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1. Introduction

In many important allocation problems, all market participants, and not only the winners of items, are

affected by the ultimate allocation of the object(s). In this paper, we study revenue-maximizing mechanisms

when this is the case. One recent example of this is the acquisition of Wachovia:1 The two potential buyers,

Citibank and Wells Fargo, entered into fierce negotiations to determine who would gain control of Wachovia’s

assets. The reason was that, in addition to Wachovia’s assets, Citibank’s position in retail banking in the

Eastern U.S. was at stake.2 Another example of a buyer caring about the entire allocation of the objects is

the allocation of “sponsored-link” positions on a search engine: Each advertiser cares not only about which

slot he gets, but also about the identity and characteristics of the other advertisers that obtain a position

for the same search entry. Millions of such sponsored links are auctioned off, and this is an important source

of revenue for search engines and other internet portals.3

We analyze revenue-maximizing auctions in a multi-object allocation problem where buyers’ payoffs

depend on the entire allocation of the objects, not merely on the ones they obtain. Therefore, the auction

outcome may affect buyers regardless of whether or not they win any objects, and regardless of whether

or not they participate in the auction. Non-participation payoffs may then very well depend on their cost

(type). In our model, described in Section 2, objects can be heterogeneous, and they can simultaneously be

complements for some buyers and substitutes for others. Buyers are risk-neutral and their payoffs depend on

their single-dimensional costs, which are private information, and on their competitors’ costs (interdependent

values) and can be non-linear.

We identify a number of novel characteristics of revenue-maximizing mechanisms: First, we find that

revenue-maximizing reserve prices depend on the bids of other buyers. This happens not only in the case

of interdependent values, but, perhaps more surprisingly, in private-value setups where buyers care about

the entire allocation of the objects. Hence, we see that, in general, simple reserve prices and/or entry fees

will not maximize revenue, in contrast to the classical private-values case (see Myerson (1981) or Riley and

Samuelson (1981)) and to the findings of Jehiel, Moldovanu and Stacchetti (1996), where auctions with flat

reserve prices and entry fees are revenue-maximizing. Second, we find that revenue-maximizing auctions

may sell too often, or they may even be ex-post efficient. This happens if non-participation payoffs are type-

dependent, in which case a revenue-maximizing assignment of the objects can depend crucially on the outside

options that buyers face. Therefore, outside options can affect the degree of efficiency of revenue-maximizing

auctions. This is, again, in contrast to the classical case, and to Jehiel, Moldovanu and Stacchetti (1996),

where with the use of the reserve prices, the seller, much like the classical monopolist4, restricts supply to

boost revenue. Another difference is that, in contrast to our paper, outside options in Jehiel, Moldovanu
1See “Citigroup and Wells Fargo Said to Be Bidding for Wachovia,” New York Times, September 28, 2008 and “Citi Concedes

Wachovia to Wells Fargo,” New York Times, October 9, 2008.
2Wells Fargo has a prevalent position in the western U.S. and virtually no presence in the east, while Citibank is present

in both territories. Wachovia’s prevalent position in the east would, therefore, allow Wells Fargo to become a much tougher
competitor for Citibank.

3Works that have looked at other aspects of sponsored-links markets are Athey and Ellison (2008), Edelman, Ostrovsky, and
M. Schwarz (2007) and Varian (2007).

4 See Bulow and Roberts (1989) for an insightful discussion relating the theory of revenue-maximizing auctions to the classical
monopoly theory.
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and Stacchetti (1996) affect only the transfers between the buyers and the seller and not the way the object

is allocated.5

On a broader level, this paper provides an elegant formulation that allows one to analyze in a unified

framework numerous scenarios that have been addressed in the literature, as well as many more.6 The main

technical innovation of our paper is to show how the presence of type-dependent non-participation payoffs

modifies the virtual surpluses of allocations and how this modification affects the efficiency properties of

revenue-maximizing mechanisms. In particular, we show that the optimal assignment rule can depend

crucially on the outside options (for buyers) that the seller can choose as threats; that overselling or even ex-

post efficiency may occur; and that the optimal threat-allocation rule can be random. Figueroa and Skreta

(2009a) consists of two examples illustrating how the efficiency properties of revenue-maximizing mechanisms

change when non-participation payoffs are type-dependent, whereas this paper contains the general theory

for solving such problems. Moreover, this paper sheds light on the reasons for the phenomena in Figueroa

and Skreta (2009a) by identifying the general forces behind them.

