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Abstract

We analyze the effects of asymmetric switching costs on two identical firms that produce an homoge-

neous good and compete in prices. Both firms inherit a fraction of the market which is “locked-in” by the

switching costs. When switching costs are low, firms face a tradeoff between charging a high price to their

locked in customers, or pricing aggressively in order to attract the rival’s market share. We characterize

the (pure and mixed) equilibrium strategies and the associated payoffs for any pair of switching costs in

the unit square.



1 Introduction

In various markets, consumers are constantly faced with switching costs when they try to change their

purchasing behavior. These switching costs often reduce competition among firms, giving companies a

certain degree of monopoly power over their customer base. Clear examples of this can be seen in several

markets, for example in the information technology sector where the choice of a certain hardware con-

ditions the choice and availability of other types of products, creating additional costs to change from

one company to another; or in the cellular phone service industry where often firms demand the cellular

phone be returned when changing service provider. These costs are internalize by consumers. This fact

may allow firms to raise prices to their initial market share without fearing the loss of their market par-

ticipation.

In this paper we study the firms’ behavior and payoffs when consumers are faced with asymmet-

ric switching costs. The model analyzed in this paper consists of two identical firms that engage in a one

time price competition and trying to maximize expected payoff. We start with an initial split of the mar-

ket between firms and consider fixed switching costs that consumers must directly pay to the firm that

is being left. Since our interest lies in characterizing the firms pricing behavior, knowing the switching

costs of their customer base and that of their rivals, we shall exclude other factors such as the quality or

quantity that might alter the firms’ or consumers’ decisions.

We will analyze two cases, one in which a firm has the entire market and another when the market

is split in two equal parts among firms. In many cases, the switching costs will be so high that consumers

are going to be completely locked-in to one firm, giving that company the ability to charge the monopoly

price to its consumers. In other cases, the magnitude of the switching cost shall allow firms to price more

aggressively to try to poach their rivals customer base. We will characterize the firms’ payoffs under any

possible pair of switching costs that consumers might face.

More specifically, we find that if both switching costs are above a certain threshold, it is not prof-

itable for firms to poach their rivals consumers and thus both firms charge the maximum price possible,

since consumers are completely locked in. This is the only region where a pure strategy equilibrium ex-

ists. When one of the firms switching costs is below the fore mentioned threshold but the sum of both

switching costs is relatively high, we find a mixed strategy equilibrium in which only one firm has the pos-

sibility to poach his rival’s consumers. This implies that only one of the firms strategy places a positive

probability on relatively low prices in an attempt to capture the entire market. We call this equilibrium a

single sided poaching equilibrium. The last type of mixed strategy equilibrium that we find is when both

switching costs are relatively small or in a subset of the single sided poaching equilibrium, where both

firms may poach the others market share. For this type of equilibrium both firms strategies place a pos-

itive probability on high prices to gain the most from their inherited market share and they also place a

positive probability on low prices in an attempt to attract the other firms customers. We call these type

of equilibrium double sided poaching equilibrium.
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Much work has been written in the switching cost literature. In [12] Klemperer reviews several

models that incorporate switching costs with different characteristics. In the simplest model, he consid-

ers a duopoly that competes in two periods, where in the second period firms face an exogenous switch-

ing cost that is identical between firms and is so large that consumers are completely locked in to their

initially chosen firm. In this context he manages to prove that first period competition is fierce enough

to eliminate firms future margins. He also considers a model in which the goods offered by each firm are

not perfect substitutes, giving leeway so that firms may extract a positive payoff from their consumers.

Again, he assumes that the switching cost is elevated and that it is unfeasible for a consumer to change

firms. Klemperer also studies the effects switching costs have when consumers change their preferences

in different periods [11] or when consumers have idiosyncratic switching costs [10]. A common feature of

this literature is that switching costs are so high that consumers do not have incentives to change firms.

As a consequence consumers make their decisions only once, before they face any switching cost.

In [15] Shilony relaxes the assumption that consumers cannot change firm when they face switch-

ing costs. His paper considers n firms that are separated across different neighborhoods and if consumers

want to purchase from a seller that is “far away”, they must pay a fixed transportation cost c. For small

values of c firms face a trade off between imposing a high price to satisfy their respective market share

(“milk” their own customer base) or impose a low price to attract consumers from different neighbor-

hoods (“poach” their competitors customer base). This trade off leads to a mixed strategy equilibrium.

We extend this model to consider asymmetric switching costs among firms, which in some cases may

give one firm an advantage over his rival. An important difference is that in our model the firms receive

the switching cost that must be paid if a customer decides to switch, whereas in Shilony’s model the cost

is seen as a transportation cost and is wasted.

We see this paper as the characterization of the final period of a dynamic oligopoly model. In the

first period of this model firms have two choices to make: what price to charge consumers and what

incentive to offer to attract them1. This incentive is seen as a gift in the first period but it later turns

into a switching cost since it must be returned in case a consumer would like to switch firms in the sec-

ond period. This generates a potentially asymmetric situation in the final period, where we may have an

asymmetric market distribution and where consumers must face different switching costs (depending

on which provider they selected in the previous period).

The distribution of this paper is as follows. Section 2 gives a description of the model considered.

In section 3 we characterize all of the possible resulting equilibria that can arise from this type of com-

petition. We find the exact conditions necessary for firms to be able to fix the monopoly price without

loosing their market share, and the resulting mixed strategy equilibrium when switching costs are rela-

tively low and firms may poach their rivals consumers. In section 4 we give an intuitive explication of the

1For example, a new cellular phone offered by cellular phone service companies or an initial teaser rate on a home mortgages.
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equilibria characterize in the previous section, and finally in section 5 we conclude.

2 The Model

There are two firms i and j competing in price (denoted by pi and p j respectively) over one period. We

assume that firm i has inherited a market share µi ∈ {0, 1
2 ,1} (µ j denotes j ’s initial market share), which

is the proportion of the market inherited by firm i 2. If a consumer is inherited by firm i she must pay a

switching cost Bi to that firm in order to change providers. We assume that the firms are identical, with

their marginal costs normalized to zero.

Note that in this model we do not assume that it is too costly for consumers to switch; consumers

may choose to do so, depending on the price difference between firms. This means that for a consumer

inherited by i to switch to firm j the price difference must be greater than the switching cost Bi , in other

words pi > p j +Bi . We assume that firms cannot differentiate their prices, therefore all consumers face

the same prices no matter which firm they are initially attached to; and that the consumers’ reservation

price is 1, hence pi , p j ∈ [0,1] and Bi ,B j ∈ [0,1]. This gives us the following demand function for firm i ,

Di (pi , p j ) =


0 if pi > p j +Bi

µi if p j −B j ≤ pi ≤ p j +Bi

1 if pi < p j −B j

And firm i ’s payoff takes on the following form,

πi (pi , p j ) =


µi Bi if pi > p j +Bi

µi pi if p j −B j ≤ pi ≤ p j +Bi

pi if pi < p j −B j

From this payoff function we can see that firms are torn between two choices, they can either

charge a high price to extract the most from their “locked-in” consumers3 or they can charge a lower

price so as to attract their rival’s market share. For some levels of Bi ,B j , this tradeoff generates mixed

strategy equilibria.

2This can be interpreted as the proportion of the market that has purchased from i before.
3Here we use the term “locked-in” loosely, since consumers have the option of changing firms, but they face a switching cost in

order to do so.
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3 Characterizations of Equilibria

In this section we shall characterize all of the possible equilibria that can arise in the game. They depend

strongly on the magnitude of the switching costs that consumers must pay in order to switch firms. We

fist study the case of a dominant firm that inherits the entire market (µi ∈ {0,1}). We find that there exists

a pure strategy equilibrium where the dominant firm retains the whole market. We then consider the

case in where both firms share the market in equal parts (µi = 1
2 ) and find 5 types of equilibria. In the

presence of relatively high switching costs we find a pure strategy Nash equilibrium where both firms

charge a monopoly price and do not loose market share. For all other cases we prove that there is no pure

strategy equilibria and characterize 4 different mixed strategy equilibria.

These 4 cases of mixed strategy equilibria can be separated in two types of strategies: 1 corre-

sponds to a single sided poaching equilibrium and 3 correspond to a double sided poaching equilibrium.

In the single sided poaching equilibrium we have that only one of the firms has the chance to poach his

rivals consumers. Informally this means that both firms strategies place a positive probability on high

prices to “milk" their consumers, but only one of the firms strategy places a positive probability on rela-

tively low prices so as to capture the entire market. In the double sided poaching equilibrium both firms

have the ability to poach their rivals consumers. For these types of equilibria both of the firms strategy

support small prices to poach the other customer base and they also support high prices to “milk” their

existing market share. This final type of equilibria is later divided in three sub cases, which depend on

the magnitude of the firms’ switching cost.

3.1 Dominant Firm

In this subsection we find a pure strategy equilibrium of the game when j inherits the entire market.

