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Abstract

In this paper we characterize the optimal procurement mechanism and the investment level for an

environment where two projects must be adjudicated sequentially, and the winner of the first project

has the opportunity to invest in a distributional upgrade for its costs in the second project. We

study 4 cases, based on the commitment level of the seller and the observability of the investment

decision. We find that with commitment, the second period mechanism gives an advantage to the

first period winner, and induces an investment level that is larger than the efficient one. With

non-commitment, the second period mechanism gives a disadvantage to the first period winner, and

induces an investment level that is smaller than the efficient one. Observability is irrelevant in the

commitment case, but makes the effects more pronounced in the non-commitment case. Finally, we

extend the model to allow for investment by a first period loser. Keywords: Procurement Auctions,

Sequential Mechanisms, Mechanism Design, Cost Reducing Investment JEL D44, C7, C72.

1. Introduction

During the last decades procurement auctions have been widely used as mechanisms to assign high cost
projects concerning goods and services. By the year 1998, the sum of all governments expenditures in
procurements (excluding defense and labor compensation) was estimated as 7.1% of the worldwide GDP1.
The repeated utilization of procurement auctions by specific by governments and private institutions,
which contract with the same pool of firms over time, has made the study of cost reduction investment
by these firms specially relevant.

The objective of this paper is twofold. First, to characterize the cost-minimizing procurement mecha-
nisms in an environment with repeated interaction between a buyer and multiple sellers, where investment
can be undertaken as a cost-reduction device, and also as an strategic action devised to obtain advantages
in future procurement auctions. Second, to analyze the effects these cost-minimizing mechanisms have on
the sellers’ investment decisions. This is particularly relevant if the relative size of expected expenditures
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is big compared with the value of just one particular purchase, since in that case the use of tools that
may reduce future costs, even at the cost of raising today’s expenditures, can be particularly profitable.

We consider a buyer who wants to procure two consecutive projects and faces n ≥ 2 potential suppliers.
Costs for performing both tasks are distributed independently across time and competitors, and they are
private information to each firm. We assume, though, that the first procurement winner (whose identity
is public information for the second procurement) acquires an intrinsic advantage characterized by a
distributional upgrade. This reflects a knowledge acquired concerning the task performed, to which the
rest of the firms have no access. Moreover, this upgrade can be influenced by a costly investment that
the winner may carry out between the two procurements. In such a context, second period rules, through
the degree of advantage they give to a first period winner, affect the benefits of such an investment, and
therefore determine the investment carried out by the first period winner. As a consequence, the second
period cost distribution of a first period winner, and the asymmetry between him and the first period
losers, are determined endogenously.

We first consider the ex-post efficient benchmark: each period the project is assigned to the lowest cost
supplier, and the investment level, Ie is such that the marginal cost of investment equals the marginal
benefit (in expected terms) of cost reduction. We show that, independent of investment observability,
such an incentive compatible mechanism exists and can be implemented through two second price sealed
bid procurements.

We then use the mechanism design approach to characterize the cost-minimizing mechanism, which
we determine under the assumptions of full commitment and non-commitment of the buyer. In the first
case, we assume that the rules for both mechanisms are decided at t=0, before any cost realization occurs.
We show that the optimal mechanism is independent of investment observability, and gives an advantage
gap to the first period winner in the second period. That is, he can win the second procurement auction
even if his cost is higher than the minimum of the other competitors. Moreover, in this context, the
investment level induced, I∗, is higher than the efficient level Ie, so over-investment occurs. This result
can seem counterintuitive, since an advantage gap can make the first period winner “relax”, knowing he
owns a big advantage over competitors and is likely to win anyway. However, there is a second effect
that dominates: investment, by decreasing costs, increases the expected profits in case the firm gets the
contract. Since with a bigger advantage gap this happens more often, the expected benefits due to cost
reduction are higher, thus investment becomes more profitable.

In the non-commitment case, the second period rules are determined after the winner of the first
period is announced and he has invested in cost reduction. We find that it is optimal for the buyer to
give a disadvantage to the first period winner, who holds a distributional advantage over its competitors.
Now, a first period winner does not necessarily win the second period procurement even if he has the
lowest cost among all competitors. This fact is anticipated by the first period winner, making investment
less attractive and therefore leading to investment levels of cost-reduction below the efficient one. Here,
the observability of investment makes a difference. When investment is not observable, the interaction
between the buyer and the first period winner is equivalent to both agents simultaneously choosing
mechanisms and investment levels, respectively. On the contrary, when investment can be monitored,
the buyer optimally reacts with more disadvantageous mechanisms as the first period winner distribution

improves. Thus, the first period winner invests less in this last case. Denoting by Î and ̂̂
I the investment

levels when investment is observable and non-observable we get

Î ≤ ̂̂
I < Ie < I∗

These results have important implications. First, cost-minimizing buyers, with the ability to commit,
and working in a dynamic environment, induce investment levels above the efficient level. This is because
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the second period advantages are not only introduced to encourage investment, but also to increase
competition in the first period. In this respect, the buyer introduces inefficiencies to increase competition,
in a similar way a static buyer introduces inefficiencies setting up a reservation cost. However, a buyer’s
lack of commitment induces under-investment, since the disadvantages to first period winners make cost
reduction investment less attractive. Second, investment observability does not play a role in the case
of full commitment, neither for efficiency nor for cost minimization. Therefore, the intuition from the
moral hazard literature, with risk-neutral agents, the first best level of investment (effort) can be induced,
can be extended to the case of revenue maximization. This result is quite interesting since it does not
hold for any mechanism: we show that, in the full commitment case, a second period mechanism with
different rules leads to a seller’s investment decision different from the one the buyer would have chosen.
To conclude the analysis when the first period winner is the only agent allowed to invest, we derive
some comparative statics with respect to the number of players. As it increases, all the investment
levels mentioned above decrease, but weakly preserving the order among them. For a number of firms
sufficiently large, the investment level in all environments collapses to zero: if the number of competitors
is large enough, inducing investment is too expensive for the buyer relative to the marginal benefit in
cost reduction. This is so because the added probability of the first period winner getting a cost lower
than the minimum of all other competitors, decreases with the number of competitors.

Finally, we also examine the robustness of our results to the possibility of investment by a first period
loser as well. If investment is observable, and depending on the shape of the cost distribution, two
possibilities appear. Either the buyer will use the same mechanism as the one when only the winner can
invest and induce no loser’s investment, or it will give less advantage to the winner, inducing a positive
investment by the loser and a smaller investment by the winner. Without observability, the problem is
much more complex. With some restrictions on the set of available mechanisms, we prove that the buyer
will optimally choose the same mechanism as when only the winner can invest, but this will induce a
positive investment by the loser and a smaller investment by the winner.

Our work is related to the literature in several ways. With the methodology of mechanism design,
Pesendorfer and Jofre-Bonnet [9], derived the cost minimizing mechanism for an exogenous level of
complementarity (which is understood as an exogenous distributional change between both procurement
auctions), full commitment and two players. We extend this result to allow for investment (and therefore
endogenous complementarity), non-commitment and multiple players. This extension is not obvious, in
particular, because of the interesting features that arise as the number of competitors increase: under full
commitment, although the advantage given to the first period winner at the last competition also decreases
with the number of firms, it never disappears. This occurs because introducing sequentiality enables the
buyer to distribute incentives inter-temporally in such a way that more competition is induced in the
first procurement auction, which out-weights the second period inefficiencies regardless of the number of
players. In a non-commitment setting, Luton and McAfee [5] determined the optimal mechanism for a
particular type of exogenous distributional upgrade.

Investment as a cost reduction device has been analyzed mainly as a stage prior to a one-shot pro-
curement auction. In this context, the possibility of achieving efficiency was studied by Piccione and Tan
[10] when firms are ex-ante symmetric and they can all invest in a technology that presents diminishing
returns to scale. They show that the full information solution can be implemented if the buyer can fully
commit to the mechanism in advance. We extend this result to the case of revenue maximization in
a sequential auction setting. We also show that, surprisingly, this result cannot be extended to other
objective functions: for other advantage levels required in the second stage the incentives of the buyer
and the sellers do not coincide, so investment observability is crucial for implementation. Finally, several
under-investment results can be found in the literature. In particular, Piccione and Tan [10] show that
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the buyer’s lack of commitment induces an investment level below the efficient one. Dasgupta in a simi-
lar model [2], obtains the same result and shows that commitment rises the investment level, but always
below efficiency. Arozamena and Cantillon in [1], analyze the effects of allowing only one firm to invest
before a first price sealed bid procurement auction, and make this action observable by competitors, find-
ing that under-investment occurs as a response to the more aggressive bidding of the competitors, which
reduces the investment incentives. In our paper, we also get under-investment, but for a reason that goes
in line with [10]: under non-commitment, it is the mechanism designer (the buyer) that changes behavior,
giving an advantage to worse firms, and therefore decreasing the incentives to invest. Nevertheless, we
introduce the new idea that the buyer’s commitment in a multi-period context can increase investment
above efficiency.

2. The Model

2.1 The Environment

Consider a risk-neutral buyer who wants to procure two projects, one at t = 1 and the other at t = 2. The
set of competing sellers is N = {1, ..., n}, n ≥ 2, all of which are risk-neutral and live for the two periods.
The buyer is compelled to procure the two goods or services2. In each period, the cost of undertaking
the project for a seller is drawn from the interval C = [c, c̄], and it is private information. At t = 1,
these costs are independently distributed according to a distribution F (·), differentiable, that satisfies
f(c) ≡ F ′(c) > 0 if c ∈ C (so sellers are ex-ante symmetric).

At t = 2, the competitors costs are drawn independently from those drawn in period 1, and inde-
pendently across sellers as well. The costs of the first period losers are taken from the same distribution
F (·). Instead, the winner of the first procurement (from now on the winner) has the option of invest-
ing an amount I between auctions, at a monetary cost Ψ(I), and changes his distribution to G(·, I),
differentiable with ∂G

∂c (c, I) > 0 and with the same support. Assumption 1 below implies a distribution
improvement for the winner as a function of investment: investment implies an increase in the chance
of obtaining lower costs relative to higher ones. As a consequence, higher investment induces a “better”
cost distribution in the usual sense of first order stochastic dominance. The formal result is in lemma 9
in the next section.

Assumption 1 G ∈ C2(C × IR+). For all 0 ≤ I ′ < I ∈ IR and c′ < c ∈ C,

f(c′)
f(c)

≤
∂G
∂c (c′, I ′)
∂G
∂c (c, I ′)

<
∂G
∂c (c′, I)
∂G
∂c (c, I)

The first inequality, when evaluated at I ′ = 0 indicates that there can exist an exogenous improvement for
the first period winner. He acquires a knowledge concerning the task performed (the know-how), which
is not available to the losers. The second inequality shows that the final degree of complementarity will
depend on the amount the seller invests in developing this know-how. We also impose that the marginal
benefit of investment is decreasing:

Assumption 2 For all I ∈ IR+, ∂2G
∂I2 (·, I) < 0 in (c, c̄).

2This is equivalent to assume that the cost for the buyer of carrying out the project himself is C0 = +∞.
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We now state two technical assumptions, the first one is the increasing hazard rate, and the second
is a condition needed for integrability.

Assumption 3 F (c)
f(c) ,

G(c,I)
∂G
∂c (c,I)

are increasing in c. Also, F (c)
f(c) is differentiable (in particular, F is twice

differentiable).

Assumption 4 There exists h ∈ L1(IR) such that
∣∣∣∣∣
∂G

∂I
(c, I)

∣∣∣∣∣ =
∂G

∂I
(c, I) < h(c), ∀ I ∈ IR

Finally, for the investment technology we assume, as usual, that is increasing and convex.

Assumption 5 Ψ(·) is twice differentiable and satisfies Ψ′(·) > 0, Ψ′′(·) ≥ 0.

The previous assumptions are not hard to satisfy. For example, the family of distributions introduced
in Piccione and Tan [10], which they argue is a way of modeling investment in cost reduction of R&D
technologies, satisfies them.

Example 6 Suppose that F (·) is a twice differentiable concave distribution. Then, it is straightforward
that verifies the regularity assumption. The family of distributions given by G(c, 0) = F (c)η with 0 <

η < 1 and G(c, I) = 1− (1−G(c, 0))γI+1 with γ > 0 satisfies assumptions 1 through 4 (see Appendix for
a proof).

For notation purposes, we denote the joint density of the first-period distribution as fn(c) =
n∏

j=1

f(cj)

and fn−1(c−i) =
∏
j 6=i

f(cj), with c−i = (c1, ..., ci−1, ci+1, ..., cn).

2.2 The Mechanisms

The fact that costs are drawn independently across time enables the buyer to pay attention only to
incentive compatible mechanisms because the revelation principle holds. We will focus on two types
of environments: full commitment and non-commitment of the buyer. In the first case, the buyer can
commit to the first and second period mechanisms before any cost realization takes place. In the second,
he cannot, and he chooses the second period rules after the identity of the first period winner is known
and the investment level has been selected.

In each case, we analyze the cases when investment is observable and when it is not. The difference
is that in the observable case, the investment, and therefore the winner’s cost distribution for the second
period is public information. Thus, in this setting the mechanisms used by the buyer at t = 2 may depend
on the level of investment chosen by the winner of the first procurement auction.

We consider second period procurement mechanisms that are history dependent only to the extent
that they depend on the identity of the first period winner, but not on the cost realization (revelation) of
that first period. Moreover, we do not allow the buyer to exclude sellers in the second period if they do not
participate in the first. Notice, however, that more general mechanisms can decrease the seller’s expected
cost. An extreme example of this is the threat of non-participation in the second period. With this
strategy, the first period payments can be increased in the amount of the expected utility in the second
period mechanism, allowing the seller to fully extract the second period surplus. Such mechanisms seem
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unrealistic and seldom used in practice, probably because of the inability of sellers to commit to such a
strong and ex-post inefficient punishments.

From now on, we define ∆n =
{

(x1, ..., xn) ∈ IRn
+|

n∑
i=1

xi = 1
}

the unit simplex. If investment is

observable and the amount of it chosen by the first period winner is I, we will use subscript (w, I) when
we refer to this player at t = 2. Analogously, we will use subscript (l, I, i) at t = 2 if player i ∈ N was a
first period loser (if investment can’t be observed, we drop the subscript I). Using the previous notations,
we have:

Definition 7 A direct mechanism, when investment is not observable, is given by the tuple

Γno = (t1, q1, t2w, q2
w, t2l , q

2
l )

where t1 : Cn −→ IRn, q1 : Cn −→ ∆n, t2w : Cn −→ IR, q2
w : Cn −→ [0, 1], t2l : Cn −→ IRn−1,

q2
l : Cn −→ [0, 1]n−1, such that q2

w(c) +
∑
i6=w

q2
l,i(c) = 1 for all c ∈ Cn.

