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Abstract

This paper studies revenue-maximizing auctions when buyers�outside options depend on their

private information and are endogenously chosen by the seller. We show that the revenue-maximizing

assignment of the object can depend crucially on the outside options that the seller can choose as

threats. Depending on the shape of outside options, sometimes an optimal mechanism allocates

the object in an ex-post e¢ cient way, and, other times, buyers obtain the object more often than is

e¢ cient. Keywords: Externalities, Optimal Auctions, Type-Dependent Outside Options: JEL D44,

C7, C72.
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In this note, we consider the problem of �nding an optimal selling mechanism when a buyer�s

payo¤ depends on the �nal allocation of the object, even if he does not win it, and the seller, as in

[4], optimally chooses how to threaten a buyer in the event of non-participation. In contrast to that

paper, in our setup, buyers�non-participation payo¤s depend on their private information. Jehiel,

Moldovanu and Stacchetti [5] are the �rst to allow for private information in the non-participation

payo¤s. They do so in a multi-dimensional setting, but, due to the complexity of the problem, they

describe optimal mechanisms out of a speci�c class.

Without putting any restrictions on the mechanisms, we show that the revenue-maximizing

assignment of the object (and not only the payments) depends heavily on what the seller can

do in case a buyer does not participate (the �threats,� in the language of [4]). There are cases

in which the seller can strictly increase both revenue and e¢ ciency by choosing outside options

appropriately. Practitioners seem to know this possibility, as is suggested by the design of the U.K.

spectrum auctions (see, for instance, [7]). In general, depending on the shape of outside payo¤s, it

is possible that the revenue-maximizing allocation involves under- or overselling compared with the

socially desirable level, or it can be even ex-post e¢ cient. Therefore, when non-participation payo¤s

are type-dependent and the seller can manipulate them through the choice of the mechanism, the

classical trade-o¤ between revenue maximization and e¢ ciency is sometimes not present, and, other

times, the optimal assignment involves ine¢ ciencies of a di¤erent nature: The monopolist oversells

instead of underselling. We illustrate these phenomena with purposely chosen simple examples.1

1The complete characterization with type-dependent outside options is quite challenging and beyond the scope

of this note. In the working-paper version of this paper ([2]), we examine a general setup, analyze and discuss the

intricacies of the problem, and identify cases in which the solution can be found explicitly. We employ that approach

in Examples 1 and 2 in this paper.
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In Example 1, we show that the seller, by changing the outside options that buyers face, changes

not only revenue, but also the way the good is allocated. This point is made by deriving the

revenue-maximizing assignment of the object for exogenously given outside options and by noticing

that it di¤ers across di¤erent ones. Then, we derive the optimal mechanism allowing the seller to

optimally choose threats, and we show that, at the optimum, there is overselling. This example is

simple because optimal threats are deterministic and can be derived independently of the allocation

the seller wants to implement. However, with type-dependent outside options this is not always

true: As Example 2 demonstrates, optimal threats can depend on the allocation that the seller

is considering, and can be random.2 In this example, it turns out that the optimal mechanism is

ex-post e¢ cient. This shows that, with type-dependent outside options, it is possible that the goal

of a revenue-maximizing seller is completely aligned with e¢ ciency.3

Our examples show that, with type-dependent outside payo¤s, the seller may extract more

rent by simultaneously raising the price and selling more often: the dream of any monopolist!

Intuitively, with type-dependent outside payo¤s, the seller can design outside options that hurt bad

types relatively more than good types. This allows her to charge a higher price without restricting

supply; good types pay due to their high valuation, and bad types pay because their outside options

2Other papers (see [1,11,15]) show that it is optimal for the seller to randomize between di¤erent allocations.

In those papers, randomization occurs at the optimal allocation and it relaxes the incentive constraints. In [14]

randomization again occurs at the optimal allocation, but there it relaxes the participation constraints. In our paper,

too, randomization relaxes the participation constraints, but it occurs �o¤-path,�at the optimal threats. This is also

true in [5] for reasons we explain later.
3Such an alignment appears also in revenue-maximizing auctions in which the number of bidders is endogenous

and participation is costly. In such cases (see, for instance, [16]), the seller �nds it optimal to raise no entry fees and

to set a reserve price at her valuation in order to encourage entry to intensify competition.
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are relatively worse.