Proposition 3.1. If µi = 0, the resulting equilibrium is

p∗
i = 0, p∗

j = B j .

Proof:

With µi = 0 we have that firm j inherits the entire market before the beginning of the game. Let us verify

that p∗
i = 0, p∗

j = B j constitutes an equilibrium. With these price levels, the firms’ payoffs are,

πi =µi p∗
i = 0, π j = (1−µi )p∗

j = B j

Given the consumer’s demand function, if j raises its price in ε> 0, all of its customers will be bet-

ter off returning j ’s first period bond and purchasing from i . And if j reduces its price by ε> 0, it will keep

its market share but will receive a lower payoff because of the price reduction. Therefore, firm j does not

have an incentive to change its price.
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If firm i decided to raise its price, the price difference between the two firms will be even smaller

and consumers will have even fewer incentives to purchase from i , leaving i with the same payoff as

before the change in price. If firm i reduces its price by ε> 0, it would sell to the entire market since con-

sumers are better off returning the switching cost to j and purchasing from i . But firm i would receive a

negative payoff since π2i =−ε< 0, so it has no incentives to lower its price. Therefore, since neither firm

has incentives to modify its price, p∗
i = 0, p∗

j = B j is an equilibrium. ■

This result is quite intuitive: if one firm has the entire market and consumers are tied by a switch-

ing cost B , then B is the maximum price the dominant firm can charge to maintain its market share. In

fact it is optimal for the firm to charge that price and keep the whole market.

3.2 A Shared Market

The characteristics of the equilibria are strongly linked to the size of the switching costs. We shall prove

that for “large" switching costs firms end up charging the monopoly price4. When at least one of the

switching costs is “small" we prove that there is no pure strategy equilibrium and characterize two dif-

ferent types of mixed strategy equilibria. First, we characterize single sided poaching equilibrium, where

there is a positive probability that one firm charges a low price and captures the whole market, with the

other firm unable to retaliate. Next we study double sided poaching equilibria, where both firms capture

the whole market with positive probability.

3.2.1 Large Switching Costs (Bi ,B j ≥ 1
2 )

In this case there is a pure strategy equilibrium that is easy to characterize and is intuitively appealing.

Theorem 3.2. If Bi ,B j ≥ 1
2 then in equilibrium both firm charge the monopoly price (p1 = p2 = 1).

Idea of Proof:

The intuition for this equilibrium is simple. Since the switching costs are so high, for a firm to poach

on its rival’s consumers, it must reduce prices drastically. The payoff received with this price reduction

leaves firms worse off than charging the maximum price to their own inherited market share. Therefore

in equilibrium firms charge the monopoly price. See 6.1 in the Appendix for details. ■

This assumption (Bi ,B j ≥ 1
2 ) is equivalent to the typical assumption made in the switching costs

literature: the switching cost is so high that firms do not have incentives to poach their rival’s customers.

4This type of equilibrium is the commonly used in models where consumers are confronted with switching costs; the idea is

that the switching cost is so high that it is unfeasible for consumers to change firms and therefore the firms are able to charge the

monopoly price.
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3.2.2 At Least One Small Switching Cost (Bi ≤ 1
2 or B j ≤ 1

2 )

We first restate the Bertrand equilibrium in the context of our model.

Proposition 3.3. If Bi ,B j = 0 then pi = p j = 0

Now we show that the nature of the equilibria when at least one switching cost is low is completely

different to when both switching costs are large. In fact, here equilibria will always involve randomization.

Proposition 3.4. If min{Bi ,B j } < 1
2 and max{Bi ,B j } > 0 then there does not exist a Nash equilibrium in

pure strategies.

Idea of Proof:

The idea behind the proof is that for any pair of prices (p∗
i , p∗

j ) at least one of the firms has incentives to

modify its price. Since one of the firms has a “small" switching cost, if it decides to charge a high price

its rival will have incentives to poach its customers. Conversely, if the firm with a “small" switching cost

imposes a low price so as to not risk losing his market share, then its rival will put a high price, since it is

unable to poach, giving the first firm leeway to raise its price. This trade off is the essential reason as to

why there is no pure strategy equilibrium. See 6.2 in the Appendix for details. ■

In order to characterize the mixed strategy equilibria we extend the methodology introduced in

[15] by Shilony to the case of asymmetric switching costs that must be paid to firms (as opposed to sym-

metric switching costs that are deadweight lost).

Denote by Fi , F j the price distribution (i.e., the strategy) chosen by each firm. Given our assump-

tion that consumers always purchase the good when the price is less than one and that consumers inher-

ited by firm i will only switch to j if pi > p j +Bi we have the following expression the firm j ’s expected

payoff,

E
(
π j (p, pi )

)
=

∫ 1

0
π j (p, x) dFi (x)

=
∫ p−B j

0

1

2
B j dFi (x)+

∫ p+Bi

p−B j

1

2
p dFi (x)+

∫ 1

p+Bi

p dFi (x)

= Fi (p −B j )
1

2
(B j −p)−Fi (p +Bi )

1

2
p +p (3.1)

The first term in the second line corresponds to the case where firm i ’s price is so low that all

of j ’s consumers decide to switch (and firm j receives the consumers switching cost). The second term

expresses the payoff j receives in case that both firms retain their market share. And finally the third term

reflects j ’s payoff when it manages to capture the entire market. For a given strategy of firm i (Fi ), we have

that for every price in the support of dF j (firm j ’s strategy), j ’s payoff is a constant equal to V j . Therefore

we have the following equality,
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E
(
π j (p, pi )

)
= Fi (p −B j )

1

2
(B j −p)−Fi (p +Bi )

1

2
p +p =V j ∀p ∈ sop(dF j ). (3.2)

To derive the firms’ strategies we shall consider a pair of auxiliary variables that represent the max-

imum and the minimum price that firm i uses with a positive probability, p i and p
i

respectively. 5 Before

we derive the firms’ strategies in these cases we shall prove two technical Lemmas that characterize the

minimum price a firm will use and the features of a firms strategy near that price.

Lemma 3.5. If min{Bi ,B j } < 1
2 and max{Bi ,B j } > 0 then p

i
is positive.

Proof:

See 6.3 in Appendix for details.

Lemma 3.6. If min{Bi ,B j } < 1
2 then Fi is continuous in p

i
(i ’s minimum price).

Proof:

For the case B j > 0 see 6.4 in Appendix for details. For the case in which B j = 0 the proofs may be found

in 6.10 and 6.11.

Definition 3.7. We will say that firm j poaches on firm i ’s customer base if the equilibrium strategies are

such that

p i −p
j
> Bi .

In such a case, with positive probability firm j will gain firm i ’s consumers.

Single Sided Poaching Equilibrium. Let us first characterize the equilibrium in which only one firm

may poach consumers from its rival. We call this type of equilibrium a single sided poaching equilibrium.

In this case we characterize both firms’ strategies and are able to find explicit expressions for Vi and V j .

Theorem 3.8. If the equilibrium strategies are such that there is single sided poaching, that is

I) p i −p
j
> Bi

II) p j −p
i
< B j

then firm j ’s pricing strategy has the following cumulative distribution,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi(

1− 2Vi−Bi
p i−Bi

)
p i −Bi ≤ p < p j

1 p ≥ p j

5These variables are also defined in Shilony [15], but in that model assumes that both firms have the same maximum and min-

imum price since the switching costs are identical. However we characterize asymmetric equilibria where the switching costs are

the same, but the minimum prices are not.
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and firm i ’s pricing strategy has the following cumulative distribution

Fi (p) =


0 p < p

i

2
(
1− V j

p−Bi

)
p

j
+Bi ≤ p < p i

1 p ≥ p i

with p
i
= Bi + 1

2 , p
j
= 1

2 , p i = p j = 1 and the firms’ expected payoff are,

Vi = Bi

2
+ 1

4
, V j = 1

2

Idea of Proof:

Notice that the price difference between j ’s maximum price and i ’s minimum price is smaller than B j .

Therefore i never imposes a price that attracts j ’s consumers. This means that the firms’ equations for

their expected payoffs take on a simpler form since,

p +B j > p j ∀p ∈ sop(dFi ) and p −B j < p
i

∀p ∈ sop(dF j )

therefore equation 3.2 takes on the following form,

F j (p −Bi )
1

2
(Bi −p)+ 1

2
p =Vi ∀p ∈ sop(dFi )

−Fi (p +Bi )
1

2
p +p =V j ∀p ∈ sop(dF j ).

Given the nature of the firms’ expected payoff equations and using the fact that Fi and F j are con-

tinuous in p
i

and p
j

respectively, we can deduce that p
i
= p

j
+Bi . Then, using the firms’ expected payoff

equations, we find the functional form of the firms’ strategies. Finally, we impose the condition that the

firms’ payoff must be lower for prices which are not in the support of their strategies, and are able to find

expressions for p i , p
i
, p j , p

j
,Vi , and V j , giving us the equilibrium described in the Theorem. See 6.5 in

the Appendix for details of proof. ■

An example of the firms pricing strategy in this equilibrium can be see in Figure 4.