Definition 8 A direct mechanism, when investment is observable, is given by the tuple

Γ = (t1, q1, {t2w,I}I≥0, {q2
w,I}I≥0, {t2l,I}I≥0, {q2

l,I}I≥0)

where t1 : Cn −→ IRn, q1 : Cn −→ ∆n, t2w,I : Cn −→ IR, q2
w,I : Cn −→ [0, 1], t2l,I : Cn −→ IRn−1,

q2
l,I : Cn −→ [0, 1]n−1, such that q2

w,I(c) +
∑
i 6=w

q2
l,I,i(c) = 1 for all c ∈ Cn and I ≥ 0.

When investment is not observable, ts(c) = (ts1(c), ..., t
s
n(c)), and tsi (c) corresponds to the payment

to seller i ∈ N at time s = 1, 2, conditional on the report c = (c1, ..., cn). Analogously, qs(c) =
(qs

1(c), ..., q
s
n(c)), with qs

i (c) the probability that competitor i wins the procurement auction at time
s = 1, 2 conditional on the report. Finally, when investment can be monitored, the functions are the
same, but now the second period rules may depend on the investment level carried out by the first period
winner.

3. Preliminary Results

We now state a well-known result involving some consequences of assumption 1. In particular, that
the monotone likelihood ratio property implies first order stochastic dominance as the investment level
decreases (see Milgrom [6]).

Lemma 9 Suppose that assumption 1 holds, then:

(i)
∂G
∂c (c, I)

1−G(c, I)
<

∂G
∂c (c, I ′)

1−G(c, I ′)
, ∀ c ∈ C, 0 ≤ I < I ′.

(ii)
G(c, I)
∂G
∂c (c, I)

<
G(c, I ′)
∂G
∂c (c, I ′)

, ∀ c ∈ C, 0 ≤ I < I ′.

(iii) For every c ∈ C, the function G(c, ·) is increasing. This is equivalent to first order stochastic
dominance as I decreases in the family of distributions {G(·, I)| I ≥ 0}.
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Proof : Standard.

¤

We denote by Q1
i (c

′
i), player i’s expected probability of winning the first period procurement auction

if his announcement is c′i and the other players are telling the truth. Analogously we denote by T 1
i (c′i),

player i’s expected transfer if his announcement is c′i and the other players are telling the truth:

Q1
i (c

′
i) =

∫

C

q1
i (c′i, c−i)fn−1(c−i)dc−i, i ∈ N. (1)

T 1
i (c′i) =

∫

C

t1i (c
′
i, c−i)fn−1(c−i)dc−i, i ∈ N. (2)

In the case of investment observability, expected probabilities, if the investment level carried out by
the first period winner is I, are given by:

Q2
w,I(c

′
w) =

∫

Cn−1

q2
w,I(c

′
w, c−w)fn−1(c−w)dc−w (3)

Q2
l,I,i(c

′
i) =

∫

Cn−1

q2
l,I,i(c

′
i, c−i)fn−2(c−w,i)

∂G

∂c
(cw, I)dc−i, i 6= w. (4)

with expected transfers T 2
w,I , T 2

l,I,i defined analogously.
We denote by Π2

w,I(cw, c′w) the expected utility at t = 2 of a first period winner with real cost cw that
declares c′w. Analogously, Π2

l,I,i(ci, c
′
i) is the expected utility of a first period loser with real costs ci and

declaration c′i:

Π2
w,I(cw, c′w) = T 2

w,I(c
′
w)− cwQ2

w,I(c
′
w)−Ψ(I) (5)

Π2
l,I,i(ci, c

′
i) = T 2

l,I,i(c
′
i)− ciQ

2
l,I,i(c

′
i), i 6= w (6)

Finally, we denote by Π1
i,I(ci, c

′
i) the discounted expected utility at t = 1 for seller i with cost ci that

declares c′i, conditional on truth-telling at t = 2.

Π1
i,I(ci, c

′
i) = T 1

i (c′i)− ciQ
1
i (c

′
i) + βQ1

i (c
′
i)

∫

C

Π2
w,I(c, c)

∂G

∂c
(c, I)dc + β[1−Q1

i (c
′
i)]

∫

C

Π2
l,I,i(c, c)f(c)dc. (7)

This last expression consists in expected payments and costs of the first procurement (the first two
terms), and the ones related to the second period expected utility (which depends on being the winner
or a loser in the first period).

As we said before, we can restrict the analysis to direct mechanisms. Truth-telling in the second
period can be written as:

IC2
o





Π2
w,I(cw, cw) ≥ Π2

w,I(cw, c′w), ∀ cw, c′w ∈ C, ∀I ≥ 0.

Π2
l,I,i(ci, ci) ≥ Π2

l,I,i(ci, c
′
i), ∀ ci, c

′
i ∈ C, ∀ i 6= w, ∀I ≥ 0

And for the first period it can be written as:
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IC1
o : ∀ i ∈ N and I ≥ 0, Π1

i,I(ci, ci) ≥ Π1
i,I(c

′
i, ci), ∀ ci, c

′
i ∈ C.

Observation: We have defined second period rules (transfers and probabilities) and incentive com-
patibility constraints for any possible investment level I ≥ 0. However, the only relevant investment level
is the one the buyer wants to induce. The rules for any other I can be set-up such that those investment
levels are never selected, and IC is satisfied trivially. This allows us to see mechanisms when investment
is observable as a tuple (Γ, I), where I is the investment level “forced” upon the first period winner and
Γ specifies second period rules for that particular I (and also first period rules).

When investment is not observable, second period rules can’t depend on investment level I. In this
setting, the rules (q2

w, q2
l,i, t

2
w, t2l,i) omit the variable I and all the above expressions can be obtained with

this notational change. Nevertheless, incentive compatibly implies that the investment level I (chosen by
the seller) and both period rules must simultaneously satisfy

ICno





I ∈ arg max
K≥0

∫
C

Π2
w(c, c)∂G

∂c (c, K)dc

Π2
w(cw, cw) ≥ Π2

w(cw, c′w), ∀ cw, c′w ∈ C

Π2
l,i(ci, ci) ≥ Π2

l,i(ci, c
′
i), ∀ ci, c

′
i ∈ C, ∀ i 6= w

Π1
i (ci, ci) ≥ Π1

i (c
′
i, ci), ∀ci, c

′
i ∈ C, ∀i ∈ N.

The first condition requires that the the investment level chosen by the first period winner must
maximize his utility level conditional on second period rules. Although we do not write subscript I in all
the inequalities, it implicitly appears in the second period expected utility of the first period losers and
in the first period utility of all players, through the function G(c, I). We omit the mentioned variable
just to emphasize that the buyer can make no use of this more general mechanisms when investment is
non-observable.

In the next lemma we state the usual characterization of incentive compatible mechanisms:

Lemma 10 (Incentive Compatibility): Γ is incentive compatible if and only if

(i) For all i ∈ N and I ≥ 0,

• Q1
i (·) is non increasing

• Π1
i,I(ci, ci) = Π1

i,I(c̄, c̄) +
c̄∫

ci

Q1
i (s)ds for all ci ∈ C

(ii) For all I ≥ 0,

• Qt
k(·) is non increasing, k = (w, I), (l, I, i), i 6= w, i ∈ N .

• Π2
k(ck, ck) = Π2

k(c̄, c̄) +
c̄∫

ck

Q2
k(s)ds for all ck ∈ C, k = (w, I), (l, I, i), ∀ i 6= w, i ∈ N .

Proof: See Appendix.

¤

Participation constraints depend on the level of commitment and investment observability analyzed,
and will be discussed in the sections where optimal mechanisms are characterized.
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4. Efficiency

As a benchmark we find an ex-post efficient mechanism, that is, in each period the project is assigned to
the lowest cost supplier and induces an investment level such that the marginal cost of investment equals
the marginal benefit (in expected terms) of cost reduction. In this section we characterize this investment
level, which we will use as a benchmark, and quickly establish the possibility of implementing such an
investment, regardless of investment observability. The key point is that for mechanisms that assign to
the lowest cost supplier, the investment level (in the non-observable case) is automatically defined (see
equation (9), and this coincides with the buyer’s desired level.3

Since the efficient mechanism, that we denote by Γe, must assign each project to the competitor with
the lowest cost, the assignment rules are given by:

qt,e
i (c) =

{
1 ci < cj , ∀j ∈ N

0 ∼ (8)

for t = 1, 2, i ∈ N . Given this rules, and if the first period winner invests a quantity I, the expected
social cost is

C(Γe, I) =
∫

Cn

[
n∑

i=1

ciq
1,e
i (c)

]
fn(c)dc + β

∫

Cn


cwq2,e

w (c) +
∑

i 6=w

ciq
2,e
i (c)


 fn−1(c−w)

∂G

∂cw
(cw, I)dc + βΨ(I)

= n

∫

C

c[1− F (c)]n−1f(c)dc + β

∫

C

c[1− F (c)]n−1 ∂G

∂c
(c, I)dc

+β(n− 1)
∫

C

c[1− F (c)]n−2[1−G(c, I)]f(c)dc + βΨ(I)

Therefore, the efficient investment level, Ie, is the solution min
I≥0

C(Γe, I). In the next result we

characterize Ie and find a mechanism that achieves efficiency regardless of investment observability.

Proposition 11 The efficient investment level Ie is the solution to

min
I≥0

Ψ(I)−
∫

C

[1− F (c)]n−1G(c, I)dc (9)

Moreover, it can be induced regardless of investment observability using second price sealed bid procure-
ment auctions.

Proof : See Appendix.

¤
In equation (9) we can see the costs and benefits associated to investment. In the first term, we have

the cost of investment, and in the second the expected cost reduction due to one competitor having a
better distribution4.

To conclude this section, note that the irrelevance of investment observability is due to risk neutrality.
From this perspective, the investment level decision correspond to the effort level chosen by the agent in
a risk neutral principal-agent model, where it is known that the first best solution can be achieved when
effort is not observable.

3In a slightly different setup, with ex-ante and ex-post investment, the same result is derived in Piccione and Tan [10].
4Recall that for each c ∈ C, I 7→ G(c, I) is increasing, thanks to Lemma 9, (iii)
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5. Revenue Maximization Under Full Commitment

In this section we assume the existence of institutions that may enforce the contracts established by the
buyer. He commits, before any cost realization, to rules for the first and second period procurement
mechanisms. Second period rules can give different conditions to the first period winner and losers, and
can depend on the investment level when it is observable. However, if a seller decides not to participate
in the first period, we assume the buyer does not have enough commitment power to guarantee he will
not have access to the second period mechanism and treated just as a first period loser. This last point
is important (as it will be explained when we discuss the participation constraints), and very plausible.
Even if a buyer could commit to this rule, a first period buyer could change the name of his firm and
ask for acceptance in the second period, making it impossible for a seller to leave him out without being
accused of partiality.

We first characterize the cost minimizing mechanism with investment observability. We find that
it gives an advantage to the first period winner and that this advantage is independent of the level of
investment required. This, in turn, induces over-investment by the first period winner. Then we turn
to the case of non-observable investment. We find that the optimal mechanism remains unchanged and,
moreover, the level of investment chosen by the first period winner is the same the buyer would have
chosen if he could observe it. As a consequence, the irrelevance of investment observability found for the
efficient mechanism can be extended to the case of cost minimization. This is quite interesting since it
only holds for the cost-minimizing mechanism: in section 7 we show that if the buyer commits to second
period rules that give less advantage to the first period winner than the cost minimizing mechanism, the
amount of investment selected by the former agent is larger than the one carried out by the latter.

5.1 Investment Observability and Full Commitment

In this context, since investment is observable, the buyer can induce any amount of investment he wants.
This can be done by setting transfers low enough (even payments to the buyer) so that any other level
chosen by the first period winner is unprofitable for him. Therefore, we assume the buyer chooses the
investment level I ≥ 0.

Participation in the second period is ensured by

PC2
o (I)





Π2
w,I(cw, cw) ≥ 0, ∀cw ∈ C

Π2
l,I,i(ci, ci) ≥ 0, ∀ci ∈ C, i 6= w.

At t = 1, we require participation in both procurements auctions to be more profitable (in expected
terms) than doing it only in the last one (as in Pesendorfer and Jofre-Bonet [9]). The justification for
this comes from the fact the buyer cannot commit to exclude a player who did not participate in the first
period mechanism from the second period one.5 Therefore, the first period participation constraint can
be written as6:

PC1
o (I) : Π1

i,I(ci, ci) ≥ β

∫

C

Π2
l,I,i(c, c)f(c)dc, ∀ ci ∈ C, ∀ i ∈ N

5If the seller could do it, he could extract all the expected seller’s rent from the second period. He could ask for them as

extra payments in the first period and threaten with the impossibility of participation in the second period for sellers who

are not willing to comply.
6By subscript “o” we denote the investment observability setting.
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We are now ready to state the optimization problem faced by the mechanism designer. Denote by
C(Γ, I) the expected procurement cost when the buyer chooses a mechanism Γ and an investment level
I. It corresponds to:

C =
n∑

i=1

∫

C

T 1
i (c)f(c)dc + β




∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc +

∑

j 6=w

∫

C

T 2
l,I,j(c)f(c)dc


 (10)

Therefore, this buyer solves:

Po





min
Γ,I

C(Γ, I)

s.t.

IC1
o , IC2

o

PC1
o (I), PC2

o (I)

The following result shows that the cost minimizing mechanism under investment observability satis-
fies: (i) In the first period it assigns the contract to the lowest virtual cost seller, (ii) Second period rules
give an advantage to the first period winner, but that advantage does not depend on the investment level
chosen by the buyer.