The work on revenue-maximizing auctions has had a huge impact on various aspects of economics. One

reason is that the solution method is elegant and simple: In principle, one has to solve a complicated optimal

control problem, but because of the linearity of the problem and the structure of the feasible set, one can

solve it using simple pointwise optimization. Our problem is generally not solvable with such Myerson-like

techniques for at least two reasons: 1) Buyers’ participation payoffs can depend non-linearly on their types;

and 2) non-participation payoffs can depend on buyers’ types.

When buyers’ payoffs depend non-linearly on their types, it is possible that, despite strictly monotonic

virtual surpluses, the solution derived via pointwise optimization is not incentive-compatible. This is illus-

trated in a simple example in Figueroa and Skreta (2009b). Thus, one has to explicitly account for the

incentive-compatibility constraints. In this paper, we focus on identifying the classes of problems where the

incentive-compatibility conditions do not bind.

The second reason why Myerson-like techniques fail is the fact that non-participation payoffs can de-

pend on buyers’ own private information. In such cases, the shape of participation and non-participation

payoffs (which both depend on the mechanism chosen by the seller) together determine the type where the

participation constraints bind-the critical type. This set of types determines the modification of the virtual

surplus of an allocation: For types between the critical and the best type, the only distortion comes from

the incentive-compatibility constraints that reduce the surplus of an allocation by the information rents. For

types between the critical and the worst type, on top of this distortion, there is another distortion-introduced

by the participation constraints-which goes in the other direction. Ultimately, the degree of efficiency of the

revenue-maximizing assignment depends on how these two distortions balance out. Thus, the way the goods

5For more on this point, as well on further comments on related literature, see Figueroa and Skreta (2009a).
6An incomplete list of environments included in our formulation are the ones in Myerson (1981), Gale (1990), Dana and

Spier (1994), Milgrom (1996), Branco (1996), Jehiel, Moldovanu and Stacchetti (1996), Levin (1997), Brocas (2007) and Aseff
and Chade (2008).
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are allocated depends on the vector of critical types, and the reverse, making the problem fundamentally non-

linear.7 For all these cases, we can describe some qualitative features of the revenue-maximizing mechanisms;

however, a general analytical expression of a solution is not possible, just as in other non-linear revenue-

maximizing auction problems. See, for example, Maskin and Riley (1984), which analyzes the problem with

risk-averse buyers.

Despite the complications of the allocation problems that we examine, we are able to identify interesting

classes of problems that are solvable via Myerson-like techniques, but that, at the same time, are among

the classes of problems where the novel features of overselling or even efficiency of the revenue-maximizing

allocation appear. This is done in Section 4 of this paper. In these cases, the vector of critical types does

not depend on the allocation that the seller chooses, because (roughly) buyers’ outside payoffs have extreme

slopes. The analytical solutions of these cases show the possibilities of efficiency and “overselling.” We

choose to state these observations as possibilities rather than to describe the complete list of cases where

they would be true because this would be a very long and tedious task. Whether efficiency, “overselling”

or “underselling” occurs depends on the vector of critical types. These features will also be present when

revenue depends non-linearly in the assignment rule.

In some sense, our analysis highlights how far one can push Myerson-like techniques within the framework

of allocation problems with risk-neutral buyers and single-dimensional private information. Indeed, because

of the generality of our framework, we hit a number of boundaries of these techniques. Given the large

number of applications that these techniques have had across many subfields of economics, demonstrating

their reach can further extend the number of applications significantly.

Our multi-unit model is very versatile, but has the drawback that private information is single-dimensional.

For a discussion of why this assumption can sometimes be satisfactory, see Levin (1997). Other papers that

study revenue-maximizing multi-unit auctions when private information is single-dimensional are Maskin

and Riley (1989), who analyze the case of unit demands and continuously divisible goods; Gale (1990), the

case of discrete goods and superadditive valuations; and, finally, Levin (1997) the case of complements. A

number of papers on revenue-maximizing multi-unit auctions model types as being multi-dimensional. With

multi-dimensional types, the characterization of the optimum is extremely difficult. Significant progress

has been made, but no analytical solution or general algorithm is known. Important contributions include

Jehiel,Moldovanu and Stacchetti (1999),8 Armstrong (2000), Avery and Hendershott (2000) and Jehiel and

Moldovanu (2001). This paper is less general in the dimensionality of the types, but much more general in

all other dimensions.