Technically, with type-dependent outside options, the selection of the threat and the allocation

rule together determine the critical type, the type where the participation constraint binds. The

critical type is, therefore, endogenous (and not always equal to the �worst�type, as in [12] or in [4]

or equal to the type closest to the origin, as in [5]). With type-dependent outside options, the virtual

surplus of allocating the object to a buyer (actual surplus minus information rents) is modi�ed for

all types worse than the critical type: For all those types the information rents are reduced (or even

eliminated); how much they are reduced depends on the shape of non-participation payo¤s. Hence,

the �modi�ed virtual surplus� is weakly higher than the virtual surplus of an allocation (they

coincide for all types if the critical type is the worst type) and can be equal to, strictly greater

than or strictly less than the actual surplus of an allocation. Depending on this comparison, the

revenue-maximizing mechanism may be ex-post e¢ cient or may induce overselling or underselling.

Myerson [12] studies revenue-maximizing mechanisms of a single unit in an independent private-

value environment, where each buyer�s outside payo¤ is some �xed constant. This seminal contribu-

tion establishes that, at a revenue-maximizing auction, the seller gives the good to the buyer with

the highest virtual surplus whenever it is above the seller�s valuation. Because a buyer�s virtual

surplus is equal to his valuation minus information rents, optimal auctions usually sell less than

what is e¢ cient.

As mentioned earlier, Jehiel, Moldovanu and Stacchetti [4] are the �rst to consider the case in

which a buyer�s payo¤ depends on the �nal allocation, even if he does not win the object, and the

seller can use the design of the mechanism to a¤ect the buyers�participation constraints. In their

setup there is incomplete information about a buyer�s payo¤ from obtaining the object himself, but

5



there is complete information about his payo¤s when one of his opponents obtains the object (that

is, non-participation payo¤s are �at with respect to his type). In contrast to our work, they show

that, by choosing the appropriate outside options, the seller increases only revenue; the optimal

allocation of the good is never a¤ected. Also, optimal threats are independent of the allocation the

seller wants to implement and are deterministic,4 whereas both decisions can be interdependent in

our case, and optimal threats can be random. The reason behind these di¤erences is that, in their

paper, non-participation payo¤s are type-independent.

Even though overselling never occurs at an optimal mechanism when outside payo¤s are type-

independent, it may occur at speci�c classes of mechanisms, as shown in [3]. They examine second-

price auctions with reserve prices and present an example (Example 4.3) in which, at the optimum

out of this class, trade takes place more often than is ex-post e¢ cient. The reason is that the

reserve price in the second-price auction also plays the role of threats: The lower it is, the higher

is the chance that trade occurs, and buyers su¤er external e¤ects if some other buyer wins, which

makes buyers bid more aggressively. An optimal mechanism exploits the externalities with non-

participation threats, which enable the seller to extract payments from non-winners.

We noted in the beginning that Jehiel, Moldovanu and Stacchetti [5] are the �rst to allow

for incomplete information in the buyers�outside payo¤s, examining an optimal auction problem

4 In their setup, the optimal threat is always to give the object to the �worst� opponent. To take advantage of

that, it is enough for the seller to reduce the level of the participation payo¤s by a constant amount by using an

instrument such as an entry fee. Then, the critical type is always the type with the lowest participation payo¤s -

the �worst� type - which implies that the virtual surplus of an allocation is never �modi�ed,�which, in turn, is the

reason why overselling does not occur at the revenue-maximizing mechanism when there are externalities but outside

payo¤s are �at.
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with externalities, in which each buyer�s type is a multidimensional vector, and each component

denotes his payo¤ in case another buyer obtains the good. They restrict attention to mechanisms

that satisfy two properties: (i)buyers make a one-dimensional bid, and (ii)types are divided into

two regions- one where trade takes place with probability one, and one where trade takes place

with probability zero. Even though their model is multidimensional, whereas we look at single-

dimensional cases, our examples are not nested in their setup. One way to see this is that, in their

paper, the critical type is always the one closest to the origin, which is not true in our examples.5

Even if their paper bears similarities to ours in terms of qualitative results, the forces behind

these similarities are often quite di¤erent. Overselling occurs at the optimal mechanism out of

the class they are considering (second-price auctions with reserve prices lower than the e¢ cient

ones can be optimal). The reason behind this overselling result is that when a buyer submits

a single-dimensional bid, he has to think not only about how much the object is worth to him,

but also about the externalities he will su¤er if another buyer obtains the good (which depend

on the other components of his type). If the seller sets a high reserve price, it becomes more

likely that the seller will keep the good (a zero externality alternative), which reduces the expected

externalities that a buyer faces, leading to a reduction in his bid. This e¤ect can dominate the

standard revenue-enhancing e¤ects of posting a reserve price strictly above the sellers�value. In

contrast, in our paper, overselling occurs when the critical type is close to the best type, which

in�ates the virtual surplus. Another similarity is that the optimal allocation rule and the optimal

threats can be interdependent, and, moreover, optimal threats can be random. However, in the

model of [5], randomization is needed when externalities may be positive and negative. In our

5For further explanation of the non-nestedness, see footnote 6.
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model, randomization can be optimal even if externalities always have the same sign, and its role

is to determine the shape of non-participation payo¤s that allows the seller to extract the most

surplus.