Proposition 12 Under full commitment and investment observability, the cost minimizing mechanism,
Γ∗, does not depend on the investment level chosen by the buyer, and it is characterized by the probability
functions

q1∗
i (c1, ..., cn) =

{
1 if ci + F (ci)

f(ci)
< cj + F (cj)

f(cj)
∀j 6= i

0 ∼ (11)

q2∗
w (cw, c−w) =

{
1 if cw < k(ci) ∀i 6= w

0 ∼ (12)

q2∗
l,i (ci, c−i) =

{
1 if k(ci) = min{cw, k(cj); ∀j 6= w}
0 ∼ (13)

and transfers

t2∗w (c1, ..., cn) =
{

min{k(ci); i 6= w} if cw < k(ci) ∀i 6= w

0 ∼ (14)

t2∗l,i(ci, c−i) =
{

min{cw, k(cj); j 6= w, i} if k(ci) = min{cw, k(cj);∀j 6= w}
0 ∼ (15)

t1∗i (ci, c−i) =
{

min{ci; j 6= i} − β[Π2
w,I −Π2

l,I,i] if ci = min{cj , ∀j 6= i}
0 ∼ (16)

with k(c) = c +
(
1 + 1

n−1

)
F (c)
f(c) , c ∈ C, Π2

w,I =
∫
C

Πw,I(c, c)∂G
∂c (c, I)dc and Π2

l,I,i =
∫
C

Πl(c, c)f(c)dc

11



Proof : See Appendix.

¤

At t = 1 the optimal rules correspond to the ones derived by Myerson in [8], and are efficient because
of the ex-ante symmetry of competitors and assumption 3. However, the first period winner obtains an
advantage gap for the second procurement, that is, he can obtain the second contract even when some
rivals have lower costs, so the cost minimizing rule in the second period sacrifices efficiency to reduce
expected costs. This advantage gap decreases with the number of sellers: as the number of competitors
increases, giving an advantage to the first period winner is more expensive, since it is more likely that
one of the first period losers has the lowest cost. Nevertheless, this gap never disappears, showing that
sequentiality introduces memory in the optimal contract, expressed in the aforementioned advantage gap.

As it can be seen from the characterization, the optimal mechanism in the second period is quite
simple. It corresponds to a modified second price auction, where the offer of a first period loser of type ci

is treated as an offer k(ci). This is particularly advantageous to a first period winner, since it increases
its probability of winning and also the transfers when it wins in the second period. But why is the buyer
interested in this? The answer lies in the first period transfers: the buyer gets back the expected marginal
benefit in the second period of winning in the first period.

Observation: Since these rules do not depend on the level of investment I, they are also feasible
when this variable is not observable. In fact, the optimal second period mechanism does not rely on the
ex-ante degree of complementarity (given by G(c, 0)) nor on the ex-post degree of complementarity (given
by G(c, I)). The optimal way to inter-temporally distribute incentives across time, gives an advantage to
the winner based on the loser’s cost distribution. In order to increase the competition in the first period,
rules for the second period are modified, generating a cost reduction in the first period. The tradeoff
between this first period effect, and the inefficiencies introduced by an advantage in the second period
give rise to the optimal advantage level.

To complete our characterization of the cost-minimizing mechanism, we now characterize the invest-
ment level chosen by the buyer, I∗.

Proposition 13 Under full commitment of the buyer and investment observability, the cost minimizing
investment level I∗ is the solution to

min
I≥0

Ψ(I)−
∫

C

[1− F (k−1(c))]n−1G(c, I)dc (17)

Proof: See Appendix.

¤

In the previous expression we can see the the three effects of investment. The first term is the cost
of investment (at t = 2 the buyer must ensure participation for the first period winner), the second one
reflects the advantages of it: as investment goes up G(c, I) goes up, since more weight is put in low-cost
realizations of the first period winner. However, when compared to the efficiency case (equation 9), this
last effect is stronger. Because now the first period winner is granted an advantage gap at the second
procurement, it happens that k−1(c) < c which implies that [1 − F (k−1(c))]n−1 > [1 − F (c)]n−1. The
benefits of investment for the buyer are now larger, since the first period winner is assigned the contract
more often, due to the advantage gap. From now on we assume that the first order condition in (17) is
satisfied.

12



5.2 Investment Non-Observability and Full Commitment

As we said before, in this case rules cannot be functions of the investment level chosen by the first period
winner. He decides, knowing the second period rules, how much to invest. Therefore, the second period
rules chosen by the buyer influence the investment decision, and this effect must be taken into account
by the buyer. With all this in mind, we can write the buyer’s problem as7:

Pno





min
Γno,I

C(Γno, I)

s.t.

I ∈ arg max
J≥0

∫
C

Π2
w(c, c)∂G

∂c (c, J)dc

IC1
no, IC2

no

PC1
no(I), PC2

no(I)

The first restriction must be added because the investment level is chosen by the first period winner.
It specifies that the cost minimizing investment level that the buyer wishes to be implemented must be
profit maximizing under mechanism Γno for the first period winner.

Denote by (Γ∗no, I
∗
no) the solution to Pno. It is clear that

C(Γ∗, I∗) ≤ C(Γ∗no, I
∗
no)

due to the additional restrictions in Pno. The next result establishes that the mechanism (Γ∗, I∗), optimal
when investment is observable, is also feasible when investment is non-observable. This is so not only
because Γ∗ has second period rules that do not depend on investment, but also because I∗, under this
rules, is profit maximizing for the first period winner. So, it satisfies ICno.

Proposition 14 Under full commitment of the buyer and investment non-observability, the solution to
Pno is Γ∗no = Γ∗, I∗no = I∗, with (Γ∗, I∗), the solution with investment observability.

Proof: See Appendix.

¤

Therefore, as (Γ∗, I∗) is the solution in both settings, observable and non-observable investment, we
call it the full commitment cost-minimizing solution. We can see that when the buyer set rules according
to Γ∗, he provides the right incentives to induce the first period winner to invest I∗, the same level
that the buyer would have chosen himself. This strengthens the result which establishes the possibility
of efficiency regardless of investment observability, showing that this is also the case when the buyer’s
objective is cost minimization. Later on we prove that this is not the case for any mechanism, but a
special case of these two. For other advantage levels in the second period mechanism, the buyer and the
seller’s desired levels of investment differ.

5.3 Over-Investment

Under full commitment, the buyer gives an advantage to the first period winner in the second period.
Surprisingly, this induces an investment level that is above the efficient one, as shown in the next result.

7By subscript “no” we denote the investment non-observability environment. Recall that in this case the rules chosen

by the buyer are not functions of investment.
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Proposition 15 Assume that Ie and I∗ satisfy the first order conditions of problems (9) and (17),
respectively. Thus, if the buyer is fully committed over-investment occurs, that is, Ie < I∗.

Proof: See Appendix.

¤

The intuition for this result depends on the degree of investment observability. If investment is non-
observable, two effects are present. On the one hand the second period advantage gap gives the first
period winner incentives to relax, and to invest less in a distributional upgrade, since he does not really
need a low cost to win and investment is costly. On the other hand, investment generates lower expected
costs, increasing his profit margin in case of winning. As the advantage gap increases, winning becomes
more likely and therefore investment becomes more attractive. This second effect dominates the first.

To see this, we can rewrite the conditions that define Ie and I∗ ((9) and (17)) as

Ie ∈ arg max
I≥0

∫

C

[1− F (c)]n−1G(c, I)dc−Ψ(I)

I∗ ∈ arg max
I≥0

∫

C

[1− F (k−1(c))]n−1G(c, I)dc−Ψ(I)

The first term in both equations corresponds to the fraction of the first period winner’s expected payoff
in the second period that depends on investment. In both cases, this term increases with I, because G(c, ·)
is increasing. But since k−1(c) < c, this effect is bigger in the full-commitment cost-minimizing case.
This shows how the incentives to relax are dominated by the incentives to invest and increase the profit
margins. Moreover, this effect is quite strong. Consider two mechanisms Γ̃ and Γ̄, not depending on
investment, such that the corresponding second period expected winning probability functions for the
first period winner satisfy Q̃2

w(c) ≥ Q̄2
w(c), ∀c ∈ C, with strict inequality on a positive-measure subset of

C. That is, Γ̃ gives more advantage to the first period winner at t = 2 than Γ̄. Therefore,
∫

C

Q̃2
w(c)G(c, I)dc−Ψ(I) >

∫

C

Q̄2
w(c)G(c, I)dc−Ψ(I)

which allow us to conclude that Ĩ > Ī, with Ĩ , Ī the corresponding induced investment levels (assuming
that the first order conditions hold). This shows that the most inefficient mechanism, Q̃2

w(c) ≡ 1, induces
the largest amount of investment possible.

If investment is observable, and thus chosen by the buyer, the result is the same but the intuition is
different. If the first period winner is going to have an advantage in the second period, and therefore he
is likely to win anyway, it is good for the buyer to increase the likelihood of him having low costs. This
effect makes investment more attractive than in the case of efficient second period rules (which give no
advantage), and therefore over-investment occurs.

6. Revenue Maximization Under Non-Commitment

In this section we assume that the buyer cannot commit to the second period rules before the investment
stage, and this is known by the sellers. This fact induces, through a second period mechanism that is
disadvantageous to the first period winner, an investment level below the efficient one. Also, in this
setting, the observability of investment will make a difference (unlike the commitment case).

14



To begin with, suppose that the first period winner invests an amount I before the second procurement.
Now, the buyer has incentives to change rules based on the investment level, and considers the investment
expenditures, Ψ(I), as sunk costs.

We start with the case of observable investment.

6.1 Investment Observability and Non-Commitment

Because investment is observable, the buyer can make use of mechanisms of the form

Γ2 = ({t2w,I}I≥0, {q2
w,I}I≥0, {t2l,I}I≥0, {q2

l,I}I≥0)

It is worth to emphasize that because of the buyer’s inability to commit to mechanisms, he cannot
decide the investment level even though it is observable.

Since participation in the second period must give non-negative profits, it must be the case that
T 2

w,I(c) − cQ2
w,I(c) ≥ 0, ∀c ∈ C. Also, because the second period expected utility for the first period

winner is expressed by Π2
w,I(c, c) = T 2

w,I(c)− cQ2
w,I(c)−Ψ(I), the participation constraint can be written

as:

(PC2
nc) Π2

w,I(c, c) ≥ −Ψ(I), ∀c ∈ C. (18)

Finally, as in the previous sections, the second procurement expected cost corresponds to

C2(I) =
∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc +

∑

i 6=w

∫

C

T 2
l,I,i(c)f(c)dc

If the first period winner has already chosen an investment level I (observable), sequential rationality
implies that the buyer solves, for the second period:

P̂o(I)





min
Γ2

C2(I)

s.t Π2
w,I(c, c) ≥ −Ψ(I), ∀c ∈ C

Π2
l,I,i(c, c) ≥ 0, ∀c ∈ C, ∀i 6= w, i ∈ N

IC2
o

The following result shows that, given any investment level carried out by the first period winner,
the buyer gives disadvantage to this agent at t = 2. Since the buyer cannot commit to contracts and
the first period winner has improved his distribution, the buyer has no incentive to continue giving the
mentioned advantage gap of the full commitment solution. As usual, informational asymmetries harm
the competitor with the best distribution in one-shot auctions.

Lemma 16 In the absence of buyer’s commitment, the second period cost minimizing mechanism Γ̂2(I),
when the investment observed is I, corresponds to

q̂2
w,I(cw, c−w) =





1 cw + G(cw,I)
∂G
∂c (cw,I)

< min
j 6=w

{
cj + F (cj)

f(cj)

}

0 ∼
(19)

q̂2
l,I,i(ci, c−i) =





1 ci + F (ci)
f(ci)

< min
{

cw + G(cw,I)
∂G
∂c (cw,I)

, min
j 6=i,w

{
cj + F (cj)

f(cj)

}}

0 ∼
(20)
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Proof : See Appendix.

¤

The second period mechanism gives a disadvantage to the first period winner, since c + F (c)
f(c) <

c + G(c,I)
∂G
∂c (c,I)

, ∀I ≥ 0 (Lemma 9, (ii)). Thus, it can occur that the first period winner loses even if he has
the lowest cost. We can see how an opportunistic behavior appears, exactly as in a hold-up situation.
The first period winner commits to a sunk cost investment to improve his cost distribution, allowing the
seller to take advantage of this specific investment. The buyer does so by changing the rules against the
first period winner, and therefore extracting more rent from him.

The next result characterizes the optimal first period mechanism under non-commitment. The as-
sumption of sequential rationality directly implies that these rules must be optimal in a one-shot pro-
curement auction setting. Therefore, the buyer should compare virtual costs in order to assign the first
period project.

Corollary 17 In the absence of buyer’s commitment, the first period cost minimizing assignment rules
correspond to

q1∗
i (c1, ..., cn) =

{
1 ci + F (ci)

f(ci)
< cj + F (cj)

f(cj)
∀j 6= i

0 ∼ (21)

Proof : Direct.

¤

We now turn to the investment level induced in this environment. A first period winner, anticipating
the buyer’s behavior in the second period (the selection of mechanisms of the form Γ̂2(I)), determines
how much to invest. This allows us to fully characterize the investment level:

Proposition 18 With non-commitment and investment observability, the investment level chosen by the
first period winner, Î, solves

max
I≥0

V (I) ≡
∫

C

[1− F (J−1(JI(c))]n−1G(c, I)dc−Ψ(I) (22)

with JI(c) = c + G(c,I)
∂G
∂c (c,I)

and J(c) = c + F (c)
f(c) . Thus, the optimal mechanism for the buyer is Γ̂2(Î).

Proof : See Appendix.

¤

We can see how investment affects the first period winner’s utility V (·) through three channels. The
first term in the integral, [1 − F (J−1(JI(c))]n−1, decreases with I, since as investment increases, the
second period mechanism gives a bigger disadvantage to the first period winner. However, the second
term in the integral, G(c, I) is increasing in I for each c ∈ C, and it reflects the increased probability
of winning due to a better cost distribution. The last term, −Ψ(I), also reflects a negative effect of
investment, since it is costly.

If we compare condition (22) with condition (9), that defines the efficient level of investment, we
observe that the positive effect of investment (given by an increase in G(c, I)) is weaker in the case of
non-commitment, since 8

[1− F (J−1(JI(c))]n−1 < [1− F (c)]n−1

8. Using assumption 1, lemma 9 (ii), and assumption 3 we have that J−1(JI(c)) > c

16



Intuitively, in an ex-post efficient mechanism, the probability of a first period winner succeeding at
t = 2 is the probability that all first period losers have higher costs ([1− F (c)]n−1). On the other hand,
his probability of winning in a non-commitment environment is the probability that all losers have higher
virtual costs than him ([1−F (J−1(JI(c))]n−1). This last probability is lower since virtual costs are higher
when the cost distribution is improved.