Corollary 3.9. Such an equilibrium exists if and only if Bi < 1
2 and Bi +B j > 1

2 .

Proof:

Replace values for p
i
, p

j
, p i and p j in conditions I and I I of Theorem 3.8. ■

Observation: this result proves that even when we consider symmetrical switching costs Bi = B j ,

we can have asymmetrical equilibria, where only one of the firms poaches its’ rivals customers. This type

of equilibria is not considered in Shilony’s symmetrical switching cost model [15].
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The regions where these equilibrium exist can be seen in Figure 5 and the firms expected payoff

can be seen graphically in Figure 6.

This completes the study of equilibria in which only one firm has the possibility to attract its rival’s

consumers. Now we must find the equilibria in which both firms may poach customers.

Double Sided Poaching Equilibrium If both firms are to poach with possible probability we must have

p i −p
j
> Bi

p j −p
i
> B j .

In other words j has the possibility to attract i ’s consumers and vice versa. We will focus on the charac-

terization of equilibria such that,

p i −p
i
≤ Bi +B j

This condition tells us that the range of possible prices that a firm imposes is not too large compared to

the switching costs. We obtain different types of equilibrium strategies when this last inequality holds

with equality or with strict inequality.

The next two Lemmas characterize the relevant features of the equilibria for different cases of this

last inequality.

Lemma 3.10. If the equilibrium strategies are such that there is double sided poaching and that

I) p i −p
i
< Bi +B j

II) p j −p
j
≤ Bi +B j

then firm j ’s price has the following cumulative distribution,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi(

1− 2Vi−Bi
p i−Bi

)
p i −Bi ≤ p < p

i
+B j

2
(
1− Vi

p−B j

)
p

i
+B j ≤ p < p j

1 p ≥ p j

with p
i
= 2V j −B j , p i = 1 and the firms’ expected payoff satisfy the following equation,

4Vi V j −2Vi B j +2Vi Bi +2V j −2Vi −B j −4V j Bi +2Bi B j = 0
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Idea of Proof:

Given (I ) and (I I ) we can see the partition of sop(dFi ) and sop(dF j ) in Figure 1. The methodology con-

sists of using equation 3.2 and considering p in the different intervals defined in the hypothesis of the

Lemma, so we can derive a functional form for F j that makes 3.2 hold. By considering p in different in-

tervals, equation 3.2 takes on a simpler form, canceling either F j (p−Bi ) or F j (p+B j ), which allows us to

find an expression for F j (p +B j ) and F j (p −Bi ) respectively.

With this process, we can find the complete functional form for F j , which depends on p
i
, p i ,Vi ,

and V j . In this Lemma we find relationships between these variables. To do this, we impose necessary

conditions on equation 3.2 and F j so that they correspond to i ’s expected payoff equation and j ’s pricing

strategy distribution, respectively. In this case the conditions that must be imposed are that Fi is con-

tinuous in p
i
, that if p is higher than p i or lower than p

i
there must be a reduction in firm i ’s expected

payoff, and that F j must be increasing. By imposing these conditions we get the values and relationships

for the variables described in the Lemma. See 6.6 in Appendix for details. ■

An example of the firms’ pricing strategy in this equilibrium can be see in Figure 4.

Note that Lemma 3.10 not only tells us the relationship that Vi and V j must satisfy in this type

of equilibrium, but it also gives us an expression for the distribution of prices used by j . Now we must

analyze the case in which a firm’s price spread is equal to the sum of both switching costs.

Lemma 3.11. If the equilibrium strategies are such that there is double sided poaching and that

I) p i −p
i
= Bi +B j

II) p j −p
j
≤ Bi +B j

then firm j ’s price has the following cumulative distribution,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi

2
(
1− Vi

p−B j

)
p

i
+B j ≤ p < p j

1 p ≥ p j

with p
i
= 2V j −B j , p i = 2V j +Bi and the firms’ expected payoff satisfy the following equation,

4V 2
j −2V j B j −2Vi B j −2V j Bi +Bi B j = 0

Idea of Proof:

As with Lemma 3.10, we must use the hypothesis to divide sop(dFi ) and sop(dF j ) into smaller intervals

where we can derive F j ’s functional form using equation 3.2 (see Figure 2). As before, this is done by

canceling out the expressions for F j (p −Bi ) or F j (p +B j ) (depending on the interval of sop(dFi ) that we

consider) to solve F j . Once we have determined F j ’s functional form we use Lemma 3.6 to find a rela-

tionship between p
i

and V j and we impose the necessary conditions that 3.2 must satisfy. Specifically,
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that if we consider p larger or smaller than p i and p
i

respectively, there must be a reduction in the firm’s

expected payoff. Using these arguments we get the expressions for p i , p
i
, and the equation that Vi and

V j must satisfy. See 6.7 in Appendix for details. ■

An example of the firms’ pricing strategy in this equilibrium can be see in Figure 4.

Now that we have found the firms’ strategies and the conditions that their expected payoffs must

satisfy, we can examine the types of double sided poaching equilibria that arise. We must solve the system

of equations that the firms’ expected payoff satisfy to find the particular expression that those payoffs

take. We have three types of double sided poaching equilibria to consider:

Theorem 3.12. The optimal strategies characterized in Lemmas 3.10 and 3.11 give the following equilibria,

Case I: p i −p
i
< Bi +B j and p j −p

j
< Bi +B j .

Vi = 1

4

(
3Bi +B j − (Bi +B j )2 +ξ(Bi ,B j )

2−Bi −B j

)
and

V j = 1

4

(
3B j +Bi − (Bi +B j )2 +ξ(Bi ,B j )

2−Bi −B j

)

where ξ(x, y) takes the following expression, 6

ξ(x, y) = (−26x y −11x2 −11y2 +22x y2 +22x2 y +2x3 +2y3 −
4x y3 −10x2 y2 −4x3 y +x4 + y4 +8x +8y)

1
2

Case II: p i −p
i
< Bi +B j and p j −p

j
= Bi +B j .

Vi = 1

4

(
3Bi +B j −1+α(Bi ,B j )

)
and

V j = 1

4

(
1+B j −Bi + (2Bi −1)α(Bi ,B j )

) 1
2

where α(x, y) takes the following expression,

α(x, y) = (y2 −2x y −3x2 +2x +2y +1)
1
2

Case III: p i −p
i
= Bi +B j and p j −p

j
= Bi +B j .

Vi =
(1+p

5)Bi +2B j

4

and

V j =
(1+p

5)B j +2Bi

4
.

6Note that ξ(x, y) = ξ(y, x).
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Idea of Proof:

We just combine the results of Lemmas 3.10 and 3.11. See 6.8 in Appendix for details. ■

Corollary 3.13. The partition of the switching cost space (Bi ,B j ) when we consider double sided poaching

equilibria is defined by the following bounds:

Case I: 1− (2V j −B j ) < Bi +B j and 1− (2Vi −Bi ) < Bi +B j where Vi and V j take on the values expressed

in Case I of Theorem 3.12.

Case II: 1− (2V j −B j ) < Bi +B j and 2Vi +B j ≤ 1 where Vi and V j take on the values expressed in Case II

of Theorem 3.12.

Case III: 2V j +Bi < 1 and 2Vi +B j ≤ 1 where Vi and V j take on the values expressed in Case III of Theorem

3.12.

Proof:

The bounds in case I are derived by replacing the expressions for p i , p
i
, p j , and p

j
found in Lemma 3.10

in the inequalities p i −p
i
< Bi +B j and p j −p

j
< Bi +B j . Then we replace the values of Vi and V j for case

I found in Theorem 3.12 to characterize the corresponding subset of (Bi ,B j ). The bounds in case I I are

derived by replacing the expressions for p i and p
i

found in Lemma 3.10 into inequality p i −p
i
< Bi +B j

and by replacing the expression for p j found in Lemma 3.11 to the inequality p j ≤ 17. Then we replace

the values of Vi and V j for case I I found in Theorem 3.12 to characterize the corresponding subset of

(Bi ,B j ). Finally, for case I I I we replace the values of p i and p j found in Lemma 3.11 in the inequalities

p i ≤ 1 and p j ≤ 1. Then we replace the values of Vi and V j found in Theorem 3.12 to characterize the

corresponding subset of (Bi ,B j ). ■

The partition defined by Corollary 4 can be seen in Figure 5 and the firms’ corresponding expected

payoffs in Figures 7, 8, and 9.

With this final result we know exactly what the equilibria are when partially “locked-in" consumers

are faced with any pair of switching costs. In the next section we shall discuss the nature of these equi-

libria and explain the economic intuition behind them. To close this section we show that there is no

equilibrium with p i −p
i
> Bi +B j such the firms strategies have a connected support.8

Theorem 3.14. There does not exist a Nash equilibrium in which

p i −p
i
> Bi +B j

with a connected support.