In addition to the above-mentioned papers, this paper is related to the literature on mechanism

design with type-dependent outside options. Lewis and Sappington [10] study an agency problem

with this feature. They show that the critical type is not necessarily the �worst� one, which

mitigates the ine¢ ciencies that arise from contracting under private information. This feature also

appears sometimes in our analysis, but we also show that, at times, ine¢ ciencies are not reduced,

but they change in nature (the monopolist, instead of selling too little, sells too much). Jullien

[6] uses a dual approach to characterize properties of the optimal incentive scheme such as the

possibility of separation, non-stochasticity, etc. In this paper, we do not rely on dual methods,

and we allow for multiple agents. Krishna and Perry [9] examine e¢ cient auctions in a setup with

type-dependent non-participation payo¤s, whereas our focus is revenue maximization. However,

the most important di¤erence between our paper and these earlier works is that, as in [4], we allow

the mechanism designer to a¤ect the buyers�participation constraints.

1. Example 1

Two beer manufacturers, a European one, �rm 1, and a north American one, �rm 2, are competing

for the sponsorship of the world cup �nal, where one of the teams participating is Asian. Each of

these �rms has a dominant position in their respective markets, which are both of size �, but none

has any signi�cant presence in Asia. The sponsorship will allow the �rm that gets it to penetrate

the Asian market that is worth 1 at a cost of building new capacity ci; which is private information
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and is uniformly and independently distributed in Ci � [0; 1]: Hence, the payo¤ from winning the

auction is 1� ci. If nobody obtains the sponsorship, each �rm�s pro�ts will be the same as before,

which we normalize to zero. However, if �rm i does not obtain the sponsorship but �rm j does, �rm

i will see its dominant position in its �home turf�threatened as j becomes a global player. However,

this can be prevented (and it is pro�table to do so) by investing in capacity. The cost of building

new capacity in the home market is proportional to its size and is given by ��ci: Hence �rm i

su¤ers a negative externality (which depends on its cost of building capacity ci) if its competitor

gets the sponsorship.

Let Z denote the set of all possible allocations of the sponsorship. There are three possibilities:

nobody sponsors the event, z0; �rm 1 does, z1; or �rm 2 does, z2. Let �
zj
i (ci) denote the payo¤ to

�rm i if allocation zj is implemented and its type is ci. The payo¤s that accrue to each �rm from

each of these alternatives are:

�z01 (c1) = 0 �z02 (c2) = 0

�z11 (c1) = 1� c1 �z12 (c2) = ��c2

�z21 (c1) = ��c1 �z22 (c2) = 1� c2

:6

6The payo¤s of our Example 1 can be translated in the setup of [5] by de�ning v1 = (v01 = 0; v
1
1 = 1�c1; v21 = ��c1):

The reason why their analysis does not apply to such cases is that it requires that the distributions of types have

full support (in particular, the su¢ ciency part of their Proposition 1; Krishna and Maenner [8] present an example

where the assumption of full support fails and su¢ ciency fails). This rewriting fails the full-support assumption, as

positive weight is assigned only along the line v21 = ��+ 2v11 instead of all the rectangle [��; 0]� [0; 1]: Notice that

in other cases, too, it may be reasonable to use a model in which the externality su¤ered by a buyer is proportional

to his e¢ ciency (ci): In such cases, too, (for the same reasons as in this example) the full support assumption would

be violated.
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Our objective is to �nd the allocation mechanism that maximizes the seller�s revenue. The fact

that a �rm is a¤ected if the other �rm gets the sponsorship, even if it is not the winner, endows

the seller with an additional instrument to boost revenue: appropriate outside options or �threats�

in the event that a �rm refuses to participate. We use p�i to denote the outside option (or non-

participation assignment rule) for �rm i: The seller chooses p�i 2 �(Z�i), where Z�i � Z is the

set of allocations that are feasible without i.7

As usual, we can appeal to the revelation principle and search among the direct revelation

mechanisms (DRM) that satisfy truth-telling and voluntary participation. A DRM here consists

of an assignment rule, a payment rule and a non-participation rule (outside option), (p; x; p�i). For

all c = (c1; c2); p(c) = (pz0(c); pz1(c); pz2(c)) speci�es the probability with which each allocation

prevails, and xi(c), i 2 f1; 2g speci�es an expected payment for each buyer.