The fact that the absence of commitment reduces the advantage granted to the first period winner
at the second procurement (when compared to the efficient mechanism) will induce a lower investment
level chosen by this agent, as shown in the next result:

Proposition 19 Assume that Ie, I∗ and Î satisfy the first order conditions of problems, (9), (17)and
(22), respectively. Then, under non-commitment of the buyer and investment observability, investment
falls below efficiency, that is Î < Ie < I∗.

Proof : See Appendix.

¤

Here, a hold-up intuition appears: anticipating that the rules will be biased against him in the second
procurement mechanism, and knowing this effect will be more pronounced the more he invests, the seller
invests less than the efficient level. In other words, he does not internalize all the benefits from investment,
since part of it is appropriated by the seller as rent extraction.

6.2 Investment Non-Observability and Non-Commitment

We now consider the case when investment is not observable. If the buyer could monitor the investment
level chosen by the first period winner, I, he would react optimally imposing Γ̂2(I), as in the previous
subsection. Now, since investment cannot be observed, the buyer cannot choose a contingent plan with
one mechanism for each level I selected by the first period winner.

We model this situation as a simultaneous-move game between the first period winner and the buyer
where the former chooses an investment level and the latter a second period mechanism. In such a game,
the buyer chooses just one mechanism, which is a best response to the investment level chosen by the
first period winner. Symmetrically, the investment level is a best response to the mechanism chosen by
the buyer. Then, we define the action space for the first period winner to be Aw = [0,+∞). For the
buyer, the strategy space could be the set of incentive compatible mechanisms that satisfy participation
constraints. However, by a rationalizability argument, we consider only the mechanisms that are a best
response for some investment level of the first period winner, that is Ab = {Γ̂(I)| I ≥ 0} where Γ̂(I) is
the sequentially optimal mechanism given an investment level I defined in lemma 16. In this context we
can define a pure strategy equilibrium:9

Definition 20 A pure strategy equilibrium under non-commitment and investment non-observability is
a tuple (Γ, I) ∈ Ab ×Aw such that

(i) Γ = Γ̂(I)

(ii) I ∈ arg max
K≥0

∫
C

Π2
w,Γ(c, c)∂G

∂c (c,K)dc−Ψ(K)

where Π2
w,Γ(c, c) is the second period expected utility of a first period winner with cost c that reveals

truthfully under the mechanism Γ.
9Piccione and Tan [10] use a similar construction in a slightly different environment.
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Condition (i) implies that the mechanism chosen by the buyer is a best response to the investment
level chosen by the first period winner. Condition (ii), respectively, implies that given the mechanism
Γ, the first period winner is choosing his investment level optimally. We now state a simple lemma that
allows to proceed with the characterization of the investment level and the optimal mechanism.

Lemma 21 A pure strategy Nash equilibrium is given by (̂̂I, Γ̂(̂̂I)) where

̂̂
I ∈ arg max

K≥0
U(K,

̂̂
I) ≡

∫

C

[1− F (J−1(Ĵ̂
I
(c)))]n−1G(c,K)dc−Ψ(K) (23)

Proof : See Appendix.

¤

The function U(K, I) corresponds to the second period expected utility for the first period winner if he
invests an amount K and faces the mechanism Γ̂2(I). If we compare the function U(·, I) with the function
V (·) defined in proposition 18, which characterizes investment for the case of observability, we can see
that the negative effect of investment due to more disadvantageous mechanisms is fixed. The reason
is that the buyer cannot observe the investment level chosen by the first period winner. However, the
positive effect corresponding to an increased probability of winning and the negative effect corresponding
to the cost of investment are still present. Since one of the negative effects of investment is fixed, the
incentives to invest are now bigger than in the investment observability case.

The following proposition ensures the existence of an equilibrium, under the assumption that the
marginal benefit due to a distributional improvement disappears when the investment level carried out is
large enough. It also states that under non-commitment of the buyer, the possibility to monitor invest-
ment induces levels below the ones chosen when investment cannot be observed. This occurs because,
when investment is observable, the buyer can react optimally with more disadvantageous mechanisms as
investment increases.

Proposition 22 Suppose that the following condition holds10:

lim
I→∞

[1− F (J−1(JI(c))]n−1 ∂G

∂I
(c, I) = 0 (24)

Then, a unique equilibrium exists and corresponds to the tuple (̂̂I, Γ̂(̂̂I)) where the investment level ̂̂
I is

given by condition (23).

Also, Î ≤ ̂̂
I, with strict inequality if Î satisfies the first order condition of problem (22).

Proof : See Appendix.

¤

We can also compare this investment level with the efficient one.

Corollary 23 If Ie satisfies the first order condition of problem (9), then,

Î ≤ ̂̂
I < Ie

Proof : See Appendix.
10The family of distributional upgrades introduced in example 1 satisfies this condition.
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¤

The intuition of the result is the following: disadvantageous mechanisms disincentive cost-reduction
investment. This is so because the marginal benefit of investment (which comes from the expected cost
reduction in the second period) decreases when the second period rules become less attractive (since they
give a disadvantage to the first period winner). This occurs in both the case of investment observability
and non-observability. However, this effect is less marked when the buyer cannot observe the investment
level and must choose a mechanism “guessing” the first period winner’s decision. If he can observe the
investment level, he can react optimally and choose even more disadvantageous mechanisms in the second
period. This fact is anticipated by the first period winner, which results in lower investment levels.

To conclude, note that the assumption of sequential rationality implies that the optimal first period
rules in this environment correspond to the ones defined in Corollary 17. As before, the first period
transfers are set-up such that participation is ensured for all sellers at both competitions. As a con-
sequence, the cost minimizing mechanisms under non-commitment (for observable and non-observable
investment) are feasible for a fully committed buyer. Therefore, the expected cost in an environment
without commitment is necessarily higher than in an environment with commitment

Corollary 24 The expected cost of both procurements is lower under full commitment than under non-
commitment of the buyer (whether investment is observable or not).

Proof : See Appendix.

¤

7. Discussion

7.1 Investment Observability “Irrelevancy”

The fact that investment observability cannot improve the buyer’s ability to reduce expected costs (in
the case of full commitment) is interesting. This strengthens the result (also found in Piccione and Tan
[10]), that this is also the case when the buyer’s objective is ex-post efficiency. A natural question that
arises is whether this is true for any mechanism used by the buyer. The answer is no, as shown in the
next result. When the buyer sets, for instance, a mechanism that gives less advantage to the first period
winner than the one in the cost-minimizing mechanism, the investment level chosen by the buyer (in the
observable case) is higher than the one chosen by the first period winner (in the non-observable case).
The intuition is as follows: with a smaller second period advantage, second period rules are closer to a
sequentially optimal mechanism. Therefore the buyer captures more of the surplus generated by a cost
distribution improvement11 and, consequently has a bigger marginal benefit from investment. It is not
surprising, then, that if he chooses investment, he will select a level above the one a first period winner
would choose.

Proposition 25 Consider n = 2 and assume that the buyer wants to implement the following incentive
compatible mechanism:

q̃2
w,I(cw, cl) =

{
1 cw < g(cl)
0 ∼ (25)

11Which is also bigger, since such a mechanism is also closer to an efficient one.
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with g(·) an increasing function that satisfies g(c) = c and g(c) ≤ k2(c) = c + 2F (c)
f(c) , ∀c ∈ C, with strict

inequality on a subset of C with non-zero measure. Denote by Ĩb and Ĩw the investment levels chosen by
the buyer and first period winner respectively when facing this mechanism. Then, Ĩb > Ĩw

Proof : See Appendix.

¤

7.2 Number of Competitors

Let n ∈ IN and I∗(n) the full commitment investment level when there are n competitors and C∗(n) the
corresponding expected cost of both procurement auctions. The following proposition shows two results.
First, as the number of competitors increases, the investment level decreases to 0 as n goes to infinity.
Second, the expected cost of both procurement auctions tend to 2c as n goes to infinity.

Proposition 26 Suppose that I∗(n) is the full commitment investment level when there are n competi-

tors. Then, I∗(n) ↘ 0 as n →∞. As a consequence, Ie(n), Î(n) and ̂̂
I(n) go to zero as n →∞. Finally,

if we denote by C∗(n) the expected cost of both procurement auctions under full commitment, we have
that C∗(n) → 2c as n →∞.

Proof : See Appendix.

¤

The intuition behind the first result is the following: as the number of competitors grows, giving an
advantage in the second period mechanism becomes more costly. This is so because there is a higher
probability that the lowest cost supplier will not win the procurement, and this increases the expected cost
of an advantage. If investment is observable (and therefore chosen by the buyer), this smaller advantage
reduces the incentives to induce cost reduction, because it is less likely that the first period winner will
also win the second procurement. If investment is non-observable (and therefore chosen by the first period
winner), then a reduced advantage in the second period decreases his incentives to invest. This effect is
compounded with the fact that any advantage level becomes less significant as the number players grows.
Even if the first period winner has an advantage, the probability that another seller draws a significantly
lower cost and still beats him becomes more important when the number of competitors grows. Such
and advantage exists even when n goes to infinity, (see section 5), but then it is just nominal. As the
number of competitors goes to infinity, the probability that the first period winner is assigned the second
contract despite a higher cost converges to 0.

As we can see, when the intensity of competition increases, the role of mechanisms as tools to induce
investment and intertemporally redistribute incentives disappears. The only significant role played by
the cost minimizing mechanism is to assign efficiently in each period.

The second result is direct from the fact that, as the number of sellers increases, it is more likely that
some of the competitors reports a cost close to c in each procurement auction. Moreover, the probability
that the lowest cost supplier is not assigned the project goes to 0, and therefore competition drives the
cost of each project to c.

8. Investment by the Loser

We now extend the model to the case where the loser can also invest, with a potentially different tech-
nology, to improve its cost distribution. In particular, we assume that the if the loser invests I, at a
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cost Ψl(·) (Ψw(·) for the winner and both functions increasing and convex) its cost distribution for the
second period will be F (·, I), with F (·, 0) = F (·). The buyer may now want to induce (or mandate, if
investment is observable) investment by the loser, since it increases competitiveness in the second period.
However, this comes at a cost, since winning in the first period becomes less attractive. In what follows,
we characterize the optimal mechanism with an without observability, and compare the investment levels
to the ones obtained when only the winner can invest. Technically, the analysis is more intricate, since
the optimal second period mechanism depends on the loser ’s distribution, which is now endogenous. To
keep analytical tractability we restrict attention to the case of two players.

8.1 Investment Observability

As before, this corresponds to the case where the buyer can actually choose the investment levels, and a
second period mechanism which is optimal given these levels. The next lemma provides a characterization
of the buyer’s problem.

Lemma 27 Assume that investment is observable. The problem of the buyer corresponds to choose
investment levels according to:

max
Iw,Il≥0

∫

C

F (J−1
Il (c), I l)dc +

∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc−Ψw(Iw)−Ψl(I l) (26)

and a second period mechanism characterized by

q2∗
w (cw, cl) =

{
1 cw < JIl(cl)
0 ∼ (27)

with JIl(c) = c + 2 F (c,Il)
∂F
∂c (c,Il)

, c ∈ C. Moreover, Iw∗ and I l∗, are characterized by:

Iw∗ ∈ arg max
Iw≥0

∫

C

[1− F (J−1
Il∗ (c), I l∗)]G(c, Iw)dc−Ψw(Iw) (28)

I l∗ ∈ arg max
Il≥0

∫

C

[1−G(c, Iw∗))]F (J−1
Il (c), I l)dc−Ψl(I l) (29)

Proof : See Appendix.

¤

Note that I has two effects on the function F (J−1
I (c), I), which is the probability of the first period

loser winning in the second period. On the one hand, I improves the loser’s distribution, and therefore its
winning probability (∂F

∂I (c, I) ≥ 0). On the other, I induces a mechanism which is more disadvantageous
for the loser (JI(c) is increasing in I). The composite effect is critical for the comparison of investment
levels, and we concentrate in two polar cases:

(A1) For every c ∈ C, I 7→ F (J−1
I (c), I) is decreasing.

(A2) For every c ∈ C, I 7→ F (J−1
I (c), I) is increasing.12

12It is not difficult to see that, at c = c we get ∂
∂I

(F (J−1
I (c), I))

∣∣∣
c=c

= − ∂F
∂c

(J−1
I (c), I) ∂

∂I
(J−1

I (c)) ≥ 0, where the last

inequality comes from J−1
I (c) = c and ∂

∂I
(J−1

I (c)) ≤ 0. Nevertheless, both (A1) and (A2) are possible, and they represent

two polar cases of the the tradeoff that a loser faces when investment is observable: improving her distribution implies more

disadvantageous rules.
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From the optimality conditions for Iw∗ and I l∗ in lemma 27, one could interpret the buyer’s problem
as an (artificial) investment game between the sellers, and define its associated best response functions,
BRo

w(·) and BRo
l (·), for the first period winner and loser. They satisfy:

BRo
w(I l) = arg max

Iw≥0

∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc−Ψw(Iw) (30)

BRo
l (I

w) = arg max
Il≥0

∫

C

[1−G(c, Iw))]F (J−1
Il (c), I l)dc−Ψl(I l) (31)

Note that if (A1) is satisfied, BRo
w(·) is increasing and BRo

l (·) ≡ 0. On the other hand, if (A2) satisfied,
both best response functions are decreasing. We obtain the following result:

Proposition 28 (i) Assume that (A1) holds. Then, I l∗ = 0 and Iw∗ = I∗, where I∗ is the same level
found in section 5, and corresponds to the solution of

max
Iw≥0

∫

C

[1− F (J−1
0 (c), 0)]G(c, Iw)dc−Ψw(Iw)

(ii) Assume that (A2) holds. Then, if

∂

∂I l




∫

C

[1−G(c,BRo
w(0))]F (J−1

Il (c), I l)dc−Ψl(I l)




∣∣∣∣∣
Il=0

> 0 (32)

∂

∂Iw




∫

C

[1− F (J−1
BRo

l (0)(c), BRo
l (0))]G(c, Iw)dc−Ψw(Iw)




∣∣∣∣∣
Iw=0

> 0 (33)

Iw∗, I l∗ > 0 and they are characterized as in lemma 27. Moreover, Iw∗ < I∗.

Proof : See Appendix.

¤

Throughout this section we will distinguish both cases (A1) and (A2) in order to establish rankings
among mechanisms chosen by the buyer and the investment levels carried out by the sellers across different
environments. Whenever we refer to case (A2) we will implicitly assume that the buyer’s problem has
an interior solution (i.e, Iw, I l > 0).