This paper is also related to the literature on mechanism design with type-dependent outside options

7 It is very important to stress that the virtual surplus is modified only when outside-payoffs are type-dependent. Thus,
overselling cannot occur when there are externalities (positive or negative), but the outside options are flat, as is the case in
Jehiel, Moldovanu and Stacchetti (1996). Also, the presence of externalities is just one instance where outside options may be
type-dependent, but there can be many more. Consider, for instance, a procurement setting where bidders have to give up the
possibility of undertaking other projects in order to participate in the current auction.

8 Jehiel-Moldovanu and Stacchetti (1999) consider the design of optimal auctions of a single unit in the presence of type-
dependent externalities and multi-dimensional types. A buyer’s type is a vector, where each component indicates his/her utility
as a function of who gets the object. The multi-dimensionality of types makes the complete characterization intractable.
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and, most notably, to the paper by Krishna and Perry (2000), who examine efficient mechanisms, whereas

our focus is revenue maximization. Lewis and Sappington (1989) study an agency problem where the outside

option of the agent is type-dependent. Among other things, the fact that the critical type is not necessarily

the “worst” one mitigates the inefficiencies that arise from contracting under private information. This

feature also appears at times in our analysis, but we also show that inefficiencies sometimes are not reduced,

but they change in nature, and the monopolist, instead of selling too little, sells too much. Jullien (2000)

uses a dual approach to characterize properties of the optimal incentive scheme, such as the possibility of

separation, non-stochasticity, etc. In this paper, we do not rely on dual methods. Other differences from

Jullien (2000) are that we allow for multiple agents and for the principle to choose the outside options that

agents face.

2. The Environment and main Definitions

A risk-neutral seller owns N indivisible, possibly heterogeneous, objects that are of 0 value to her and faces

I risk-neutral buyers. Both N and I are finite natural numbers. The seller (indexed by zero) can bundle

these N objects in any way she sees fit. An allocation z is an assignment of objects to the buyers and to

the seller. It is a vector with N components, where each component stands for an object and specifies who

gets it; therefore, the set of possible allocations is finite and given by Z ⊆ [I ∪ {0}]N . Buyer i’s valuation
from allocation z is denoted by πzi (c), where c = (ci, c−i) stands for the buyers’ cost parameters. Values

can, therefore, be interdependent. Buyer i’s cost parameter ci is private information and is distributed on

Ci = [ci, ci], with 0 ≤ ci ≤ ci <∞, according to a distribution Fi that has a strictly positive and continuous
density fi. Costs are independently distributed across buyers. The joint probability density function is

f(c) = ×i∈Ifi(ci), where c ∈ C = ×i∈ICi; we also use f−i(c−i) = ×j∈I
j 6=i

fj(cj).

We assume that, for all i ∈ I, πzi (·, c−i) is decreasing, convex and differentiable for all z and c−i. We

impose no restrictions on how πi depends on z or c−i. This formulation allows buyers to demand many objects

that may be complements or substitutes and for externalities, that can be type- and identity-dependent.

A crucial feature of the model is that a buyer may care about the entire allocation of the objects and not

only about the objects he obtains. Thus, it is quite possible that πzi (ci, c−i) 6= 0 even if allocation z does

not include any objects for i and even if i is not taking part in the auction. In such a case, non-participation

payoffs may depend on i0s type. This dependence introduces a number of technical difficulties and is the

reason why revenue-maximizing assignments may be ex-post efficient and/or involve overselling.

The seller wants to design a revenue-maximizing mechanism, and the buyers aim to maximize expected

surplus. By the revelation principle, it is without loss of generality to restrict attention to truth-telling

equilibria of direct revelation games where all buyers participate. To see this, note that the set of possible

allocations is Z = {I ∪{0}}N , which is larger the more buyers that participate. The seller can then replicate
an equilibrium outcome of some auction, where a subset of the buyers (for some realizations of their private

information) do not participate, with a mechanism where all buyers participate that induces the original
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allocation for participating and non-participating buyers.

A direct revelation mechanism,(DRM), M = (p, x,
¡
p−i
¢
i∈I) consists of an assignment rule p : C −→

∆(Z), a payment rule x : C −→ RI and a non-participation assignment rule p−i out of P−i = {p−i : C−i →
∆(Z−i)}, where Z−i ⊂ Z is the set of allocations that are feasible without i.9

The assignment rule specifies the probability of each allocation for a given vector of reports. We denote

by pz(c) the probability that allocation z is implemented when the vector of reports is c. Observe that

the assignment rule has as many components as the number of possible allocations. The payment rule x

specifies, for each vector of reports c, a vector of payments, one for each buyer. Finally, the non-participation

assignment rule specifies the allocation that prevails if i refuses to participate. If i does not participate, he

neither submits a message nor makes or receives any payments.