The allocation and payment rules (p; x) determine �rms�payo¤s when they participate in the

mechanism. For �rm 1 that has cost c1 and reports c01; we have

U1(c1; c
0
1; p; x) =

Z 1

0

�
pz0(c01; c2) � 0 + pz1(c01; c2) � (1� c1) + pz2(c01; c2) � (��c1)� x1(c01; c2)

�
dc2:

The outside options p�i, i 2 f1; 2g determine their payo¤s when they do not participate in the

mechanism. For �rm 1, we have

U1(c1; p�1) = p
z0
�1 � 0 + p

z1
�1 � (1� c1) + p

z2
�1 � (��c1):

Analogous expressions hold for �rm 2.

7 In general (e.g., when values are interdependent), it may be worthwhile to condition p�i on the reports of all

other buyers but i (it cannot depend on i0s report, since he is not around!); that is p�i : C�i ! �(Z�i). In the

examples considered in this paper, values are private, and such generality is not needed.
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A DRM (p; x; p�i) is feasible if it satis�es (i) resource constraints, (ii) incentive compatibility

constraints and (iii) voluntary participation.

Resource constraints require that, for all c; we have that 0 � pz(c) � 1 and �z2Zpz(c) = 1.

Letting Vi(ci) = max
c0i

R
C�i

�P
z2Z

pz(c0i; c�i)�
z
i (ci)� xi(c0i; c�i)

�
f�i(c�i)dc�i,8 necessary and suf-

�cient conditions for incentive compatibility are that (a) the derivative of Vi (more precisely, a

selection from its subgradient, which is single-valued almost surely) evaluated at the true type,

that is,

Pi(ci) �
Z
C�i

X
z2Z

pz(ci; c�i)
@�zi (ci)

@ci
f�i(c�i)dc�i; (1)

is weakly increasing, and (b)

Vi(ci) = Vi(1; p; p�i)�
1Z

ci

Pi(s)ds for all ci 2 Ci: (2)

An incentive-compatible mechanism satis�es voluntary participation if Ui(ci; ci; p; x) � U i(ci; p�i)

for all i 2 I and for all ci 2 Ci:

We denote by Jz(c) the virtual surplus of allocation z.9 For this example, the virtual surpluses

are given by

8 In the general formulas, we use fi to denote the distribution of ci and f�i to denote the distribution of c�i:
9 In general, the virtual surplus of allocation z is de�ned as

Jz(c) �
IX
i=1

[�zi (ci) +
Fi(ci)

fi(ci)

@�zi (ci)

@ci
]:

Notice that we sum over all buyers because an allocation may a¤ect all of them, and not just the ones that obtain

objects. Therefore, the virtual surplus of allocation z may depend on the whole vector of types. In the classical

case, virtual valuations are buyer-speci�c (instead of being allocation-speci�c, as they are here): for buyer i; we have

Ji(vi) = vi � 1�Fi(vi)
fi(vi)

, (vi is i�s valuation for the object).
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Jz0(c) = 0; Jz1(c) = 1� 2c1 � 2�c2; Jz2(c) = 1� 2c2 � 2�c1: (3)

By using standard arguments, we can write the seller�s problem as:

max
p;p�1;p�2

Z 1

0

Z 1

0
[pz0(c)Jz0(c) + p

z1(c)Jz1(c) + p
z2(c)Jz2(c)]dc1dc2 � V1(1; p; p�1)� V2(1; p; p�2) (4)

subject to:

P1(c1) � �
R 1
0 [p

z1(c) + 2pz2(c)]dc2 be increasing

P2(c2) � �
R 1
0 [2p

z1(c) + pz2(c)]dc1 be increasing

Vi(ci) � U i(ci; p�i); i = 1; 2

0 � pzi(c) � 1; i = 0; 1; 2 and
2P
i=0
pzi(c) = 1

Revenue is determined by the assignment rule p, which determines the shape of participation

payo¤s, and by the terms Vi(1; p; p�i): We now explain why these terms depend both on the shape

of participation payo¤s, which are determined by p; and on the shape of the non-participation

payo¤s, which are determined by p�i:

The seller has the freedom to choose p�i to be such that the participation payo¤ for all types is

weakly greater than the non-participation payo¤s. At an optimum, there exists a type, which we

call �critical type�10 c�i , where participation payo¤s are exactly equal to non-participation payo¤s;

that is,

Vi(c
�
i ) = U i(c

�
i ; p�i): (5)

Then, using (5), (2) can be rewritten as

Vi(1; p; p�i) = U i(c
�
i ; p�i) +

1Z
c�i

Pi(s)ds: (6)

10 In general, there can be many critical types and any one can be chosen to stand for c�i :
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To illustrate how Vi(1; p; p�i) can depend on the outside options that buyers face, and how this

can a¤ect the optimal mechanism, we proceed as follows. First, we �x p0�is and show how the

optimal allocation rule p depends on p0�is. Then, we let the seller choose p
0
�is optimally.

Optimal Allocation Rules for Fixed p0�is

We examine two scenarios.

Scenario 1: Flat Outside Options

In this case, if a �rm does not participate, the seller withdraws the possibility of sponsorship;

that is, p�1 = p�2 = (1; 0; 0) : Given this non-participation assignment rule, the payo¤ to �rm i

from not participating is �z0i (ci) = 0; which is independent of i0s type. Because at an incentive-

compatible assignment rule Vi is decreasing in ci; the participation constraint binds at the �worst�

type c�i = 1 for all i and all p: This implies immediately that V1(1; p; p�1) = V2(1; p; p�2) = 0; and

after substituting for the J 0zs from (3), (4) becomes

max
p

Z 1

0

Z 1

0
[pz1(c) (1� 2c1 � 2�c2) + pz2(c) (1� 2c2 � 2�c1)]dc1dc2: (7)

The revenue-maximizing assignment11 is obtained via pointwise maximization and is depicted in

Figure 2a for the case where � = 2.12

11 It is

p(c) =

8>>>>>><>>>>>>:
(0; 1; 0) if c2 � c1 and 1 � 2c1 + 2�c2

(0; 0; 1) if c1 � c2 and 1 � 2c2 + 2�c1

(1; 0; 0) if 2c1 + 2�c2 > 1 and 2c2 + 2�c1 > 1;

which, as can be routinely veri�ed, is incentive-compatible and, hence, optimal.
12The optimal payment rule can be calculated from the optimal assignment rule using x(c) =

P
z2Z

pz(c)�z(c) +

1R
c

P
z2Z

@�z(s)
@s

pz(s)ds � V (1; p; p�A): Proposition 2 in [2] establishes why doing so is optimal and satis�es the partici-

pation constraints.
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Scenario 2: Type-Dependent Outside Options

In this case, if a �rm fails to participate, the seller gives the sponsorship to its competitor, the

other �rm - that is, p�1 = (0; 0; 1) and p�2 = (0; 1; 0). Here, we analyze the case in which the

negative externality is very steep with respect to type ci; in the sense that � > 1. Then, allocation

zj gives the steepest payo¤ function to buyer i; for j 6= i - that is,

d�
zj
i (ci)

dci
� d�zi (ci)

dci
� 0 for all z 2 fz0; z1; z2g and all ci 2 Ci; (8)

which implies that the participation constraint binds at c�i = 0 irrespective of p. This is so because

Vi(ci) is a convex combination of payo¤ functions �z0 ; �z1 and �z2 , and has, therefore, a less negative

slope than U i(ci; p�i) � ��ci when � > 1 (see Figure 1, which depicts the case of � = 2).

0
1

-2c1

c1

1’s Payoff

Figure 1

V1(c1)

<insert �gure 1 here>

Then, for i; j = 1; 2 (6) becomes

Vi(1) = �
zj
i (0) +

Z 1

0
Pi(ci)dci = 0 +

Z 1

0

Z 1

0
[�pzi(c)� �pzj (c)]dc: (9)

Substituting (9) and (3) in (4), it becomes

max
p

Z 1

0

Z 1

0
[pz1(c) (2 + �� 2c1 � 2�c2) + pz2(c) (2 + �� 2c2 � 2�c1)]dc1dc2: (10)
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By comparing (7) and (10), we see how the terms V1(1; p; p�1) and V2(1; p; p�2) a¤ect the

objective function. They essentially modify virtual surpluses to:

Ĵz0(c) = 0; Ĵz1(c) = 2 + �� 2c1 � 2�c2; Ĵz2(c) = 2 + �� 2c2 � 2�c1:13

Again, the revenue-maximizing assignment14 of this problem is obtained via pointwise maximiza-

tion, and it is depicted in Figure 2b for the case that � = 2. Payments are derived as discussed in

the previous case.