8.2 Investment Non-Observability

When the investment decisions are not observable for the buyer, the problem becomes much more complex.
The buyer must choose a mechanism among the class of incentive compatible mechanism such that
participation is ensured for any cost realization of the sellers at both stages, which we denote by B. By
choosing a mechanism, the buyer is able to influence investment levels chosen by the sellers. Denoting by
Π2

k(Γ, Iw, I l) the second-period expected utility for agent k ∈ {w, l} when the buyer sets a mechanism Γ
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and the investment level profile carried out is (Iw, I l), the buyer’s problem can be written as

min
Γ,Iw,Il

C(Γ, Iw, I l)

s.t. Iw ∈ arg max
Ĩw≥0

Π2
w(Γ, Ĩw, I l)

I l ∈ arg max
Ĩl≥0

Π2
w(Γ, Iw, Ĩ l)

Γ ∈ B

which we denote by Pno(B). Note that a mechanism Γ ∈ B induces investment levels (Iw(Γ), I l(Γ)) as the
equilibrium of a second-stage investment game played by the first period winner and loser, so the buyer’s
problem Pno(B) reduces to min

Γ∈B
C(Γ, Iw(Γ), I l(Γ)). This formulation is intractable due to the size B

coupled with the intrinsic nonlinearity of the investment levels induced. To make the problem tractable,
we restrict the buyer’s feasible set to the class of optimal mechanisms in the investment-observability
case, that is B∗ ≡ {Γ∗(I l) | I l ≥ 0} and study the solution to Pno(B∗). The next lemma characterizes
the solution to this problem:

Lemma 29 Define the functions I 7→ Iw,no(I) and I 7→ I l,no(I) as

Iw,no(I) ∈ arg max
Iw≥0

∫

C

[1− F (J−1
I (c), I l,no(I))]G(c, Iw)dc−Ψw(Iw) (34)

I l,no(I) ∈ arg max
Il≥0

J−1
I (c̄)∫

c

[1−G(JI(c), Iw,no(I))]F (c, I l)dc−Ψl(I l) (35)

The tuple (Ino, I l,no, Iw,no) is a solution to Pno(B∗) if and only if

(i) Ino solves

max
I≥0

∫

C

F (c, I l,no(I))dc +
∫

C

[1− F (J−1
I (c), I l,no(I))]G(c, Iw,no(I))dc−Ψw(Iw,no(I))−Ψl(I l,no(I)) (36)

(ii) I l,no ≡ I l,no(Ino) and Iw,no ≡ Iw,no(Ino)

Proof : Obvious.

¤

Condition (i) establishes that the buyer, anticipating the equilibrium investment levels of the second
stage game, chooses Ino (and consequently Γ∗(Ino)) by minimizing the expected cost of procurement.
Condition (ii) establishes that in the ensuing investment game, sellers play Nash-equilibrium strategies.
From now on, we assume that the solutions to both the buyer’s and the sellers’ problems are characterized
by the first order conditions.

Fixing a mechanism Γ∗(I) ∈ B∗, we define BRno
w (I l|I) and BRno

l (Iw|I) as the best response function
of the first period winner and loser, in the second stage game played by the sellers. They satisfy:

BRno
w (I l|I) ∈ arg max

Iw≥0

∫

C

[1− F (J−1
I (c), I l)]G(c, Iw)dc−Ψw(Iw)
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and

BRno
l (Iw|I) ∈ arg max

Il≥0

J−1
I (c̄)∫

c

[1−G(JI(c), Iw)]F (c, I l)dc−Ψl(I l)

We obtain the following result:

Lemma 30 (i) For any fixed mechanism Γ∗(Ib), BRno
w (·|Ib) and BRno

l (·|Ib) are decreasing functions.

(ii) Iw,no(Ib) is strictly increasing in Ib, and I l,no(Ib) is strictly decreasing in Ib.

Proof : See Appendix.

¤

Statement (i) comes from the fact that an agent’s expected probability of winning decreases when
his rival invests more in cost reduction and becomes more competitive. This reduces the investment
incentives, leading to lower investment. The intuition for (ii) is that, as there is more advantage in the
second period (a larger Ib in Γ∗(Ib)), the investment incentives for the first period winner increase, but
decrease for the first period loser.

The next result states that, when investment is not observable, the buyer treats the loser as the worst
possible competitor, that is, she chooses a mechanism indexed by a zero investment level.

Lemma 31 Suppose both Iw,no(·) and I l,no(·) are differentiable. Then, Ino = 0.

Proof : See Appendix.

¤

This result shows the robustness of the mechanism found in the full-commitment environment when
the loser is not allowed to invest in cost reduction. If investment by the loser is possible and the buyer
is restricted to choose mechanisms in B∗, the optimal mechanism when the loser cannot invest is still
optimal. In some sense, if the buyer is mistaken about the loser’s possibility of investment, he incurs in
no losses due to suboptimal mechanisms. This is not obvious since there is a trade-off in the incentives
set to the competitors: by imposing a mechanism indexed by a higher investment level, on the one hand,
the winner would invest more (more advantage is granted) which results in lower expected cost and, on
the other, the loser’s investment incentives are reduced. This result says that the latter effect always
dominates the former.

With this result, when case (A1) holds, we are able to rank the investment levels obtained in both
environments of investment observability and non-observability:

Proposition 32 Suppose that (A1) holds, that is, for every c ∈ C, I 7→ F (J−1
I (c), I) is decreasing. Then

0 = I l∗ ≤ I l,no (37)

Iw,no ≤ Iw∗ (38)

where the last inequality is strict if and only if I l,no > 0. As a consequence, Iw,no ≤ I∗, therefore, the
loser’s possibility to invest reduces the investment carried out by the first period winner.

Proof : See Appendix.

¤
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When investment is not observable, the negative effect on the first period loser due to disadvanta-
geous mechanisms (the J−1

0 (·) term) does not depend on the loser’s investment. This explains the first
inequality. The last one is simply the fact that, as long as the loser invests more, the expected probabil-
ity of winning decreases (recall that in the investment game stage the mechanism is fixed), reducing the
investment incentives for the first period winner.

We restrict from now on to the case (A2), that is, for every c ∈ C, I 7→ F (J−1
I (c), I) is increasing. In

order to rank the investment levels induces in this setting we assume the following condition:

Assumption 33 (B) For all c ∈ C, ∂
∂I (F (J−1

I (c), I)) < ∂F
∂I (J−1

0 (c), I) d
dc (J−1

0 (c))

This condition states that the loser’s marginal benefit from investment (in distributional terms) decreases
with investment observability. If investment is observable, investment improves the distribution but it
also has a negative effect due to disadvantageous rules to the loser ( J−1

I (c) decreases with I). This
negative effect is absent when the mechanism is fixed with the implicit advantage J0(c). However, the
expression F (J−1

0 (c), I) has to be corrected by the term d
dc (J−1

0 (c)) reflecting the fact that for high cost
draws, the loser is not assigned the project (the relevant costs for the loser lie in the interval [c, J−1

0 (c̄)]).

Proposition 34 Suppose that (A2) and (B) holds. Then, we obtain the same raking among investment
levels:

I l∗ < I l,no (39)

Iw,no < Iw∗ (40)

If (B) does not holds, it is not clear what is the relation among the above variables.

Proof : See Appendix.

¤

Assumption (B) implies that the investment incentives for the loser are higher when investment is not
observable, explaining the first inequality, while the last one can be deduced using the same reasoning
argued in the previous proposition. The following figure illustrates the result.

Figure 1:
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9. Conclusions

In this paper we characterized the cost minimizing mechanism for a buyer that must procure two projects
and faces the same group of competitors over time with the winner of the first period being able to invest
in cost reduction for the second competition. We considered the cases of full-commitment and non-
commitment to second period rules, and observable and non-observable investment carried out by the first
period winner. Moreover, we characterized the investment level induced in each of these environments.

We first defined, as a benchmark, an ex-post efficient mechanism, which always assigns the projects
to the lowest-cost seller, and induces an investment level such that the social cost of investment is equal
to the social gain of it.

We proved that, if the buyer can commit to second period mechanisms, he will choose to give an
advantage to the first period winner in order to increase the intensity of competition in the first period.
This advantage, which is ex-post inefficient, decreases with the number of competitors but never disap-
pears. This is so because, for small advantages, the gains from the intertemporal distribution of incentives
are always bigger than the losses due to ex-post inefficiency. This pressure to increase competition in
the first period and its consequence, the advantage in the second period for first period winner, induces
investment levels above the socially efficient one. We also showed that in the case of full-commitment,
the observability of investment is irrelevant and the optimal mechanism remains the same.

In the case of a buyer who lacks commitment, he chooses second period mechanisms that are disad-
vantageous to the first period winner. This, in turn, induces investment levels below efficiency. Here,
investment observability makes a difference, since the buyer chooses more disadvantageous rules as for
bigger investment levels. If he can observe investment, and react optimally, this effect is stronger and
anticipated by the first period winner, therefore inducing even lower investment levels than in the non-
observable case, where he must anticipate the choice of the first period winner.

We extended the model to allow for simultaneous investment and analyze the implications of in-
vestment observability in a full commitment environment. In a two-competitors setting, we found that
when investment is observable, if cost reduction harms the first period loser, the buyer chooses the same
mechanism and investment levels as if the first period loser were not able to invest. To the contrary, if
investment is profitable for the loser, the buyer imposes positive investment for the loser, chooses second
period rules according to this level of investment and the degree of cost reduction carried out by the
first period winner is lower than the one induced when the loser is not allowed to invest. Finally, when
investment is not observable we showed that the mechanism chosen by the buyer is robust to the loser’s
investment possibilities, and the level of cost reduction chosen by the first period loser (winner) is higher
(lower) than when investment cannot be monitored.

In this paper mechanisms help the buyer to reduce costs through three channels. They allow rent
extraction in a single period, they allow the provider to intertemporally distribute incentives (through
advantages) and they give incentives to investment. Without commitment, since only a disadvantage is
credible in the second period, the second channel disappears and, moreover, investment incentives are
small. As a result of this, commitment helps the buyer to reduce costs, since it gives him more tools for
rent extraction and, by allowing him to induce higher levels of investment, it reduces the total expected
cost of the project.

The present work gives interesting normative implications for an agency that must procure projects
repeatedly over time. It stresses the value of commitment and the role of second period advantages as
incentives for cost-reduction investment. The extension to a general multi-period model is not direct,
however. In such a model, there is not only one “winner”, since many sellers could have won a previous
procurement auction. A mechanism should specify how a relative advantage is calculated, and how
previously won auctions influence this advantage. Moreover, it is critical to decide who can invest at each
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point in time. We leave this as a direction for future work in the topic.
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10. Appendix: Proofs

Example 6: Assume that F (·) is a concave twice differentiable distribution. Define G(c, 0) = F (c)η,
0 < η < 1 and G(c, I) = 1 − (1 − G(c, 0))γI+1, γ > 0. It is straightforward that the first inequality in
assumption 1 is checked when I ′ = 0. Also, it is clear that ∂G

∂c (c, I) = (γI + 1)(1 − G(c, 0))γI ∂G
∂c (c, 0).

Now, setting 0 ≤ I ′ < I and c′ < c, simple algebra shows that the second inequality in assumption 1 is
equivalent to (1−G(c, 0))γ(I−I′) < (1−G(c′, 0))γ(I−I′) which is obviously true since c′ < c.

Assumption 2 holds since ∂2G
∂I2 (c, I) = −γ2(1−G(c, 0))γI+1log2(1−G(c, 0)) < 0.

Assumption 4 holds because
∣∣∣∂G

∂I (c, I)
∣∣∣ = γ(1−G(c, 0))γI+1|log(1−G(c, 0))| < γ(1−G(c, 0))|log(1−

G(c, 0))| ∈ L1(IR).
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It remains to show that c 7→ G(c,I)
∂G
∂c (c,I)

is increasing in c, which is equivalent to
(

∂G
∂c (c, I)

)2−G(c, I)∂2G
∂c2 (c, I) >

0. So, it suffices to show that ∂2G
∂c2 (c, I) < 0. Since,

∂2G

∂c2
(c, I) = −(γI + 1)γI(1−G(c, 0))γI−1

(
∂G

∂c
(c, 0)

)2

+ (γI + 1)(1−G(c, 0))γI ∂2G

∂c2
(c, 0)

η < 1, F ′′ ≤ 0 and ∂2G
∂c2 (c, 0) = η(η − 1)F η−2(c)(F ′(c))2 + ηF ′(c)η−1F ′′(c) < 0, the result follows.

¤

Proof Lemma 10: We define V k
i (ci) = max

c′i
Πk

i (ci, c
′
i). Since V k

i (ci) is a maximum of linear functions,

it follows that it is convex, and therefore differentiable a.e. It is easy to see that the following are
equivalent: (a) The mechanism is incentive compatible (b) V k

i (ci) = Πk
i (ci, ci) for all i and k = 1, 2, (c)

−Qk
i (ci) ∈ ∂V k

i (ci) for all i and k = 1, 2.
We now prove the two implications required. For the sufficiency, notice that −Qk

i (ci) is non-decreasing
since it is a selection from the subdifferential of a convex function (see [11]). Since −Qk

i (ci) ∈ ∂V k
i (ci)

and V k
i (ci) is convex we have that V k

i (ci) = V k
i (c) +

c∫
ci

Qk
i (s)ds. For the necessity, notice that V k

i (ci) =

c′i∫
ci

Qk
i (s)ds ≤ V k

i (c′i) + Qk
i (c′i)(c

′
i − ci). Therefore Qk

i (ci) ∈ ∂V k
i (ci) and the mechanism is incentive

compatible.

¤

Proof Proposition 11: First note that the efficient mechanism plus the ex-ante complementarity as-
sumption ensure the participation for all players at both procurement auctions. Participation at t = 2 is
induced by scaling-up transfers as usual. For the first competition, assume the investment level chosen
by the buyer is I ≥ 0. Thus, the following must hold: ∀i ∈ N , ∀c ∈ C

T 1,e
i,I (c)− cQ1,e

i,I (c) + βQ1,e
i,I (c)

∫

C

Π2,e
w,I(c, c)

∂G

∂c
(c, I)dc + β[1−Q1,e

i,I (c)]
∫

C

Π2,e
l,I,i(c, c)f(c)dc

≥ β

∫

C

Π2,e
l,I,i(c, c)f(c)dc

However, under a distributional improvement, this mechanism increases the second period expected utility
for a first period winner. Therefore, for every I ≥ 0 we have

∫
C

Π2,e
w,I(c, c)

∂G
∂c (c, I)dc ≥ ∫

C

Π2,e
l,I,i(c, c)f(c)dc,

which allows to impose (in some cases sub-optimally) that T 1,e
i,I (c)− cQ1,e

i,I (c) ≥ 0, ∀c ∈ C, as in a static
procurement auction.