7Here we impose the condition that that the maximum price must be less than 1.
8Note that Shilony’s proof of uniqueness for the equilibria derived in [15] does not consider the possibility of strategies without

connected support.

12



Idea of Proof:

To prove this result we must consider two separate cases,

a) p j −p
j
< 2(Bi +B j )

b) p j −p
j
≥ 2(Bi +B j )

and as with the other Lemmas in this section we must consider the properties that the firms’ strategies

must satisfy. Specifically for case a), we consider an interval of feasible strategies and find that we get two

incompatible expressions for a firm’s mixed strategy. This leads to a contradiction.

A similar analysis applies to case b) where we consider a large price spread for j ’s strategy. This

large price spread allows us to deduce that i ’s price spread must be smaller than 2(Bi +B j ), in which case

we fall under case a)’s assumptions, which we already proved to be false, giving us a contradiction. See

6.9 in Appendix for details. ■

4 Discussion of Equilibria

In the previous section we characterized the equilibria that can arise for all possible levels of (Bi ,B j ).

For the case in which one firms inherits the entire market we have that the dominant firm charges the

switching cost that his consumers face, while the rivaling firm is left out of the market. When both firms

inherit half of the market the results are very sensitive to the size of the switching costs. If both firms have

relatively high switching costs (Bi ,B j ≥ 1
2 , characterized in Theorem 3.2) there is a pure strategy equilib-

rium where both firms charge the monopoly price and continue to split the market. This occurs because

the firms do not fear the loss of their client base, thus giving them the liberty to charge the consumers’

reserve price to maximize their profits. This result is in line with the typical assumption made in many

switching cost models, in which this cost is so high that consumers never switch, eliminating any form of

competition.

When one of the firms’ switching cost is relatively low there is no pure strategy equilibrium, since

the the firms can either charge high prices to “milk” their own consumers or charge a low price to “poach”

their rivals customer base. This tradeoff forces us to find mixed strategy equilibria which can basically

take two forms. What we call single sided poaching corresponds to equilibria where only one firm is able

to capture the entire market with positive probability. In this case only that firm puts positive probabil-

ity on low prices while the other concentrates in milking its inherited customer base. The non poaching

firm may post prices below the monopoly price, but the purpose is to protect itself from losing market

share, and does not intend to expand it. An interesting outcome of this equilibrium is that the payoff

of the poaching firm is independent of Bi and B j , and equal to the payoff received when it charges the

13



monopoly price. The payoff received by the firm that cannot poach consumers depends on the value of

his own switching cost and is lower than the monopoly payoff. The firms’ expected payoff for the result-

ing equilibria can be seen in Figure 6.

We denote by double sided poaching the case in which both firms are able to capture the entire

market with positive probability. For these equilibria the firms’ resulting strategies consist of two inter-

vals (which may or may not be connected). One of these intervals (high prices) corresponds to price levels

that firms use to “milk” their customer base and the other (low prices) corresponds to price levels where

firms try to capture the entire market. In the characterization of the double sided poaching equilibria we

must consider three different types of equilibria, which depend strongly on the range of the support of

their strategies. The firms’ expected payoff for these three types of equilibria can be seen in Figures 7, 8,

and 9.

With this, we have characterized equilibria for any values of (Bi ,B j ) ∈ [0,1]2, these different result-

ing equilibria can be seen in Figure 5. It is important to mention that for some of the values of (Bi ,B j )

there is more than one equilibrium. We do not find any reason why one equilibrium should be selected

over another and the correct choice of a refinement will depend on the concrete application being con-

sidered.

5 Conclusions

In this paper we study the effects that asymmetric switching costs can have on firms’ strategies and pay-

offs. We introduce a simple model, where two identical firms have inherited a fraction of the market.

Consumers who are inherited by firm i face a cost of switching to firm j that is, in general, different from

the cost of switching of a consumer inherited by firm j . In our model, these switching costs are paid out

to the firm that the consumer leaves, and are not deadweight lost (as in, for example, Shilony [15]).

For any combination of switching costs we characterize at least one resulting equilibrium. In many

cases multiple equilibria may exist. In the case of high switching costs, firms act as a monopoly over their

customer base, eliminating any benefits from price competition. This is the case assumed in most of the

switching cost literature, which considers exogenously high switching costs that eliminate any possibility

for consumers to change their decisions. When we move to analyze the case of smaller switching costs,

the firms market power dissipates and at least one of the firms’ payoff is reduced. Pure strategy equilibria

do not exist, since firms confront a stark tradeoff between charging a high price to their own customers

(which are, to a certain degree, locked in), or pricing aggressively to try to capture their rival’s market

share. These results extend the analysis documented in Shilony [15] to the case of asymmetric switching

costs that must be paid out to the firm from which the consumer switches.

The main contribution of this paper is the fact that we consider asymmetric switching costs be-
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tween firms, and find that small differences in these switching costs may completely change the nature

of the equilibrium. We consider this to be an essential stage of a full model where switching costs are

strategically chosen in a previous stage of the game. The ultimate goal of such a model is to understand

the implications that endogenously chosen switching costs may have on the degree of competition be-

tween two identical firms. The equilibriums characterized in this paper will be the resulting equilibrium

for the final period of such a multi-period model, allowing for a complete characterization of subgame

perfect equilibria. The open question is then posed: if we consider completely rational consumers that

are forward looking and internalize all of the available information, does the possibility of giving gifts

(which later on become switching costs) affect competition? This issue will be addressed in future work

that depends on the results found on this paper.
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6 Appendix

6.1 Proof of Theorem 3.2 :

We will show that these prices

p∗
2i = p∗

2 j = 1

are an equilibrium. With these price levels we have π2i =π2 j = 1
2 .

If firm i chooses a lower price to capture the entire market it receives the following payoff,

π′
2i = 1−B j −ε≤ 1

2

since B j ≥ 1
2 . Therefore it does not have incentives to lower its price. ■

6.2 Proof of Proposition 3.4 :

Without loss of generality, we assume that Bi = min{Bi ,B j } < 1
2 , B j = max{Bi ,B j } > 0, and (p∗

2i , p∗
2 j ) a

Nash equilibrium in pure strategies. We analyze 6 different cases and find a profitable deviation in each

one,

(i) 0 < p∗
2i < p∗

2 j −B j (in case that p∗
2 j −B j > 0): we have that π2i = p∗

2i and in that case firm i has

incentives to raise his price in ε so that he continues to have the entire market and raises his payoff.

(ii) max{0, p∗
2 j −B j } ≤ p∗

2i < mi n{1, p∗
2 j +Bi }: we have that πi = p∗

2i
2 , in this case firm i has incentives to

raise his price in ε so that the he still retains his market share and raises his payoff.

(iii) 0 = p∗
2i = p∗

2 j +Bi : we have that both firms receive a payoff of zero. If j raises his price in ε so that he

maintains his market share, he will receive a positive payoff.

(iv) 0 < p∗
2i = p∗

2 j +Bi ≤ 1 : we have that the payoff for firm j is π2 j =
p∗

2 j

2 and in this case he has incen-

tives to reduce his price in ε to capture all of i ’s customers and have a payoff of π2 j = p∗
2 j − ε. For ε

sufficiently small, this means a higher payoff for j .

(v) p∗
2 j +Bi < p∗

2i ≤ 1: we have that π2 j = p∗
2 j , in this case firm j has incentives to raise his price in ε so

that he still sells to the entire market but at a higher price.

(vi) p∗
2i = p∗

2 j = 1: here we have that j ’s payoff is π2 = 1
2 and in that case he has incentives to lower his

price to p∗
2 j = 1−Bi−ε, and that way poach all of i consumers and receive a payoff ofπ2 j = 1−Bi−ε>

1
2 (for ε sufficiently small since Bi < 1

2 ).

■
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6.3 Proof of Lemma 3.5 :

Proof:

Since min{Bi ,B j } < 1
2 we have a mixed strategy equilibrium with a maximum and minimum price for

firm i i (p i , p
i
). We shall separate the proof in two cases: Bi 6= 0 and Bi = 0. Let us first analyze Bi 6= 0.

Looking at the firms utility function we know that in the worst case scenario, firm i will have a payoff of
Bi
2 > 0 9. If p

i
= 0, it’s expected payoff in the second period is,

E
(
πi (0, p j )

)
=

∫ 0+B j

0−Bi

1

2
0 dF j (x)+

∫ 1

0+B j

0 dF j (x)

= 0

in other words, Vi = 0∀p ∈ sop(dFi ). Which is a contradiction since we just noted that Vi > 0.