Seller

0

c2

c2=0.25-0.5c1

c2=0.5-2c1

Firm 1

Fi
rm

 2

c1

Figure 2a: Optimal Assignment in
Scenario 1

1

1

Seller

0
c1

c2

Firm 1

Firm 2

c2=2-2c1

c2=1-0.5c1

1

1

Figure 2b: Optimal Assignment in
Scenario 2

Seller

0

c2

c2=0.5-0.5c1

c2=1-2c1

Firm 1

Firm 2

c1
1

1

Figure 2c: Efficient Assignment

<insert �gures 2a,2b,2c here>

The Optimal Mechanism

In this example, it is immediate to see that irrespective of p, the optimal way for the seller

to threaten a �rm is, in the event of non-participation, to give the sponsorship to the other �rm.

This guarantees the lowest payo¤ for �rm i for any cost realization, and, hence, the mechanism we

13 In this example, virtual surpluses are modi�ed for all types, as all types are worse than the most e¢ cient type 0.
14 In this case, it is

p(c) =

8>>>>>><>>>>>>:
(0; 1; 0) if c2 � c1 and 2� � 2c1 + 2�c2

(0; 0; 1) if c1 � c2 and 2� � 2c2 + 2�c1

(1; 0; 0) if 2c1 + 2�c2 > 2� and 2c2 + 2�c1 > 2�;

which, as can be routinely veri�ed, is feasible and, hence, optimal.
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derived in Scenario 2 is truly optimal. Notice that a seller that fails to consider the nature of the

optimal threats would not only earn less money, but would also assign the sponsorship in a very

di¤erent way.

Remark 1 By comparing Figures 2a and 2b, we see that the optimal assignment rule critically

depends on the outside options that each �rm faces. The reason is that, in the second scenario,

when �rm i fails to participate, its payo¤ depends on its cost, (�zji (ci) = �2ci):

Remark 2 It is also interesting to compare the optimal allocations in the above scenario with the

ex-post e¢ cient allocation rule15 depicted in Figure 2c again for the case that � = 2. Comparing

Figures 2b and 2c, we see that at the revenue-maximizing assignment rule, �rms 1 and 2 obtain

the sponsorship for cost realizations where e¢ ciency dictates that the seller should keep it. Thus,

the seller sells the sponsorship too often compared to what would have been ex-post e¢ cient. On

the other hand, by comparing Figures 2a and 2c, we see that the seller sells less often than what

e¢ ciency dictates. Both allocations are ine¢ cient but in di¤erent ways.

With type-independent outside payo¤s, there is always one outside option that is unambigu-

ously best. This was also the case in this example. However, this example di¤ers from the type-

independent case because the critical type, instead of being the worst type, is the best type. This

leads to a modi�cation of the virtual surplus, which ultimately a¤ects the way objects are allocated.

15The ex-post e¢ cient allocation rule is the one that maximizes the social surplus �z1(c) + �
z
2(c) for each (c1; c2).

It is given by

pe(c) =

8>>>>>><>>>>>>:
(0; 1; 0) if c2 � c1 and c1 + 2c2 � 1

(0; 0; 1) if c1 � c2 and 2c1 + c2 � 1

(1; 0; 0) otherwise

:

16



This modi�cation of the virtual surplus is the channel through which the optimal assignment takes

advantage of the shape of outside options. In this example, this is achieved by putting more weight

on type-sensitive options than on �at options, as in the option of giving the object to the seller,

leading to overselling.

To summarize, outside options a¤ect the optimal assignment rule only if the payo¤s from non-

participation are type-dependent. In the next example, we show how, in the case of type-dependent

outside options, the seller can increase both revenue and e¢ ciency by choosing threats optimally.

2. Example 2

Consider a small company in Silicon Valley that develops a valuable new technology. This company

does not have the necessary infrastructure to reap the bene�ts of this new technology, so it is

essentially worthless to it. There is, however, a large �rm (say, �rm A) that is willing to purchase

the technology. The value of the new technology to �rm A is given by 5 � 5c; where c is private

information and uniformly distributed on [0,1]. If A does not get the technology and no one else

does either, A�s payo¤ is zero. From [12] or [13], we know that the best the developer can do is

to make a take-it-or-leave-it o¤er to �rm A of 2:5. Then, company A will get the invention only

if its cost parameter is below 1
2 . This maximizes ex-ante expected revenue, which is 1:25; but

it is ine¢ cient, because the developer is stuck half the time with a worthless invention, whereas

company A would generate a non-negative payo¤ for all cost realizations.