Now, recall that Ie solves min
I≥0

C(Γe, I) with

C(Γe, I) = n

∫

C

c[1− F (c)]n−1f(c)dc + β

∫

C

c[1− F (c)]n−1 ∂G

∂c
(c, I)dc

+β(n− 1)
∫

C

c[1− F (c)]n−2[1−G(c, I)]f(c)dc + βΨ(I) (41)

Then Ie is the solution to

min
I≥0

∫

C

c[1− F (c)]n−1 ∂G

∂c
(c, I)dc + (n− 1)

∫

C

c[1− F (c)]n−2[1−G(c, I)]f(c)dc + Ψ(I) (42)
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Integrating by parts,

∫

C

c[1− F (c)]n−1 ∂G

∂c
(c, I)dc = c[1− F (c)]n−1 ∂G

∂c
(c, I)

∣∣∣∣∣

c̄

c

+ (n− 1)
∫

C

c[1− F (c)]n−2f(c)G(c, I)dc

−
∫

C

[1− F (c)]n−1G(c, I)dc (43)

The first term vanishes. Replacing this expression in the problem just mentioned we obtain

min
I≥0

∫

C

c[1− F (c)]n−2f(c)dc−
∫

C

[1− F (c)]n−1G(c, I)dc + Ψ(I)

and because the first term does not depends on I we conclude that Ie is the solution to min
I≥0

Ψ(I)− ∫
C

[1−
F (c)]n−1G(c, I)dc concluding the first part. For the last one, recall that under a second price sealed
bid auction there are no incentive compatibility problems since truth-telling is a dominant strategy. In
the first period, transfers are scaled-up by a constant such that participation in both competitions is
ensured for all players (note that incentive compatibility holds). Since each project is assigned to the
least-cost competitor, in the second period the expected probability function for the first period winner
is Q2,e

w (c) = [1− F (c)]n−1. Therefore, if investment is not observable, the first period winner will solve

max
I≥0

∫

C

Π2,e
w (c)G(c, I)dc−Ψ(I) =

∫

C

Q2,e
w (c)G(c, I)dc−Ψ(I) =

∫

C

[1− F (c)]n−1G(c, I)dc−Ψ(I)

and, as a consequence, Ie will be selected as well. Therefore, Ie is achieved in a context of full commitment
regardless of investment observability.

¤

Proof Theorem 12: Assume that the buyer wants to induce an investment level I and that Γ(I) is
incentive compatible. Rearranging terms in (5), (6), (7) and using Lemma 10 we obtain:

T 2
w,I(c) = Π2

w,I(c̄, c̄) +

c̄∫

c

Q2
w,I(s)ds + cQ2

w,I(c) + Ψ(I) (44)

T 2
l,I,i(c) = Π2

l,I,i(c̄, c̄) +

c̄∫

c

Q2
l,I,i(s)ds + cQ2

l,I,i(c), i 6= w (45)

T 1
i (c) = Π1

i,I(c̄, c̄) +

c̄∫

c

Q1
i (s)ds + cQ1

i (c)− βQ1
i (c)

∫

C

Π2
w,I(s, s)

∂G

∂s
(s, I)ds

−β[1−Q1
i (c)]

∫

C

Π2
l,I,i(s, s)f(s)dc. (46)
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Then, integrating by parts
∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc = Π2

w,I(c̄, c̄) +
∫

C

Q2
w,I(c)G(c, I)dc +

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) (47)

∫

C

T 2
l,I,i(c)f(c)dc = Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc +

∫

C

cQ2
l,I,i(c)f(c)dc, i 6= w (48)

∫

C

T 1
i (c)f(c)dc = Π1

i,I(c̄, c̄) +
∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc− βQ1

i

∫

C

Π2
w,I(c, c)

∂G

∂c
(c, I)dc

−β[1−Q1
i ]

∫

C

Π2
l,I,i(c, c)f(c)dc. (49)

with Q1
i =

∫
C

Q1
i (c)f(c)dc (observe that

n∑
i=1

Q1
i = 1). Replacing these last expressions in (10) yields a

procurement cost of

C =
n∑

i=1


Π1

i,I(c̄, c̄) +
∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


− β


Π2

w,I(c̄, c̄) +
∫

C

Q2
w,I(c, c)G(c, I)dc




−β

n∑

i=1


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc


 + β

n∑

i=1

Q1
i


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc




+β


Π2

w,I(c̄, c̄) +
∫

C

Q2
w,I(c)G(c, I)dc


 + β

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + βΨ(I)

+β
∑

i6=w


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc


 + β

∑

i 6=w

∫

C

cQ2
l,I,i(c)f(c)dc (50)

Since the second and fifth term cancel each other we get

C =
n∑

i=1


Π1

i,I(c̄, c̄) +
∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc




+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) +

∑

i 6=w

∫

C

cQ2
l,I,i(c)f(c)dc




−β

n∑

i=1


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc


 + β

∑

i6=w


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc




+β

n∑

i=1

Q1
i


Π2

l,I,i(c̄, c̄) +
∫

C

Q2
l,I,i(c)F (c)dc


 (51)

Without loss of generality, because of the ex-ante symmetry across players, the buyer pay attention
only to mechanisms that satisfy Q2

l,I,i(·) ≡ Q2
l,I(·) and T 2

l,I,i(·) ≡ T 2
l,I(·). Therefore, the total expected
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cost reduces to

C =
n∑

i=1


Π1

i,I(c̄, c̄) +
∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc




+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) + (n− 1)

∫

C

cQ2
l,I(c)f(c)dc


 (52)

Note that at the optimum β
n∑

i=1

∫
C

Π2
l,I(c, c)f(c)dc = β

∑
i 6=w

(
1 + 1

n−1

) [
Π2

l,I(c̄, c̄) +
∫
C

Q2
l,I(c)F (c)dc

]

Now, by adding and subtracting the last and first term respectively we obtain

C =
n∑

i=1




∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


 +

n∑

i=1


Π1

i,I(c̄, c̄)− β

∫

C

Π2
l,I(c, c)f(c)dc




+β

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + βΨ(I) + β

n∑

i=1

Π2
l,I(c̄, c̄)

+β
∑

i6=w




∫

C

cQ2
l,I(c)f(c)dc +

(
1 +

1
n− 1

) ∫

C

Q2
l,I(c)F (c)dc


 (53)

Since in an optimal mechanism, T 2
l,I(c̄) will be set up such that Π2

l,I(c̄, c̄) = 0 and T 1
i,I(c̄) such that

Π1
i,I(c̄, c̄) = β

∫
C

Π2
l,I(c, c)f(c)dc we have

C =
n∑

i=1




∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


 + βΨ(I)

+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + (n− 1)

∫

C

cQ2
l,I(c)f(c)dc + n

∫

C

Q2
l,I(c)F (c)dc


 (54)

=
∫

Cn

n∑

i=1

[
ci +

F (ci)
f(ci)

]
q1
i (c)fn(c)dc + βΨ(I)

+β

∫

Cn


cwq2

w,I(c) +
∑

i 6=w

[
ci +

(
1 +

1
n− 1

)
F (ci)
f(ci)

]
q2
l,I,i(c)


 fn−1(c−w)

∂G

∂cw
(cw, I)dc (55)

Pointwise maximization yields the following rules

q1∗
i (c1, ..., cn) =

{
1 ci + F (ci)

f(ci)
< cj + F (cj)

f(cj)
∀j 6= i

0 ∼

q2∗
w (cw, c−w) =

{
1 cw < k(ci) ∀i 6= w

0 ∼

q2∗
l,i (ci, c−i) =

{
1 k(ci) = min{cw, k(cj); ∀j 6= w}
0 ∼

with k(c) = c+
(
1 + 1

n−1

)
F (c)
f(c) . Finally, because this last function and c+ F (c)

f(c) are increasing (assumption
3), the expected probability functions in each period are non increasing. Finally, if transfers are computed
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according the following rules (which imply Lemma 10)

t2∗w = q2∗
w (cw, c−w)cw +

c̄∫

cw

q2∗
w (s, c−w)ds

t2∗l,i = q2∗
l,i (ci, c−i)ci +

c̄∫

ci

q2∗
l,i (s, c−i)ds

t1∗i = q1∗
i (ci, c−i)ci +

c̄∫

ci

q1∗
i (s, c−i)ds− β[Π2

w,I −Π2
l,I,i]

and use the probability functions derived above, we obtain the expressions stated in the proposition. This
concludes the proof.

¤

Proof Proposition 13: Recall that under full commitment and investment observability the rules
defined by Γ∗ minimize the expected cost of both projects for any level of investment I ≥ 0 chosen by
the first period winner. Thus, in this case, to obtain the optimal level of investment for the buyer, I∗,
we replace the mentioned mechanism in the procurement cost expression and minimize with respect to
I. Remember that, at the optimum of this problem, the expected procurement cost can be written as
(see expression (54) in the proof of theorem 12)

C =
n∑

i=1




∫

C

cQ1∗
i (c)f(c)dc +

∫

C

Q1∗
i (c)F (c)dc


 + βΨ(I)

+β




∫

C

cQ2∗
w (c)

∂G

∂c
(c, I)dc + n

∫

C

Q2∗
l (c)F (c)dc + (n− 1)

∫

C

cQ2∗
l (c)f(c)dc




= K(Q1∗) + βT (Q2∗, I) + βΨ(I) (56)

withK(Q1∗) =
∫
C

cQ1∗
i (c)f(c)dc+

∫
C

Q1∗
i (c)F (c)dc and T (Q2∗, I) =

∫
C

cQ2∗
w (c)∂G

∂c (c, I)dc+n
∫
C

Q2∗
l (c)F (c)dc+

(n−1)
∫
C

cQ2∗
l (c)f(c)dc. Then, in order to obtain the optimal investment level, the buyer solves min

I≥0
T (Q2∗, I)+

Ψ(I). It can be easily checked that Q2∗
w (c) = [1−F (k−1(c))]n−1 for c ∈ C and Q2∗

l (c) = (1−G(k(c), I))(1−
F (c))n−2 for c ∈ [c, k−1(c̄] (and otherwise zero), are the expected probabilities of winning the second
project for a winner and any loser respectively. Integrating by parts,

∫

C

cQ2∗
w (c)

∂G

∂c
(c, I)dc = c̄[1− F (k−1(c̄))]n−1 −

∫

C

[1− F (k−1(c))]n−1G(c, I)dc

+(n− 1)
∫

C

c[1− F (k−1(c))]n−2f(k−1(c))
G(c, I)

k′(k−1(c))
dc
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Using t = k−1(c) in the last integral and replacing k(c) = c +
(
1 + 1

n−1

)
F (c)
f(c) in the same term we get

∫

C

cQ2∗
w (c)

∂G

∂c
(c, I)dc = c̄[1− F (k−1(c̄))]n−1 −

∫

C

[1− F (k−1(c))]n−1G(c, I)dc

+(n− 1)

l−1(c̄)∫

c

c[1− F (c)]n−2f(c)G(k(c), I)dc + n

k−1(c̄)∫

c

[1− F (c)]n−2G(k(c), I)F (c)dc

Also, we have that

n

∫

C

Q2∗
l (c)F (c)dc = n

k−1(c̄)∫

c

[1− F (c)]n−2[1−G(k(c), I)]F (c)dc

(n− 1)
∫

C

cQ2∗
l (c)f(c)dc = (n− 1)

k−1(c̄)∫

c

c[1− F (c)]n−2[1−G(k(c), I)]f(c)dc

Therefore

T (Q2∗, I) = c̄[1− F (k−1(c̄))]n−1 −
∫

C

[1− F (k−1(c))]n−1G(c, I)dc

+n

k−1(c̄)∫

c

[1− F (c)]n−2F (c)dc + (n− 1)

k−1(c̄)∫

c

c[1− F (c)]n−2f(c)dc

concluding that the level of investment that minimizes the expected cost under full observability and
commitment is the solution to min

I≥0
Ψ(I)− ∫

C

[1− F (k−1(c))]n−1G(c, I)dc.

¤

Proof Proposition 14: Since (Γ∗, I∗), defined by expressions (11), (27) and (13), does not depend on
the level of investment I, the rules in Γ∗ are feasible when the investment level is not observable. When
the winner of the first procurement faces the rules in Γ∗, he decides his level of investment by solving
max
I≥0

∫
C

Π2
w(c, c)∂G

∂c (c, I)dc−Ψ(I). Since
∫
C

Π2∗
w (c)∂G

∂c (c, I)dc = T 2∗
w (c̄)− c̄Q2∗

w (c̄)+
∫
C

Q2∗
w (c)G(c, I)dc−Ψ(I),

this is equivalent to solve max
I≥0

∫
C

Q2∗
w (c)G(c, I)dc − Ψ(I) =

∫
C

[1 − F (k−1(c))]n−1G(c, I)dc − Ψ(I) using

the definition of Q2∗
w (·). Since I∗ solves the same optimization problem, we conclude that (Γ∗no, I

∗
no)

is incentive compatible, and therefore feasible for the non-observable case. Finally, it is obvious that
C(Γ∗, I∗) ≤ C(Γ∗no, I

∗
no), so the feasibility of (Γ∗, I∗) for the non-observable case implies that C(Γ∗no, I

∗
no) =

C(Γ∗, I∗).
¤

Proof Proposition 15: We assume that Ie and I∗ satisfy their corresponding first order condi-
tions. Since l(·) is increasing and l(c) > c, we obtain [1 − F (k−1(c))]n−1 > [1 − F (c)]n−1. Thus,∫
C

[1 − F (k−1(c))]n−1 ∂G
∂I (c, I)dc − Ψ′(I) >

∫
C

[1 − F (c)]n−1 ∂G
∂c (c, I)dc − Ψ′(I), which yields Ie < I∗ using

∂2G
∂I2 (c, I) < 0 and Ψ’s convexity.
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¤

Proof Proposition 16: Suppose the first period winner had invested an amount I. It is easy to see
that the second procurement expected cost corresponds to

C2(I) =
∫

Cn




(
cw +

G(cw, I)
∂G
∂c (cw, I)

)
q2
w,I(c

n) +
∑

j 6=w

(
cj +

F (cj)
f(cj)

)
q2
j (cn)


 fn−1(c−w)

∂G

∂c
(cw, I)dcn (57)

Therefore, the second period cost-minimizing mechanism, call it Γ̂2(I), is defined by

q̂2
w,I(cw, c−w) =





1 cw + G(cw,I)
∂G
∂c (cw,I)

< min
i 6=w

{
ci + F (ci)

f(ci)

}

0 ∼

q̂2
l,I,i(ci, c−i) =

{
1 ci + F (ci)

f(ci)
< min

{
cw + G(cw,I)

∂G
∂c (cw,I)

, cj + F (cj)
f(cj)

∣∣∣ j 6= i, w
}

0 ∼

This mechanism is incentive compatible due to the regularity conditions imposed in assumption 3.

