Continental divide Median action
LMD MSD Hit rate LMD MSD Hit rate

Learning models In Out In Out In Out In Out

Reinforcement −3046.6 0.148 0.149 39.5 38.3 −2200.4 0.087 0.084 62.7 64.1
Belief −3063.5 0.149 0.152 38.2 38.0 −2317.7 0.093 0.096 58.3 54.5
EWA −2999.3 0.146 0.149 39.9 37.6 −2062.9 0.084 0.083 62.4 63.2
EWA time varying −3098.0 0.151 0.158 36.9 37.7 −2046.1 0.083 0.084 62.7 60.2
ME no dynamics −3052.3 0.149 0.149 38.9 38.0 −2147.7 0.086 0.086 62.4 62.5
F-HMME −3014.7 0.147 0.150 40.0 37.1 −2157.7 0.086 0.085 62.5 63.0
B-HMME −3037.5 0.148 0.149 39.3 38.0 −2131.6 0.086 0.084 62.8 63.7
HMM 2 EWAs −2976.4 0.145 0.148 39.8 37.7 −1992.1 0.081 0.083 63.8 64.0
HMM 3 EWAs −3041.2 0.100 0.149 38.5 37.2 −2053.0 0.083 0.080 62.8 65.3
HMME −3009.2 0.147 0.150 40.0 38.0 −2026.4 0.082 0.083 63.6 63.8
NH-HMME −2973.5 0.144 0.150 40.4 37.9 −2019.6 0.081 0.084 63.7 63.8

Continental divide Median action
LMD MSD Hit rate LMD MSD Hit rate

Learning models In Out In Out In Out In Out

Reinforcement −367.8 0.215 0.197 64.6 70.1 −5216.3 0.010 0.010 5.6 4.6
Belief −378.8 0.218 0.219 60.6 64.9 −5049.5 0.010 0.010 6.7 5.3
EWA −365.0 0.215 0.195 65.1 69.8 −5038.5 0.010 0.010 7.0 7.5
EWA time varying −368.8 0.213 0.213 64.2 68.4 −4975.5 0.009 0.011 8.8 9.2
ME no dynamics −364.7 0.216 0.192 65.8 69.4 −5065.2 0.010 0.010 5.4 6.8
F-HMME −366.7 0.216 0.191 65.8 70.1 −5043.9 0.010 0.010 6.1 10.0
B-HMME −366.2 0.216 0.196 64.9 70.5 −5064.9 0.010 0.010 5.4 5.4
HMM 2 EWAs −365.5 0.217 0.194 64.8 69.1 −5053.8 0.010 0.010 6.0 7.7
HMM 3 EWAs −363.7 0.218 0.192 65.8 70.1 −5104.4 0.010 0.010 6.0 8.2
HMME −367.4 0.215 0.193 66.0 70.5 −5013.2 0.010 0.010 7.5 7.8
NH-HMME −363.3 0.215 0.193 65.8 71.5 −4987.5 0.010 0.010 9.4 11.1
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