Now we analyze the case when Bi = 0. Given the hypothesis, we know that B j > 0. Again we assume

that p
i
= 0 and prove that this leads to a contradiction. If p

i
= 0 then Vi = 0 since every strategy price in

the support has the same expected payoff. Suppose that firm i fixes a price ε> 0, then his expected payoff

is,

E
(
πi (ε, p j )

)
=

∫ ε

0

1

2
0+

∫ ε+B j

ε

1

2
ε dF j (x)+

∫ 1

ε+B j

ε dF j (x)

= −1

2
(F j (ε+B j )+F j (ε))+ε

This last expression has two possible values. We have that in one case,

F j (ε+B j )+F j (ε) < 2

in which case we have that − 1
2 (F j (ε+B j )+F j (ε))+ ε > 0, which is a contradiction since if p

i
= 0, then

Vi = 0. In the other case we have,

F j (ε+B j )+F j (ε) = 2

which implies that F j (ε) = 1∀ε> 0. Since F j is a cumulative distribution, we know that F j is continuous

from the right. Taking limit for when ε −→ 0+ we have that F j (0) = 1, this means that there is only one

feasible price, sop(dFi ) = {0}, and therefore we are in presence of a pure strategy equilibrium. This is a

contradiction with Proposition 3.2. −→←−
9This occurs when firm i loses his market share, and consumers must return the bond to purchase from j .
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6.4 Proof of Lemma 3.6 part I:

Proof:

In this part we analyze the case when B j > 0. Let us suppose that Fi is not continuous in p
i
, in other

words Fi (p
i
) = a > 0 (obviously Fi (p) = 0∀p < p

i
) and assume that firm j imposes a price p j = p

i
10.

Therefore firm i ’s expected payoff takes the following form,

E
(
π j (p

i
, pi )

)
=

∫ 1

0
π j (p

i
, x) dFi (x)

=
∫ p

i
+Bi

p
i

1

2
p

i
dFi (x)+

∫ 1

p
i
+Bi

p
i

dFi (x)

= 1

2
p

i
Fi (p

i
+Bi )− 1

2
p

i
Fi (p

i
)︸ ︷︷ ︸

=a

+p
i

Fi (1)︸ ︷︷ ︸
=1

−p
i
Fi (p

i
+Bi )

= p
i
− 1

2
p

i
Fi (p

i
+Bi )− 1

2
ap

i

This last expression must be equal to the right hand side of 3.1 when we make p converge to p
i

from the right. Since Fi is a cumulative distribution function and therefore continuous from the right, 11

lim
p→p+

i

Fi (p −B j )
1

2
(B j −p)−Fi (p +Bi )

1

2
p +p = p

i
− 1

2
p

i
Fi (p

i
+Bi )

This implies that 1
2 ap

i
= 0 and since we know from Lemma 3.5 that p

i
> 0, we have a contradic-

tion. ■

6.5 Proof of Theorem 3.8 :

The methodology consists in finding the firms strategies via equation 3.2 and then imposing necessary

conditions upon the maximum and minimum prices so that we are able to find the firms expected payoff.

In this case, thanks to hypothesis (I ) and (I I ), equation 3.2 takes on a particular form for each firm. The

firms expected payoff satisfy the following equations,

Fi (p −B j )︸ ︷︷ ︸
=0, since p−B j <p

i

(
1

2
(B j −p))−Fi (p +Bi )

1

2
p +p = V j

−Fi (p +Bi )
1

2
p +p = V j (6.1)

10It is possible that p
i
∉ sop(dF j ), but this only implies that equation 3.2 does not hold, which is not relevant for the Lemmas

proof.
11Note that since B j > 0 we have that Fi (p

i
−B j ) = 0.
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and

F j (p −Bi )(
1

2
(Bi −p))− F j (p +B j )︸ ︷︷ ︸

=1, since p+B j >p j

1

2
p +p = Vi

F j (p −Bi )(
1

2
(Bi −p))+ 1

2
p = Vi (6.2)

What simplifies the analysis is the fact that the term in equation 3.2 that contains B j disappears.

Let us analyze the firms strategies separately. First, for firm j , if we consider p∗ > p i −Bi we have that

Fi (p∗ +Bi ) = 1, therefore equation 6.1 turns into 1
2 p∗ = V j , which means that p∗ ∉ sop(dF j ), since V j

must be constant for every feasible p∗. Therefore, we have F j (p∗) ≡ K for all p∗ > p i −Bi .

Using the same argument for i , if we consider p ′ < p
j
+Bi , then we have that F j (p ′−Bi ) = 0 which

turns equation 6.2 into 1
2 p ′ =Vi . Again, this means that p ′ cannot be in sop(dFi ) because if so Vi would

no be constant. Therefore we have that Fi (p) ≡ K for all p ′ < p
j
+Bi .

Using Lemma 3.6 we have that F j and Fi are continuous in their respective minimum prices.

Therefore we have that p
i
= p

j
+Bi because since Fi (p) is constant for p < p

j
+Bi , the only possible

value for that constant is zero. Then p
i
< p

j
+Bi and there would be no chance for Fi to be continuous

in p
i
. Therefore we have,

Fi (p) = 0 ∀p < p
j
+Bi , and

p
i
= p

j
+Bi (6.3)

This last relationship is very intuitive. Since i cannot poach from j , it does not have any incentives

to put a low price. Therefore, the minimum price it uses in equilibrium is the one where j could possibly

begin to poach i ’s consumers.

Let us consider p∗ < p i −Bi so that Fi (p +Bi ) is not constant in equation 6.1 therefore,

−Fi (p∗+Bi )
1

2
p∗+p∗ = V j

Fi (p∗+Bi ) = 2

(
1− V j

p∗

)
∀p∗ ∈ [p

j
, p i −B j ]

which gives us,

Fi (p) = 2

(
1− V j

p −Bi

)
∀p ∈ [p

j
+Bi , p i ]
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If we consider p ′ > p
j
+Bi , using the same argument we can find an expression for F j from 6.2,

F j (p) =
(
1− 2Vi −Bi

p

)
∀p ∈ [p

j
, p i −Bi ].

Thus we have the following expressions for F j and Fi ,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi(

1− 2Vi−Bi
p i−Bi

)
p i −Bi ≤ p < p j

1 p ≥ p j

and

Fi (p) =


0 p < p

i

2
(
1− V j

p−Bi

)
p

j
+Bi ≤ p < p i

1 p ≥ p i

Using Lemma 3.6 we can find relations between p
i
, p

j
and V j ,Vi . In fact,

lim
p→p+

i

Fi (p) = 2

(
1− V j

p
i
−Bi

)
= 0

=⇒ p
i

= V j +Bi

and

lim
p→p+

j

F j (p) =
1− 2Vi −Bi

p
j

= 0

=⇒ p
j

= 2Vi −Bi (6.4)

With these relationships and equation 6.3, we can write,

V j +Bi = 2Vi (6.5)

Now let us see the conditions that must be imposed on the minimum and maximum prices. First,

consider p∗ ≥ p i , we must have a reduction in expected payoff for firm i in equation 6.2. Given the

expression we have for F j , we know that F j (p∗−Bi ) ≡ K , therefore we have

1

2
K (Bi −p∗)+ 1

2
p∗ ≤Vi .
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Since the left hand side of the above equation is increasing in p∗, therefore get p i = 1. In a similar

manner, if we consider p ′ > p j , we must have

−1

2
p ′+p ′ = 1

2
p ′ ≤V j

which means that p j = 1 since the left hand side is increasing in p ′. Now, evaluating 6.1 in p j = 1, we get

an expression for V j ,

1

2
p j =

1

2
=V j

and using these values, combined with equation 6.5 we have that Vi = Bi
2 + 1

4 . And finally, from 6.4 and

6.4 we get expressions for p
i

and p
j
. ■

6.6 Proof of Lemma 3.10 :

Figure 1 shows the partition of sop(dFi ) and sop(dF j ) defined by the hypothesis. Thanks to (I ) we know

that [p i −Bi , p
i
+B j ] is a non-empty interval that could possibly be included in sop(dF j ).

From equation 3.2 we get,

Fi (p −B j )(
1

2
(B j −p))−Fi (p +Bi )

1

2
p +p =V j ∀p ∈ sop(dF j ) (6.6)

F j (p −Bi )(
1

2
(Bi −p))−F j (p +B j )

1

2
p +p =Vi ∀p ∈ sop(dFi ) (6.7)

If [p i −Bi , p
i
+B j ]∩ sop(dF j ) 6= ;, then considering p̂ ∈ [p i −Bi , p

i
+B j ]∩ sop(dF j ) we have (by

equation 6.6),

Fi (p̂ −B j )︸ ︷︷ ︸
<p

i

(
1

2
(B j − p̂))−Fi (p̂ +Bi )︸ ︷︷ ︸

>p i

1

2
p̂ + p̂ = V j

⇐⇒
0(

1

2
(B j − p̂))− 1

2
1p̂ + p̂ = V j

⇐⇒
1

2
p̂ = V j .