¤

Proof Proposition 18: Anticipating the selection of Γ̂2(I), a first period winner will solve
max
I≥0

∫
C

Q̂2
w,I(c)G(c, I)dc−Ψ(I) with Q̂2

w,I(c) =
∫

Cn−1

q̂2
w,I(cw, c−w)fn−1(c−w)dc−w. If we define JI(c) =

c + G(c,I)
∂G
∂c (c,I)

and J(c) = c + F (c)
f(c) we have that q̂2

w,I(cw, c−w) = 1 ⇔ J−1(JI(cw)) < ci, ∀i 6= w. Thanks to

assumption 3, J−1(·) exists, and because of Lemma 9, JI(·) > J(·), thus J−1(JI(c)) > c for all I > 0.
Hence, we obtain Q̂2

w,I(c) = [1−F (J−1(JI(c)))]n−1 Therefore, in absence of investment observability and
buyer’s commitment, the level of investment carried out by the first period winner, Î, is the solution to
max
I≥0

∫
C

[1−F (J−1(JI(c)))]n−1G(c, I)dc−Ψ(I) and the optimal mechanism chosen by the buyer corresponds

to Γ̂2(Î).

¤

Proof Proposition 19: Remember the function V (I) =
∫
C

[1− F (J−1(JI(c)))]n−1G(c, I)dc−Ψ(I). As

before, assume that Î satisfies the corresponding first order condition, that is V ′(Î) = 0. Since for every
fixed c ∈ C the function I 7→ JI(c) is strictly increasing (Lemma 9, (ii)) we have that V ′(I) <

∫
C

[1 −
F (J−1(JI(c)))]n−1 ∂G

∂I (c, I)dc − Ψ′(I). Moreover, because JI(c) > J(c) for all c ∈ C and I ≥ 0 (Lemma
9, (ii)), the regularity assumption implies [1−F (J−1(JI(c)))]n−1 < [1−F (c)]n−1 which leads to V ′(I) <∫
C

[1−F (c)]n−1 ∂G
∂I (c, I)dc−Ψ′(I). Recalling that Ie is such that

∫
C

[1−F (c)]n−1 ∂G
∂I (c, Ie)dc−Ψ′(Ie) = 0,

we conclude that Î < Ie using that ∂2G
∂I2 (c, I) < 0 and Ψ’s convexity.

¤

Proof Lemma 21: In this environment, the definition of an equilibrium implies that the mechanism
chosen by the buyer must be of the form Γ̂(I), which was introduced in Lemma 16. As before, given
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this mechanism, Q̂2
w,I(c) = [1− F (J−1(JI(c)))]n−1 Therefore, using the definition of an equilibrium, we

conclude that the tuple (̂̂I, Γ̂(̂̂I)) is an equilibrium if it satisfies

̂̂
I ∈ arg max

K≥0
U(K,

̂̂
I) ≡

∫

C

[1− F (J−1(Ĵ̂
I
(c)))]n−1G(c,K)dc−Ψ(K)

¤

Proof Proposition 22: Define L(I) ≡ ∂Uw

∂K (K, I)

∣∣∣∣∣
K=I

=
∫
C

[1 − F (J−1(JI(c)))]n−1 ∂G
∂I (c, I)dc − Ψ′(I).

Note that it is continuous because [1 − F (J−1(JI(c)))]n−1 ∂G
∂I (c, I) is continuous in I for each c and,∣∣∣[1 − F (J−1(JI(c)))]n−1 ∂G

∂I (c, I)
∣∣∣ < ∂G

∂I (c, I) < h(c) ∈ L1(IR). Moreover, L(·) is strictly decreasing

because of assumptions 2, 5 and since [1−F (J−1(JI(c)))]n−1 strictly decreases with I. Finally, condition
(24), implies that

lim
I→∞

L(I) = lim
I→∞

∫

C

[1− F (J−1(JI(c))]n−1 ∂G

∂I
(c, I)dc−Ψ′(I) = lim

I→∞
−Ψ′(I) < 0

which ensures the existence of Ĩ such that ∀I > Ĩ, L(I) < 0.
In order to prove the proposition, we distinguish two cases regarding whether (a) Î (the investment

level induced under non-commitment and investment observability) satisfies the first order condition of
problem (22) or b) not.

As we have discussed, if the investment level chosen by the first period winner was I, the buyer has
as a dominant strategy to impose Γ̂(I), with Q̂2

w,I(c) = [1− F (J−1(JI(c))]n−1.
Points like (I, Γ̂(I)) with 0 ≤ I ≤ Î cannot be equilibria: since V ′(I) ≥ 0 in this zone (with equality

only if I = Î), for all 0 ≤ Ī ≤ Î, L(I) = ∂U
∂K (K, I)

∣∣∣
K=I

> 0 thanks to the absence in U of the negative

effect due to [1 − F (J−1(JI(c)))]n−1, which is present in V . As a consequence, the first period has a
profitable deviation by investing more. Since L(Î) = ∂U

∂K (K, Î)
∣∣∣
K=Î

> 0 and L(I) < 0 if I > Ĩ, because

of L(·)’s continuity and monotonicity, there exists a unique ̂̂
I ∈ (Î , Ĩ) such that L(̂̂I) = ∂U

∂I (I,
̂̂
I)

∣∣∣
I=

̂̂
I

= 0.

This is a maximum point since the function K 7→ U(̂̂I, K) is strictly concave in I (assumption 2), hence,

we have proved that (̂̂I, Γ̂(̂̂I) is the unique pure strategy equilibrium in an interior solution of (22).
On the other hand, assume that (b) holds, that is, no investment level satisfies the first order condition

of (22). The the previous reasonings and assumptions allow us to conclude that V (·) always decreases and,
as a direct consequence, the investment level induced under non-commitment and investment observability
is zero (Î = 0). Thus, we can no longer ensure the existence of a point Î such that L(Î) > 0, which was

the main argument to show the existence of ̂̂
I. Therefore, we have two cases:

(i) Exists Î ≥ 0 such that L(Î) > 0. In this case the existence and uniqueness of ̂̂
I is ensured using

the same arguments as before. Also we have Î <
̂̂
I because L(·) is strictly decreasing.

(ii) There is no I > 0 such that L(I) = 0. Because of (24), continuity and monotonicity of L(·)
(decreasing), it must be that L(I) < 0 if I > 0, hence, L(0) ≤ 0. In this case (0, Γ̂(0)) is an equilibrium:
when the winner makes no investment, the buyer has no incentive to deviate from Γ̂(0). On the other
side, when facing this last mechanism, the first period winner has no incentive to invest because his
marginal utility under this mechanism, L(0), is always negative. It is unique because L’s monotonicity.

Note that in all the previous cases, Î ≤ ̂̂
I, and strict inequality can be ensured if Î satisfies the first

order condition of (22). This concludes the proof.
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Proof Corollary 23: We only need to show that ̂̂
I < Ie. Assume that ̂̂

I satisfies the first order
condition of (23). It has been argued that ∀I ≥ 0, [1 − F (J−1(JI(c)))]n−1 < [1 − F (c)]n−1, therefore,

L(I) =
∫
C

[1−F (J−1(JI(c)))]n−1 ∂G
∂I (c, I)dc−Ψ′(I) <

∫
C

[1−F (c)]n−1 ∂G
∂I (c, I)dc−Ψ′(I). Since ̂̂

I is such that

L(̂̂I) = 0, applying the same arguments used in the previous results we can conclude that ̂̂
I < Ie. Finally,

if ̂̂
I does not satisfy the first order condition of (23), then, ̂̂

I = 0, and the result remains unchanged.

¤

Proof Corollary 24: It is direct that the mechanisms under non-commitment (observable and non-
observable investment) are incentive compatible and ensure participation at t = 2 for all sellers. Also, the
first period transfers are set-up such that participation at both competitions are ensured for all players,
that is, under these mechanisms, Π1

i,I(ci, ci) ≥ β
∫
C

Π2
l,I,i(c, c)

∂G
∂c (c, I)dc, ∀ci ∈ C is satisfied for all i ∈ N .

Therefore, the optimal mechanisms under non-commitment (observable and non-observable investment)
are feasible mechanisms under full commitment and investment observability. Thus, by optimality, the
cost of both procurements in the case of full commitment is lower than the case of non-commitment
(whether investment is observable or not).

¤

Proof Proposition 25: For any investment level I, total expected costs corresponds to

C(I) =
∫

C

∫

C


 ∑

i=1,2

(ci +
F (ci)
f(ci)

)q1
i (c1, c2)


 f(c1)f(c2)dc1dc2

+β

∫

C

∫

C

[
cwq2

w,I(cw, cl) +
(

cl + 2
F (cl)
f(cl)

)
q2
l (cw, cl)

]
∂G

∂cw
(cw, I)f(cl)dcwdcl + βΨ(I)

and the optimal second period rule is given by

q2
w,I(cw, cl) =

{
1 cw < cl + 2F (cl)

f(cl)

0 ∼

Define k2(c) = c + 2F (c)
f(c) and consider the following incentive compatible mechanism:

q̃2
w,I(cw, cl) =

{
1 cw < g(cl)
0 ∼ (58)

with g(·) an increasing function such that g(c) = c. Given an amount of investment carried out I, the

second period expected cost can be written as C2(I) =
∫
C

f(cl)
(∫

C

h(cl, cw) ∂G
∂cw

(cw, I)dcw

)
dcl, with

h(cl, cw) =
{

k2(cl) g(cl) < cw

cw ∼
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Therefore, under this mechanism, the buyer chooses the investment level by solving min
I≥0

C2(I)+Ψ(I).

Now, given cl ∈ C,
∫
C

h(cl, cw) ∂G
∂cw

(cw, I)dcw =
c̄∫

g(cl)

k2(cl) ∂G
∂cw

(cw, I)dcw +
g(cl)∫

c

cw
∂G
∂cw

(cw, I)dcw, but,

c̄∫

g(cl)

k2(cl)
∂G

∂c
(cw, I)dcw =

{
k2(cl)(1−G(g(cl), I)) g(cl) < c̄

0 ∼

g(cl)∫

c

cw
∂G

∂cw
(cw, I)dcw =





g(cl)G(g(cl), I)−
g(cl)∫

c

G(cw, I)dcw g(cl) < c̄

c̄− ∫
C

G(cw, I)dcw ∼

and, as a consequence,

∫

C

h(cl, cw)
∂G

∂cw
(cw, I)dcw =





k2(cl) + [g(cl)− k2(cl)]G(g(cl), I)−
g(cl)∫

c

G(cw, I)dcw g(cl) < c̄

c̄− ∫
C

G(cw, I)dcw ∼

Replacing this last expression into the buyer’s problem and considering only the terms that depend on
I, we observe that the buyer minimizes

g−1(c̄)∫

c

(g(cl)− k2(cl))G(g(cl), I)f(cl)dcl −
g−1(c̄)∫

c

g(cl)∫

c

G(cw, I)f(cl)dcwdcl

−
c̄∫

g−1(c̄)

∫

C

G(cw, I)f(cl)dcwdcl + Ψ(I)

This last expression can be written as

g−1(c̄)∫

c

(g(cl)− k2(cl))G(g(cl), I)f(cl)dcl −
∫

C




min{g(cl),c̄}∫

c

G(cw, I)dcw


 f(cl)dcl + Ψ(I) (59)

Defining H(I) =
∫
C

(
min{g(cl),c̄}∫

c

G(cw, I)dcw

)
f(cl)dcl, the buyer solves

max
I≥0

H(I)−Ψ(I)−
g−1(c̄)∫

c

(g(cl)− k2(cl))G(g(cl), I)f(cl)dcl (60)

We denote the solution to this problem Ĩb. Also note that

min{c̄,g(cl)}∫

c

G(cw, I)dcw =





g(cl)∫
c

G(cw, I)dcw cl < g−1(c̄)
∫
C

G(cw, I)dcw ∼
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and therefore

H(I) =
∫

C




min{c̄,g(cl)}∫

c

G(cw, I)dcw


 f(cl)dcl

=

g−1(c̄)∫

c




g(cl)∫

c

G(cw, I)dcw


 f(cl)dcl + [1− F (g−1(c̄))]

∫

C

G(cw, I)dcw (61)

Integrating by parts, we get

g−1(c̄)∫

c




g(cl)∫

c

G(cw, I)dcw


 f(cl)dcl = F (g−1(c̄))

∫

C

G(cw, I)dcw −
g−1(c̄)∫

c

F (cl)G(g(cl), I)g′(cl)dcl

This leads to H(I) =
∫
C

G(c, I)dc −
g−1(c̄)∫

c

F (c)G(g(c), I)g′(c)dc =
∫
C

[1 − F (g−1(t))]G(t, I)dt where we

used t = g(c) in the last equality. On the other hand, when facing the mechanism defined by (58) the
first period winner solves max

I≥0

∫
C

Q̃2
w(c)G(c, I)dc − Ψ(I). Now, since g(c) = c, we have that, Q̃2

w(c) =

∫
C

q̃2
w(c, cl)f(cl)dcl =

c̄∫
g−1(c)

f(cl)dcl = 1 − F (g−1(c)). So, it is straightforward that
∫
C

Q̃2
w(c)G(c, I)dc =

∫
C

[1 − F (g−1(c))]G(c, I)dc = H(I), which implies that the first period winner solves max
I≥0

H(I) − Ψ(I).

Call the solution to this problem Ĩw. Finally, assume that the first order conditions for both problems are

satisfied. As a consequence, it must be that H′(Ĩb)−Ψ′(Ĩb)+
g−1(c̄)∫

c

(k2(cl)−g(cl))∂G
∂I (g(cl), Ĩb)f(cl)dcl = 0

and H′(Ĩw)−Ψ′(Ĩw) = 0. Assumptions 2 and 5 ensure that H′(·) and −Ψ′(·) are decreasing. Since k2 ≥ g

with strict inequality on a set of positive measure, we conclude that Ĩw < Ĩb using the fact that ∂2G
∂I2 < 0.