Now, suppose that the developer can make the invention publicly available by making it open-

source, in which case A�s payo¤ is 1 � 10c. A very e¢ cient �rm A (c < 1
10) would like the new

invention to become publicly available, but a less e¢ cient one (c > 1
10) would su¤er in its core
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business because of new competitors coming in. If the developer considers threatening �rm A, if

it were to drop out of the sale, which threat should it use? The answer is not obvious since the

developer does not know �rm A�s cost parameter, so it does not know which alternative �hurts

more�. 16

We now show that the optimal mechanism o¤ers the invention for sale at a price of 4.5 and

threatens �rm A that if it does not participate, the seller will keep the invention with probability

1
2 and make it open-source with probability

1
2 . Faced with this lottery, company A�s expected

outside payo¤ is 0:5� 5c: Firm A always(!) agrees to buy the invention at the asking price of 4:5

since, in that case, its payo¤ is 5 � 5c � 4:5 = 0:5 � 5c; which is (weakly) greater than its outside

payo¤. Thus, the open-source option, though never implemented, has an extraordinary e¤ect on

the revenue-maximizing allocation. It guarantees a higher expected revenue of 4:5, and makes the

mechanism e¢ cient.

Formally, there are three allocations: �rm A gets the exclusive rights, zA; the developer (seller)

keeps it, zS ; or the invention becomes open-source, zO: The payo¤s that accrue to �rm A in each

of these allocations are

�zA(c) = 5� 5c; �zS (c) = 0; �zO(c) = 1� 10c:

Following the same procedure used in the previous example, the seller�s problem can be rewritten

as

max
p;p�A

1Z
0

[pzA(c) (5� 10c) + pzO(c) (1� 20c)]dc� V (1; p; p�A) (11)

16This is in contrast to Example 1, where the choice of the optimal threat was obvious, since there was an option

(give the slot to the competitor) that was unambiguously worse for all types.
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subject to:

�[5pzA(c) + 10pzO(c)] is increasing

Vi(ci) � U i(ci; p�i); i = 1; 2

0 � pz(c) � 1 for all z 2 fzA; zS ; zOg and �z2fzA;zS ;zOgpz(c) = 1:

This example is more complex than Example 1 because, as we show below, the optimal threat

depends on the assignment rule p that the seller wishes to implement. We solve this example in two

steps. First, we �nd the optimal p�A for a given assignment rule p, which we denote by p��A(p),

and then we solve for an optimal p.

Step 1: Find an Optimal Outside Option p��A(p)

With a slight abuse of notation, let p�A denote the probability that allocation zO is chosen if

A fails to participate, and let (1� p�A) denote the probability that allocation zS is chosen. Then,

A�s payo¤ if it fails to participate is given by

UA(c; p�A) = p�A � 10p�Ac: (12)

Step 1.1: In this step, we show that for any p and any optimally chosen outside option p��A(p),

the critical type c�i is the same and equal to
1
10 ; that is,

c�(p; p��A(p)) =
1

10
for all p: (13)

This result is similar to the one in [5] which shows that the critical type is always the same (it is

the type closest to the origin) independently of the allocation rule used. In this example, however,

the critical type is not the one closest to the origin (which corresponds to 1 in this case).17

17 In this example, it just happens that the critical type is independent of the allocation rule. This is not generally

true with type-dependent outside options in a single-dimensional world (see [2]).
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To obtain (13), note that at an optimal mechanism p��A(p) minimizes V (1; p; p�A) - that is,

p��A(p) 2 argminp�A UA(c�(p; p�A); p�A) +
1R

c�(p;p�A)

dV (c)
dc dc; which by using (12) can be rewritten

as

p��A(p) 2 argminp�A
p�A � 10p�Ac�(p; p�A) +

1Z
c�(p;p�A)

dV (c)

dc
dc: (14)

At a minimizer p��A(p), the total derivative of V (1; p; p�A) with respect to p�A is equal to the

partial, and it is given by dV (1;p;p�A)
dp�A

���
p�A=p��A(p)

= 1 � 10c�(p; p�A(p)):18 Since this derivative is

strictly decreasing, positive at p�A = 0; and negative at p�A = 1, we conclude that the solution is

interior; therefore, dV (1;p;p�A)dp�A

���
p�A=p��A(p)

= 1� 10c�(p; p�A(p)) = 0; which implies (13).

Step 1.2: Now, we move on to �nd p��A(p). In order to do so, we use the fact that, at the

critical type c�; the payo¤s from participation and non-participation must be tangent.