But this would mean that we do not have a constant value for V j , which is a contradiction.
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Therefore we have that [p i − Bi , p
i
+ B j ] ∩ sop(dF j ) = ;, which means that F j is constant on

[p i −Bi , p
i
+B j ].

The methodology consists of considering p in different sub intervals of sop(dF j ) which simplifies

expression 6.6 and allows us to solve F j . For p∗ ∈ [p
j
+Bi , p i ] we have F j (p∗ +B j ) = 1 since p

j
+Bi >

p j −B j , and equation 6.6 becomes,

F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ = Vi

⇐⇒ F j (p∗−Bi ) = 2Vi −p∗

Bi −p∗ ∀p∗ ∈ [p
j
+Bi , p i ]

which means that,

F j (p) =
(
1− 2Vi −Bi

p

)
∀p ∈ [p

j
, p i −Bi ]

Similarly, for we consider p∗ ∈ [p
i
+B j , p j ] we have that Fi (p∗ +Bi ) = 1 and are able to solve Fi from

equation 6.7,

Fi (p) =
(
1− 2V j −B j

p

)
∀p ∈ [p

i
, p j −B j ]

Now if we consider p ′ ∈ [p
i
, p j −B j ] we have that F j (p ′−Bi ) = 0, since p j −B j < p

j
+Bi . Therefore

equation 6.7 takes on the following form,

−F j (p ′+B j )
1

2
p ′+p ′ = Vi

⇐⇒ F j (p ′+B j ) = 2

(
1− Vi

p ′

)
∀p ′ ∈ [p

i
, p j −B j ]

which implies that,

F j (p) = 2

(
1− Vi

p −B j

)
∀p ∈ [p

i
+B j , p j ]

Using the same argument for Fi , if we consider p ′ ∈ [p
j
, p i −Bi ] we have that Fi (p ′−B j ) = 0 and therefore

from equation 6.7 we get,

Fi (p) = 2

(
1− V j

p −Bi

)
∀p ∈ [p

j
+Bi , p i ].

With this we have completely characterized F j ’s functional form .From before we know that F j (p) =
K for p ∈ [p i −Bi , p

i
+B j ], and since F j must be continuous from the right, we have that F j (p) takes on

the value of F j (p i −Bi ) for all p ∈ [p i −Bi , p
i
+B j ].
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F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi(

1− 2Vi−Bi
p i−Bi

)
p i −Bi ≤ p < p

i
+B j

2
(
1− Vi

p−B j

)
p

i
+B j ≤ p < p j

1 p ≥ p j

(6.8)

Fi ’s partially characterized from Lemma 3.6 we know that it is continuous at p
i
,

Fi (p
i
) =

(
1− 2V j −B j

p
i

)
= 0 =⇒ p

i
= 2V j −B j

To complete the proof we must find the value of p i and the relationship that Vi and V j must satisfy

under these conditions. Let us consider p∗ ≥ p i , we must have the following inequality, 12

F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ ≤Vi .

For consider p∗ sufficiently close to p i such that p∗−Bi ∈ [p i −Bi , p
i
+B j ], we have that F j (p∗−Bi ) = K .

Thus the above inequality can be written as,

K (
1

2
(Bi −p∗))+ 1

2
p∗ ≤ Vi

⇐⇒ 1

2
(1−K )p∗+ 1

2
K Bi ≤ Vi

and since K < 1 13 we have that the right hand side of the above inequality is increasing in p∗. We know

that for p = p i −Bi equation 6.7 holds, therefore if we raise i ’s price we cannot have reduction in the firm’s

expected payoff. Which is a contradiction, therefore p i = 1.

Consider p ′ ≤ p
i
, we must have the following inequality, 14

−F j (p ′+Bi )
1

2
p ′+p ′ ≤Vi

if we consider p ′ sufficiently close to p
i

so that p ′+Bi ∈ [p i −Bi , p
i
+B j ], we have that F j (p +Bi ) = K .

Thus the above inequality can be written as,

−K
1

2
p ′+p ′ ≤ Vi

⇐⇒ (1− K

2
)p ′ ≤ Vi

12Obviously F j (p∗+B j ) = 1.
13Because pi −Bi < pi .
14Obviously F j (p ′−Bi ) = 0.
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Since the right hand side is increasing in p ′, we shall consider in the most restrictive case p ′ = p
i
=

2V j −B j . Also, we can write K =
(
1− 2Vi−Bi

1−Bi

)
from 6.8 and replacing the value of p i ,

(
1− 1−2Vi

2(1−Bi )

)
(2V j −B j ) ≤ Vi

⇐⇒ 4Vi V j −2Vi B j +2Vi Bi +2V j −2Vi −B j −4V j Bi +2Bi B j ≤ 0 (6.9)

Another condition that must be imposed over F j is that it must be an increasing function. The

only possible points that may infringe this condition are the points where F j changes its functional form,

p
i
+B j and p i . If p = p

i
+B j ,

lim
p→(p

i
+B j )−

F j (p) ≤ F j (p
i
+B j )

⇐⇒ 1− 2Vi −Bi

1−Bi
≤ 2

(
1− Vi

p
i
+B j −B j

)
⇐⇒ −4Vi V j +2Vi B j −2Vi Bi −2V j +2Vi +B j +4V j Bi −2Bi B j ≤ 0 (6.10)

Thus considering inequalities 6.9 and 6.10 we have,

4Vi V j −2Vi B j +2Vi Bi +2V j −2Vi −B j −4V j Bi +2Bi B j = 0

which completes the proof of the Lemma. ■

6.7 Proof of Lemma 3.11 :

In the proof of this Lemma we shall use similar arguments to those used in the proof of Lemma 3.10.

From Figure 2 we can see the partition of sop(dF j ) and sop(dFi ) resulting from the Lemmas hypothesis.

Note that the partition of sop(dF j ) does not have an interval in which F j is constant (like in Lemma 3.10)

due to hypothesis (I ). For these hypothesis equations 6.6 and 6.7 still represent the equations that the

firms expected payoff must satisfy.

As in the proof of Lemma 3.10, we consider different intervals of sop(dFi ) so that equation 6.7

takes on a simpler form and we can solve F j . Let us consider p∗ ∈ [p
j
+Bi , p i ], thanks to hypothesis (I I )

we have that p
j
+Bi ≥ p j −B j which implies that F j (p∗+B j ) = 1, thus equation 6.7 becomes,

F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ = Vi

F j (p∗−Bi ) = 2Vi −p∗

Bi −p∗ ∀p∗ ∈ [p
j
+Bi , p i ]
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from which we can find the following expression from F j ,

F j (p) =
(
1− 2Vi −Bi

p

)
∀p ∈ [p

j
, p i −Bi ]

In the same way, we can find an expression for Fi considering p∗ ∈ [p
i
+B j , p i ] and using equation

6.6,

Fi (p) =
(
1− 2V j −B j

p

)
∀p ∈ [p

i
, p j −B j ].

If p ′ ∈ [p
i
, p j −B j ] then F j (p ′−Bi ) = 0 because p j −B j ≤ p

j
+Bi . Therefore equation 6.7 becomes,

−F j (p ′+B j )
1

2
p ′+p ′ = Vi

F j (p ′+B j ) = 2

(
1− Vi

p ′

)
∀p ′ ∈ [p

i
, p j −B j ]

therefore

F j (p) = 2

(
1− Vi

p −B j

)
∀p ∈ [p

i
+B j , p j ]

Repeating the same process with equation 6.6 we get,

Fi (p) = 2

(
1− V j

p −Bi

)
∀p ∈ [p

j
+Bi , p i ]

With this we have completely characterized F j ’s functional form,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi

2
(
1− Vi

p−B j

)
p

i
+B j ≤ p < p j

1 p ≥ p j

(6.11)

From Lemma 3.6 we know that Fi is continuous at p
i
. Therefore,

Fi (p
i
) =

(
1− 2V j −B j

p
i

)
= 0 =⇒ p

i
= 2V j −B j

By having an expression for p
i
, thanks to hypothesis (I ), we know that p i = 2V j +Bi . As before, to

find a relationships between Vi and V j we must impose the some necessary conditions over p
i

and p i .

For p∗ ≥ p i we must have, 15

15Obviously F j (p∗+B j ) = 1.
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F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ ≤Vi

For p∗ sufficiently close to p i we have an expression for F j (p∗−Bi ), which means that the above inequal-

ity reduces,

2

(
1− Vi

p∗−Bi −B j

)
(Bi −p∗)+p∗

︸ ︷︷ ︸
L(p∗)

≤ 2Vi (6.12)

Notice that L(p) is decreasing in p,

∂L

∂p
= 2Vi

(p −Bi −B j )2 (Bi −p)−2

(
1− Vi

p −Bi −B j

)
+1

= −2Vi B j

(p −Bi −B j )2 −1

< 0.