¤

Proof Corollary 24: Let n < m and I∗(n) and I∗(m) the investment levels induced under full com-
mitment when there are n and m competitors respectively. Consider the family of functions kn(c) =
c+

(
1 + 1

n−1

)
F (c)
f(c) with n ∈ IN , and recall that kn(·) is exactly the function k(·) used in the full commit-

ment section for the case of n competitors. Because these functions are increasing in c and kn(·) > lm(·),
it is easy to see that Q2∗

w,n(c) =
[
1− F (k−1

n (c))
]n−1

>
[
1− F (k−1

m (c))
]m−1 = Q2∗

w,m(c). Thus, for
any fixed investment level I we have

∫
C

Q2∗
w,n(c)∂G

∂I (c, I)dc − Ψ′(I) ≥ ∫
C

Q2∗
w,m(c)∂G

∂I (c, I)dc − Ψ′(I), with

Q2∗
w,n(c) the expected probability of winning at t = 2 for the first period winner under the cost minimiz-

ing mechanism when there are n competitors. Using Ψ’s convexity and the fact that the distributional
marginal benefit of investment decreases with I (assumption 2), we obtain that that I∗(n) > I∗(m).
Since lim

n→∞
Q2∗

w,n(c) = 0, ∀c ∈ C, we conclude that I∗(n) ↘ 0 as n →∞.

Now, denote Î(n), ̂̂
I(n), Ie(n) the investment levels induced under non-commitment and investment

observability, non-commitment and investment non-observability and efficiency, when there are n com-

petitors, respectively. The inequality 0 ≤ Î(n) ≤ ̂̂
I(n) < Ie(n) < I∗(n), shows that they all collapse to

zero when n →∞.
Finally, notice also that C∗(n) converges to 2c, since the optimal mechanism induces costs below a

double second-price procurement auction, whose cost monotonically converges to 2c as n →∞.
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Proof of lemma 27: Define J ′I(c) ≡ ∂JI(c)
∂c . Recall that

T 2(Iw, I l) = c̄[1− F (J−1
Il (c̄), I l)]−

∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc + 2

J−1
Il (c̄)∫

c

F (c, I l)dc

+

J−1
Il (c̄)∫

c

c
∂F

∂c
(c, I l)dc + Ψw(Iw) + Ψl(I l)

and note that c̄[1 − F (J−1
Il (c̄), I l)] =

J−1
Il (c̄)∫
c

d
dc

[
JIl(c)[1− F (c, I l)]

]
dc =

J−1
Il (c̄)∫
c

J ′Il(c)[1 − F (c, I l)]dc −
J−1

Il (c̄)∫
c

JIl(c)∂F
∂c (c, I l)dc. Then,

T 2(Iw, I l) =

J−1
Il (c̄)∫

c

J ′Il(c)[1− F (c, I l)]dc−
∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc + 2

J−1
Il (c̄)∫

c

F (c, I l)dc

+




J−1
Il (c̄)∫

c

c
∂F

∂c
(c, I l)dc−

J−1
Il (c̄)∫

c

JIl(c)
∂F

∂c
(c, I l)dc


 + Ψw(Iw) + Ψl(I l)

The term in brackets satisfy

L ≡
J−1

Il (c̄)∫

c

c
∂F

∂c
(c, I l)dc−

J−1
Il (c̄)∫

c

JIl(c)
∂F

∂c
(c, I l)dc =

J−1
Il (c̄)∫

c

[c− JIl(c)]
∂F

∂c
(c, I l)dc

But, [c − JIl(c)]∂F
∂c (c, I l) = −2 F (c,Il)

∂F
∂c (c,Il)

∂F
∂c (c, I l) = −2F (c, I l), thus, it vanishes with 2

J−1
Il (c̄)∫
c

F (c, I l)dc.

As a consequence,

T 2(Iw, I l) =

J−1
Il (c̄)∫

c

J ′Il(c)[1− F (c, I l)]dc−
∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc + Ψw(Iw) + Ψl(I l)

To conclude, observe that
J−1

Il (c̄)∫
c

J ′Il(c)[1 − F (c, I l)]dc =
J−1

Il (c̄)∫
c

J ′Il(c)dc −
J−1

Il (c̄)∫
c

J ′Il(c)F (c, I l)dc = c̄ −
∫
C

F (J−1
Il (c), I l)dc, where in the last integral we used the change of variables t = JIl(c). Therefore,

T 2(Iw, I l) = c̄−
∫

C

F (J−1
Il (c), I l)dc−

∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc + Ψw(Iw) + Ψl(I l)
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and the problem of the buyer reduces to:

max
Iw,Il≥0

∫

C

F (J−1
Il (c), I l)dc +

∫

C

[1− F (J−1
Il (c), I l)]G(c, Iw)dc−Ψw(Iw)−Ψl(I l) (62)

Suppose this problem satisfies first and second order conditions, then, (Iw∗, I l∗) ≥ 0 is optimal must
satisfy

DT 2(Iw∗, I l∗) ≡
[
∂T 2

∂I l
(Iw∗, I l∗),

∂T 2

∂I l
(Iw∗, I l∗)

]
= 0

which can be written as

Iw∗ ∈ arg max
Iw≥0

∫

C

[1− F (J−1
Il∗ (c), I l∗)]G(c, Iw)dc−Ψw(Iw)

I l∗ ∈ arg max
Il≥0

∫

C

[1−G(c, Iw∗))]F (J−1
Il (c), I l)dc−Ψl(I l)

¤

Proof of Proposition 28: Assume that investment is observable and that (A1) holds. Then, BRo
l (·) ≡

0. As a consequence, Iw∗ is optimal for the buyer if and only if

Iw∗ ∈ BRo
w(0) ≡ arg max

Iw≥0

∫

C

[1− F (J−1
0 (c), 0)]G(c, Iw)dc−Ψw(Iw)

To the contrary, suppose that (A2) holds. Since ∂
∂Il

(∫
C

[1−G(c,BRo
w(0))]F (J−1

Il (c), I l)dc−Ψl(I l)
) ∣∣∣∣∣

Il=0

>

0, we have that BRo
l (BRo

w(0)) > 0, so I l = 0 is never optimal for the buyer. The reasoning to show that
Iw∗ > 0 is analogous. To conclude, since the buyer imposes I l∗ > 0 and BRo

w(I l) decreases with I l (thanks
to the concavity assumption over the distributional upgrades), we have that Iw∗ = BRo

w(I l∗) < BRo
w(0),

concluding the proof.

¤

Proof of Proposition 30: Fix a mechanism Γ∗(I) and an investment level Iw carried out by the first

period winner. Then, the first period loser solves maxIl≥0

J−1
I (c̄)∫
c

[1 − G(JI(c), Iw)]F (c, I l)dc − Ψl(I l).

Then, if Iw′ < Iw′′ we have that G(JI(c), Iw′) < G(JI(c), Iw′′) yielding

J−1
I (c̄)∫

c

[1−G(JI(c), Iw′)]
∂F

∂I l
(c, I l)dc−Ψ′l(I

l) >

J−1
I (c̄)∫

c

[1−G(JI(c), Iw′′)]
∂F

∂I l
(c, I l)dc−Ψ′l(I

l)

Since both functions are decreasing in I l (the associated problems are concave), we have that BRno
l (Iw′ |I) >

BRs
l (I

w′′ |I). The reasoning to show that BRno
w (·|I) is decreasing is the same.
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Now, fix Iw. Then, under enough regularity, we can write:

∂

∂I




J−1
I (c̄)∫

c

[1−G(JI(c), Iw)]
∂F

∂I l
(c, I l)dc−Ψ′l(I

l)




= [1−G(c̄, Iw)]
∂F

∂I l
(J−1

I (c̄), I l)
∂

∂I
(J−1

I (c̄))−
J−1

I (c̄)∫

c

∂G

∂c
(JI(c), Iw)

∂

∂I
(JI(c))

∂F

∂I l
(c, I l)dc−Ψl(I l) < 0

since ∂
∂I (JI(c)) > 0 and the first vanishes (G(c̄, Iw) = 1 for all Iw ≥ 0). Taking I

′
and I

′′
such that

I
′
< I

′′
we obtain that:

J−1

I
′ (c̄)∫

c

[1−G(JI′ (c), I
w)]

∂F

∂I l
(c, I l)dc−Ψ′l(I

l) >

J−1

I
′′ (c̄)∫

c

[1−G(JI′′ (c), I
w)]

∂F

∂I l
(c, I l)dc−Ψ′l(I

l) (63)

implying that BRno
l (Iw|I ′) > BRno

l (Iw|I ′′). Using the same reasoning, it can be shown that the contrary
holds in the case of the first period winner, that is, BRno

w (I l|I ′) < BRno
w (I l|I ′′) when I

′
< I

′′
. Therefore,

the equilibrium (I l,no(I), Iw,no(I)) of the investment stage satisfies that I l,no(I) is decreasing in I and
that Iw,no(I) is increasing in I, concluding the proof.

¤

Proof of Proposition 31: In the Stackelberg game the buyer solves

max
I≥0

∫

C

F (J−1
I (c), I l,no(I))dc +

∫

C

[1− F (J−1
I (c), I l,no(I))]G(c, Iw,no(I))dc−Ψw(Iw,no(I))−Ψl(I l,no(I))

s.t. Iw,no(I) ∈ arg max
Iw≥0

∫

C

[1− F (J−1
I (c), I l,no(I))]G(c, Iw)dc−Ψw(Iw)

I l,no(I) ∈ arg max
Il≥0

J−1
I (c̄)∫

c

[1−G(JI(c), Iw,no(I))]F (c, I l)dc−Ψl(I l)

Assume that I l,no(·) and Iw,no(·) are differentiable and define

K(I) ≡ ∂

∂I




∫

C

F (c, I l,no(I))dc +
∫

C

[1− F (J−1
I (c), I l,no(I))]G(c, Iw,no(I))dc−Ψw(Iw,no(I))−Ψl(I l,no(I))


 (64)

It is straightforward that

K(I) = (Iw,no)′(I)




∫

C

[1− F (J−1
I (c), I l,no(I))]

∂G

∂Iw
(c, Iw,no(I))dc−Ψ′w(Iw,no(I))




(I l,no)′(I)




∫

C

[1−G(c, Iw,no(I))]
∂F

∂I l
(J−1

I (c), I l,no(I))dc−Ψ′l(I
l,no(I))




+
∫

C

[1−G(c, Iw,no(I))]
∂F

∂c
(J−1

I (c), I l,no(I))
∂

∂I
(J−1

I (c))dc
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Note that the first term in brackets is zero since it corresponds to the Iw,no(I) is a best response to
I l,no(I) given the mechanism (indexed by I) chosen by the buyer. Hence, recalling that ∂

∂I (J−1
I (c)) < 0,

we obtain:

K(I) < (I l,no)′(I)




∫

C

[1−G(c, Iw,no(I))]
∂F

∂I l
(J−1

I (c), I l,no(I))dc−Ψ′l(I
l,no(I))




= (I l,no)′(I)




J−1
I (c̄)∫

c

[1−G(JI(c), Iw,no(I))]
∂F

∂I l
(c, I l,no(I))[J ′I(c)]dc−Ψ′l(I

l(I, no))




where in the last equality we used the change of variables t = J−1
I (c). To conclude, since J ′I(c) > 1 for

all c ∈ C and I ≥ 0, and (I l,no)′(I) < 0 we have that

K(I) < (I l,no)′(I)




J−1
I (c̄)∫

c

[1−G(JI(c), Iw,no(I))]
∂F

∂I l
(c, I l,no(I))dc−Ψ′l(I

l(I, no))




Nevertheless, the term in brackets is zero because I l,no(I) is a best response to Iw,no(I) given the
mechanism (indexed by I) chosen by the buyer. This leads to ∀I ≥ 0, K(I) < 0, implying Is = 0.

¤

Proof of Proposition 32: Suppose that (A1) is true. That 0 = I l∗ ≤ I l,no is trivial. Also, for I l,no ≥ 0

0 =
∫

C

[1− F (J−1
0 (c), 0)]

∂G

∂Iw
(c, Iw∗)−Ψ′w(Iw∗)

≥
∫

C

[1− F (J−1
0 (c), I l,no)]

∂G

∂Iw
(c, Iw∗)−Ψ′w(Iw∗)

thanks to the distributional upgrade. Since this last function is concave in Iw it must be that Iw,no ≤ Iw∗.
That the inequality is strict follows from observing that F (J−1

0 (c), I l,no) > F (J−1
0 (c), 0) iff I l,no > 0.

¤

Proof of Proposition 34: Let BRo
w(·) and BRo

l (·) be the best response functions of the winner and the
loser, respectively, in the fictitious game when investment is observable. Analogously let BRno

w (·|0) and
BRno

l (·|0) be the corresponding best response functions in the non-observable case (in this setting the
buyer chooses a mechanism indexed by zero investment). Recall that all this best response functions are
decreasing under the assumptions stated in the proposition. Since [1−F (J−1

I (c), I)] > [1−F (J−1
0 (c), I)]

for I > 0, we have that BRno
w (·|0) < BRo

w(·). Finally, we have that

BRno
l (Iw|0) ∈ arg max

Il≥0

J−1
0 (c̄)∫

c

[1−G(J0(c), Iw)]F (c, I l)dc−Ψl(I l) (65)

= arg max
Il≥0

∫

C

[1−G(c, Iw)]F (J−1
0 (c), I l)

d

dc
(J−1

0 (c))dc−Ψl(I l) (66)
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Assumption (B) ensures that
∫

C

[1−G(c, Iw)]
∂F

∂I
(J−1

0 (c), I l)
d

dc
(J−1

0 (c))dc−Ψ′l(I
l) >

∫

C

[1−G(c, Iw)]
∂

∂I
(F (J−1

Il (c), I l))dc−Ψ′l(I
l) (67)

which implies that BRno
l (·|0) < BRo

l (·) using the concavity of I 7→ F (J−1
0 (c), I) and the convexity

of Ψl(·). Since all these best response functions are decreasing, we can conclude that I l∗ ≤ I l,no and
Iw,no ≤ Iw∗.

If condition (B) does not hold, we can no longer ensure that BRno
l (·|0) < BRo

l (·), hence, given that
the best response functions are decreasing, we cannot say anything about the investment levels.

¤
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