Given an assignment rule p(c) = (pzA(c); pzS (c); pzO(c)), the payo¤ from participation is given

by V (c) = pzA(c)(5� 5c) + pzS (c) � 0 + pzO(c)(1� 10c); and its slope is given by19

dV (c)

dc
= �5pzA(c)� 10pzO(c); (15)

while the slope of the outside payo¤ is @UA(c;p�A)@c = �10p�A. At a minimizer p��A(p), both payo¤s

must be tangent at the critical type c�(p; p�A(p)) = 1
10 . In other words,

dV (c)

dc

����
c�= 1

10

= �10p�A: (16)

18This property is an envelope condition. We state it and prove it in Lemma A in Appendix C of [2].
19This is true for all c where V is di¤erentiable, which are a set of measure 1 since V is convex. For points where

V is not di¤erentiable, the subgradient is set-valued and p�A(p) is not uniquely determined, but the selection does

not a¤ect the objective function since the critical type is the same for any selection.
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Combining (15) and (16), we get that

p��A(p) =
1

2
pzA(

1

10
) + pzO(

1

10
): (17)

Equation (17) gives us an optimal p��A as a function of the assignment rule p.

Step 2. Find an Optimal Allocation Rule p

Using (13) and (14), V (1; p; p��A(p)) can be rewritten as

V (1; p; p��A(p)) = �
1Z

1
10

[5pzA(c) + 10pzO(c)]dc: (18)

By substituting (18) into (11), it becomes:

max
p

1
10Z
0

[pzA(c) (5� 10c) + pzO(c) (1� 20c)]dc+
1Z

1
10

pzA(c) (10� 10c) + pzO(c) (11� 20c)]dc: (19)

Note that the objective function is modi�ed in the region [ 110 ; 1], and that the increased virtual

surplus in that region increases the seller�s willingness to transfer the object. A higher probability

of assigning the invention (pzA), decreases the rent from the worst type, V (1), by charging him

a high price. He is willing to pay that high price since otherwise he would be badly hurt by the

outsourcing allocation.

Pointwise maximization of (19) gives us that pzA(c) = 1 for all c: Hence, the optimal assignment

rule is

p(c) = (pzA(c); pzS (c); pzO(c)) = (1; 0; 0); (20)

which is incentive-compatible, since, irrespective of the report, �rm A obtains the object with

probability 1. The revenue-maximizing assignment rule is ex-post e¢ cient since �zA(c) � �zS (c)

and �zA(c) � �zO(c) for all c 2 [0; 1].
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By substituting (20) into (17), we get that the optimal non-participation assignment rule is

given by p��A(p) =
1
2 ; or, more precisely, p�A(p) = (pzA(c); pzS (c); pzO(c)) = (0; 12 ;

1
2); implying

that the seller randomizes between keeping the invention and the open-source option with equal

probability.

Since the �rm obtains the object irrespective of its type, its payment must be constant also,

and it can easily be seen that 4.5 is the most that can be charged and still have participation.20

As we mentioned earlier, when open sourcing (allocation zO) is not an available option, the seller

keeps the invention when c 2 [12 ; 1]: This assignment is ine¢ cient since, half of the time, Firm A

does not obtain the invention, whereas it is always e¢ cient that it does.

Discussion

Example 1 illustrated how, with type-dependent outside payo¤s, the optimal assignment de-

pends on the outside options that buyers face. In the same spirit, in Example 2 we saw that the

introduction of the option of open sourcing, even though never implemented, increased both revenue

(it more than tripled) and e¢ ciency; in fact, it resulted in an ex-post e¢ cient revenue-maximizing

assignment.

Example 1 is simple because for every buyer there is a threat that is always best. Example

2 is more complex because it illustrates how, with type-dependent outside payo¤s, the two steps

of �nding an optimal assignment p and an optimal threat (the non-participation assignment p�i)

are interrelated: For a given assignment rule p; there is a speci�c threat that best exploits the

shape of participation payo¤s determined by p (Step 1). Once we have an optimal p��i(p); we then

20As explained in Example 1, the payment is obtained using x(c) =
P
z2Z

pz(c)�z(c) +
1R
c

P
z2Z

@�z(s)
@s

pz(s)ds �

V (1; p; p�A):
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optimize with respect to p (Step 2): This interrelationship is what makes a general characterization

of revenue-maximizing mechanisms with type-dependent outside options quite challenging without

additional assumptions. For a list of some tractable cases, see [2].
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