Therefore, the most restrictive case in inequality 6.12 is p∗ = p i which can be written as,

L(p i ) = 2

(
1− Vi

2V j −B j

)
(Bi −Bi −2V j )+2V j +Bi ≤ 2Vi

⇐⇒ −4V 2
j +2V j B j +2Vi B j +2V j Bi −Bi B j ≤ 0 (6.13)

Now for p ′ ≤ p
i

we must have,

−F j (p ′+B j )
1

2
p ′+p ′ ≤Vi

and considering p ′ sufficiently close to p
i

we have an expression for F j (p ′+B j ). Thus the above inequality

takes on the following form,

(
1

2
+ 2Vi −Bi

2(p ′+B j )

)
︸ ︷︷ ︸

L̂(p ′)

p ′ ≤Vi (6.14)

Notices that L̂(p) is increasing increasing in p ,
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∂L̂

∂p
=

(
1

2
+ 2Vi −Bi

2(p +B j )

)
−p

2Vi −Bi

2(p +B j )2

= 1

2
+ (2Vi −Bi )(p +B j )−2Vi p +Bi p

2(p +B j )2

= 1

2
+

p
j
B j

2(p +B j )2

> 0

Therefore the most restrictive case for inequality 6.14 is p
i
= 2V j −B j which can be written as,

L̂(p
i
) =

(
1

2
+ 2Vi −Bi

2(2V j −B j +B j )

)
(2V j −B j ) ≤ Vi

⇐⇒ 4V 2
j −2V j B j −2Vi B j −2V j Bi +Bi B j ≤ 0 (6.15)

Hence, combining conditions 6.13 and 6.15 we get

4V 2
j −2V j B j −2Vi B j −2V j Bi +Bi B j = 0

which completes the proof. ■

6.8 Proof of Theorem 3.12

We separate the different cases depending on the hypothesis considered,

Case I: p i −p
i
< Bi +B j and p j −p

j
< Bi +B j .

In this case both firms’ strategies are characterized by Lemma 3.10, therefore we have the fol-

lowing system of equations,

4Vi V j −2Vi B j +2Vi Bi +2V j −2Vi −B j −4V j Bi +2Bi B j = 0

4V j Vi −2V j Bi +2V j B j +2Vi −2V j −Bi −4Vi B j +2B j Bi = 0

By solving this system we get the expressions for Vi and V j for this case.

Case II: p i −p
i
< Bi +B j and p j −p

j
= Bi +B j .

In this case, firm j ’s strategy is characterized by Lemma 3.10 and firm i ’s strategy is character-

ized by Lemma 3.11, therefore we have the following system of equations, 16

4Vi V j −2Vi B j +2Vi Bi +2V j −2Vi −B j −4V j Bi +2Bi B j = 0

16The case when we have p j −p
j
< Bi +B j and pi −p

i
= Bi +B j , we must simply interchange i with j in the system of equations.
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4V 2
i −2Vi Bi −2V j Bi −2Vi B j +B j Bi = 0

By solving this system we get the expressions for Vi and V j for this case.

Case III: p i −p
i
= Bi +B j and p j −p

j
= Bi +B j .

In this case both firms’ strategies are characterized by Lemma 3.11, therefore we have the fol-

lowing system of equations,

4V 2
j −2V j B j −2Vi B j −2V j Bi +Bi B j = 0

4V 2
i −2Vi Bi −2V j Bi −2Vi B j +B j Bi = 0

By solving this system we get the expressions for Vi and V j for this case.

■

6.9 Proof of Theorem 3.14 :

We consider two different cases,

a) p j −p
j
< 2(Bi +B j )

b) p j −p
j
≥ 2(Bi +B j )

First, let us analyze case a). Given the hypothesis of the theorem we can see the partition of the

interval [p
j
, p j ] in Figure 3 and as before we will derive firm j ’s strategy using equation 3.2,

F j (p −Bi )(
1

2
(Bi −p))−F j (p +B j )

1

2
p +p =Vi ∀p ∈ sop(dFi )

For p ′ > p j −B j , we have that F j (p +B j ) = 1 therefore the above equation becomes,

F j (p ′−Bi )(
1

2
(Bi −p ′))− 1

2
p ′+p ′ =Vi ∀p ∈ [p j −B j , p i ]

where we can solve for the following expression of F j
17

F j (p) =
(
1− 2Vi −Bi

p

)
∀p ∈ [p j −Bi −B j , p i −Bi ]. (6.16)

For p∗ < p
j
+Bi we have that F j (p∗−Bi ) = 0 and therefore from equation 3.2 we get

−F j (p +B j )
1

2
p +p =Vi

17It is possible that p j −Bi −B j < p
j

in which case the expression for F j would be for a smaller interval.
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which implies, 18

F j (p) = 2

(
1− Vi

p −B j

)
∀p ∈ [p

i
+B j , p

j
+Bi +B j ] (6.17)

Since p j −p
j
< 2(Bi +B j ), we have p j −Bi −B j < p

j
+Bi +B j . Therefore, we have two completely

different expressions for F j in an interval where the domains in 6.16 and 6.17 intersect which is a contra-

diction. 19

Now we analyze case b). Given the hypothesis of the theorem, the partition of the interval [p
j
, p j ]

can be seen in Figure 3, but with a larger distance between p
j

and p j .

For p ′ > Bi , and since cumulative distribution functions are increasing, from 3.2 we have,

F j (p ′−Bi ) (
1

2
(Bi −p ′))︸ ︷︷ ︸

<0,since p ′>Bi

−F j (p ′+B j )
1

2
p ′+p ′ = Vi

⇐⇒ F j (p ′+B j )(
1

2
(Bi −p ′))−F j (p ′+B j )

1

2
p ′+p ′ ≤ Vi

rewriting the last inequality,

F j (p ′+B j )(
Bi

2
−p ′)+p ′ ≤Vi (6.18)

If we consider p ′ so that p ′+B j ∈ [p j −Bi −B j , p i −Bi ], this implies that p ′+B j > Bi +B j because

p j −p
j

≥ 2(Bi +B j )

p j −Bi −B j ≥ p
j︸︷︷︸

>0

+Bi +B j

p j −Bi −B j > Bi +B j

Therefore, we can write equation 6.18 replacing the expression of F j (p ′+B j ) from 6.16 giving us

the following inequality,

(
1− 2Vi −Bi

p ′+B j

)(
Bi

2
−p ′

)
+p ′ ≤ Vi

⇐⇒ p ′ ≤ (Bi +B j )

18Note that these arguments can also be used to find expressions for F j (p) when p ∈ [p
i
+B j , p

i
+Bi +B j ]

⋃
[p j −Bi −B j , pi −Bi ]

for case b.
19Remember that hypothesis I assures us that p

i
+B j < pi −Bi .
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The most restrictive case for p ′ we have that

p i −Bi −B j ≤ Bi +B j

or equivalently,

p i − p
i︸︷︷︸

>0

< 2(Bi +B j ).

which we know from case a) reversing the roles of i and j that cannot be an equilibrium. ■

6.10 Proof of Lemma 3.6 part II :

Now we prove that F j is continuous in p
j

when Bi = 0 and firms are in a single sided poaching equi-

librium, 20 that means that p i − p
j
> Bi and p j − p

i
< B j .21. Let us assume that F j is discontinuous in

p
j
,

F j (p
j
) = a ≥ 0.

We have the following expressions for the firms expected payoffs,

−Fi (p)
1

2
p +p =V j

−F j (p)
1

2
p + 1

2
p =Vi

As in Theorem 3.8, if we consider p ′ > p i then from the first equality we would have 1
2 p =V j , which

cannot be since V j is constant for all p ∈ sop(dF j ), hence p i ≥ p j . Now if we consider p ′ < p
j
, then from

the second equality we have that 1
2 p ′ =Vi which cannot be since Vi is constant for all p ∈ sop(dFi ), hence

p
j
≤ p

i
.

Since B j > 0, we know that Fi is continuous in p
i

and that that Fi (p) is constant for values of

p < p
j
, therefore for Fi to be continuous in p

i
we must have that constant equal to zero (i.e p

i
≤ p

j
),

hence

p
i
= p

j
.

As before, we can find the functional form of Fi and F j using the expected payoff equations22,

20Note that we have interchanged the roles of i and j for the proof of this part of the Lemma so the reader may follow the proof

more easily since the arguments are quite similar to those used in the proof of Theorem 3.8.
21For these hypothesis do not have to analyze the case in which B j = 0.
22Note that we do not need continuity in Fi to find these expressions. See proof of Theorem 3.8 for details
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F j (p) =



0 p < p
j(

1− 2Vi
p

)
p

j
≤ p < p i(

1− 2Vi
p i

)
p i ≤ p < p j

1 p ≥ p j

and

Fi (p) =


0 p < p

i

2
(
1− V j

p

)
p

j
≤ p < p i

1 p ≥ p i

Giving an expression for F j , we can derive the following equality for F j (p
j
),

F j (p
j
) = a

⇐⇒
1− 2Vi

p
j

= a

⇐⇒
p

j
= 2Vi

1−a

and using continuity of Fi in p
i
, we have that p

i
= V j . Note that if we consider p ′ < p

i
must have a

reduction firm i expected payoff. Therefore, from 3.2 we have,

−F j (p ′)
1

2
p ′︸ ︷︷ ︸

=0, since p
i
=p

j

+1

2
p ′ ≤ Vi

⇐⇒ 1

2
p ′ ≤ Vi

since we have that the left hand side is increasing in p ′, we must make the bound hold in the most re-

strictive case, p ′ = p
i
= p

j
therefore we have,

2Vi

1−a
≤ 2Vi

⇐⇒
a ≤ 0

therefore a = 0, completing this part of the proof. ■
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6.11 Proof of Lemma 3.6 part III:

Now we prove that Fi is continuous in p
i

when B j = 0 and firms are in a double sided poaching equilib-

rium. We only have two cases to analyze,

1. Double Poaching Equilibrium: Case II

2. Double Poaching Equilibrium: Case III

since the double poaching equilibrium described by case I does not occur when one bond is equal to

zero (see Figure 5).

We will characterize the equilibrium considering a possible discontinuity in p
i

(i.e. Fi (p
i
) = a > 0)

and then prove that Vi is decreasing in a, which will allow us to argue that i does not have incentives to

have a discontinuity in his strategy proving this part of the Lemma.

Double Poaching Equilibrium: Case II. In this case, we have that p i −p
i
< Bi and p j −p

j
= Bi . Since

Bi > 0, from Lemma 3.11 we have the characterizations of i ’s strategy and the following equation for the

firms expected payoff,23

2V 2
i −Vi Bi −V j Bi = 0 (6.19)

Now we must derive a result similar to that of Lemma 3.10 for j , but without assuming continuity

of Fi in p
i
. As before, we can find F j ’s functional form using equation 3.2 in the same way we did for the

proof of Lemma 3.10 24. Thus the firms’ strategies take on the following form,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi(

1− 2Vi−Bi
p i−Bi

)
p i −Bi ≤ p < p

i

2
(
1− Vi

p

)
p

i
≤ p < p j

1 p ≥ p j

Fi (p) =



0 p < p
i(

1− 2V j

p

)
p

i
≤ p < p j

2
(
1− V j

p−Bi

)
p

j
+Bi ≤ p < p i

1 p ≥ p i

23Note that in the proof of Lemma 3.11 we do not need continuity of F j in p
j
.

24In deriving the F j ’s functional form it is not necessary to have B j > 0.
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With an expression for Fi we can derive the following equality for Fi (p
i
),

Fi (p
i
) = a

⇐⇒ 1− 2V j

p
i

= a

⇐⇒ p
i

= 2V j

1−a

If we consider p∗ ≥ p i we have a reduction in i ’s expected payoff,

F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ ≤Vi .

If we consider p∗ sufficiently close to p i such that p∗−Bi ∈ [p i −Bi , p
i
], we have that F j (p∗−Bi ) = K .

Thus the above inequality can be written as,

K (
1

2
(Bi −p∗))+ 1

2
p∗ ≤ Vi

⇐⇒ 1

2
(1−K )p∗+ 1

2
K Bi ≤ Vi

which cannot be because the left hand side is an increasing function in p∗, therefore p i = 1. Now if we

consider p ′ < p
i

we have the following inequality,

−F j (p ′)
1

2
p ′+p ′ ≤Vi

considering p ′ sufficiently close to p
i

so that p ′+Bi ∈ [p i −Bi , p
i
+B j ], we have that F j (p ′) = K and the

above inequality may be written as,

−K
1

2
p ′+p ′ ≤ Vi

⇐⇒ (1− c

2
)p ′ ≤ Vi

The right hand side of the above inequality is increasing in p ′ we shall consider the most restrictive case

p ′ = p
i
= 2V j

1−a and express K in terms of the expression F j ,

(
1− 1−2Vi

2(1−Bi )

)
2V j

1−a
≤ Vi

⇐⇒ 2Vi V j −2V j Bi +V j −Vi +Vi Bi +Vi a −Vi Bi a ≤ 0 (6.20)
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We must also impose that F j be an increasing function. This means that in p
i

we must have the

following inequality,

lim
p→(p

i
)−

F j (p) ≤ F j (p
i
)

⇐⇒ 1− 2Vi −Bi

1−Bi
≤ 2

(
1− Vi (1−a)

2V j

)
⇐⇒ −2Vi V j +2V j Bi −V j +Vi −Vi Bi −Vi a +Vi Bi a ≤ 0 (6.21)

combining inequalities 6.20 and 6.21 with equation 6.19, we have that Vi and V j must satisfy the following

system of equations,

2V 2
i −Vi Bi −V j Bi = 0

2Vi V j −2V j Bi +V j −Vi +Vi Bi +Vi a −Vi Bi a = 0

which give us,

Vi = 1

4

[
3Bi −1+

√
(1−Bi )(1+3Bi −4Bi a)

]
From this last expression of Vi it can be seen that i ’s expected payoff is decreasing in a. Therefore,

i does not have incentives to have a discontinuity in his strategy at p
i
, proving the Lemma for this case.

Double Poaching Equilibrium: Case III. In this case we have that p i −p
i
= Bi and p j −p

j
= Bi . Since

Bi > 0 from Lemma 3.11 we have the characterizations of i ’s strategy and, as in Case II, the firms expected

payoff satisfy equation 6.19.

Now we must derive a result similar to that of Lemma 3.11 for j , but without assuming continuity

of Fi in p
i
. As before, we can find F j ’s functional form equation 3.2 in the same way we did for the proof

of Lemma 3.10 25. Thus the firms’ strategies take on the following form,

F j (p) =



0 p < p
j(

1− 2Vi−Bi
p

)
p

j
≤ p < p i −Bi

2
(
1− Vi

p

)
p

i
≤ p < p j

1 p ≥ p j

25In deriving the F j ’s functional form it is not necessary to have B j > 0.
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Fi (p) =



0 p < p
i(

1− 2V j

p

)
p

i
≤ p < p j

2
(
1− V j

p−Bi

)
p

j
+Bi ≤ p < p i

1 p ≥ p i

With an expression for Fi , we can derive the following equality for Fi (p
i
),

Fi (p
i
) = a

⇐⇒ 1− 2V j

p
i

= a

⇐⇒ p
i

= 2V j

1−a

which also means that p i = Bi + 2V j

1−a

If we consider p∗ ≥ p i we have a reduction in i ’s expected payoff,

F j (p∗−Bi )(
1

2
(Bi −p∗))+ 1

2
p∗ ≤Vi .

Considering p∗ sufficiently close to p i we can replacing the expression for F j (p∗−Bi ),

2

(
1− Vi

p∗−Bi

)
(

1

2
(Bi −p∗))+ 1

2
p∗ ≤ Vi

⇐⇒ Bi − 1

2
p∗ ≤ 0

The left hand side of the above inequality is decreasing in p∗, therefore evaluating in the most restrictive

case (p ′ = p i = Bi + 2V j

1−a ) we have,

Bi −
2V j

1−a
≤ 0 (6.22)

If we consider p ′ < p
i
, again we have a reduction in i ’s expected payoff,

−F j (p ′)
1

2
p ′+p ′ ≤Vi

and if we consider p ′ sufficiently close to p
i

we can replace the expression for F j (p),

−1

2

(
1− 2Vi −Bi

p ′

)
p ′+p ′ ≤ Vi

⇐⇒ p ′−Bi ≤ 0
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The right hand side of the above inequality is increasing in p ′, therefore evaluating in the most restrictive

case p ′ = p
i
= 2V j

1−a we have,

2V j

1−a
−Bi ≤ 0 (6.23)

putting together inequalities 6.22 and 6.23 with equation 6.19, we have that Vi and V j must satisfy the

following system of equations,

2V 2
i −Vi Bi −V j Bi = 0

2V j

1−a
−Bi = 0

and solving this system of equations, we get the following value for Vi ,

Vi = 1

4

[
Bi +Bi

p
5−4a

]
From this last expression of Vi it can be seen that i ’s expected payoff is decreasing in a. Therefore, i does

not have incentives to have a discontinuity is his strategy at p
i
, completing the proof of the Lemma. ■
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Figure 1: Partition of dFi and dF j for Lemma 3.10

Figure 2: Partition of dFi and dF j for Lemma 3.11

Figure 3: Partition of dFi and dF j for Theorem 3.14
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Figure 4: Example of Firms Mixed Strategy

Figure 5: Subset of Space (Bi ,B j ) for Different Equilibria

Figure 6: Single Sided Poaching Equilibrium
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Figure 7: Double Sided Poaching Equilibrium - Case I

Figure 8: Double Sided Poaching Equilibrium - Case II

Figure 9: Double Sided Poaching Equilibrium - Case III
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