We assume that the seller chooses the non-participation assignment rule so as to maximize ex-ante

expected revenue. If the seller does not have such commitment power, then P−i would contain all the
assignment rules that are feasible and revenue-maximizing when i is not around (therefore, P−iNC is a subset

of {p−i : C−i → ∆(Z−i)}). It is worth stressing that the crucial qualitative features of our results depend
on the fact that outside payoffs are type-dependent, and not on the exact elements of P−i. Of course, to
find the revenue-maximizing p given P−i is a different problem than finding the revenue-maximizing p given

some other set P̂−i, so the exact solution may differ.
We now proceed to describe the seller’s and the buyers’ payoffs. The interim expected utility of a buyer of

type ci when he participates and declares c0i is Ui(ci, c
0
i; (p, x)) = Ec−i

∙P
z∈Z

(pz(c0i, c−i)π
z
i (ci, c−i))− xi(c

0
i, c−i)

¸
,

whereas his maximized payoff is given by Vi(ci) ≡ Ui(ci, ci; (p, x)). The payoff that accrues to buyer i from

non-participation depends on his type ci and on what allocations will prevail in that case, which are deter-

mined by p−i:

U i(ci, p
−i) = Ec−i

" X
z∈Z−i

(p−i)z(c−i)πzi (ci, c−i)

#
,

where (p−i)z denotes the probability assigned to allocation z by p−i.

The timing is as follows:

Stage 0: The seller chooses a mechanism (p, x,
¡
p−i
¢
i∈I).

Stage 1: Buyers decide whether or not to participate, and which report to make. If all make

a report, the mechanism determines the assignment of objects and the payments. If buyer i

decides not to participate, the objects are assigned according to {p−i}. If two or more buyers do
not participate, then an arbitrary allocation that is feasible in that case-for example, the status

quo- is implemented.

9Note that this formulation is flexible enough to accommodate a number of alternative scenarios. All one needs to do is
define Z−i appropriately. For example, if players have veto rights, Z−i can be specified as containing just the status quo
allocation. Also, the special case in which one can block oneself from paying anything, but has no rights at all over outcomes,
can be accommodated by specifying Z−i = Z. In an auction setup, it seems rather natural to assume that the set of feasible
allocations when buyer i is not around contains all allocations that do not involve buyer i receiving any goods (that is, we
cannot force objects to a non-participating buyer).
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In order for a mechanism to be feasible, all buyers must choose to participate and to report their true

type. We are capturing a one-shot scenario. Given that others participate and tell the truth about their

types, is it a best response for buyer i to participate and tell the truth about his type? In such a one-shot

scenario, buyers are not making inferences about the type of a non-participating buyer.

We now provide a formal definition of what it entails for a direct revelation mechanism to be feasible.

Definition 1. (Feasible Mechanisms) A mechanism (p, x,
¡
p−i
¢
i∈I) is feasible iff it satisfies

(IC) “incentive constraints,” a buyer’s strategy is such that

Ui(ci, ci; (p, x)) ≥ Ui(ci, c
0
i; (p, x)) for all ci, c

0
i ∈ Ci, and i ∈ I

(PC) “voluntary participation constraints,”

Ui(ci, ci; (p, x)) ≥ U i(ci, p
−i) for all ci ∈ Ci, and i ∈ I

(RES) “resource constraints”
P
z∈Z

pz(c) = 1, pz(c) ≥ 0 for all c ∈ C

To summarize, feasibility requires that (1) buyers prefer to tell the truth about their cost parameter; (2)

buyers choose voluntarily to participate; and (3) p is a probability distribution over Z.10

Observations:

1. We assume that all buyers participate in the mechanism. This is without loss of generality since any

equilibrium in which a subset of buyers do not participate can be replicated with one in which all

participate as follows: All buyers participate in a mechanism that assigns everyone the allocation of

the original equilibrium. Moreover, the outside options, the p−i’s, are the same as in the original

equilibrium; that is, the participating buyers of the original equilibrium face the same p−i, and the

non-participating ones are assigned their original allocation from non-participation.

2. Then, given observation 1, the allocation that prevails when two or more buyers fail to participate

is irrelevant. This is because when we check for feasibility of a mechanism, we look for Bayes-Nash

Equilibria (BNE); hence, we look only for individual deviations (as opposed to coalitional deviations).

In short, we check whether it is in each buyer’s best interest to participate in the mechanism and to

report truthfully, given that everybody else does so.

With the help of the revelation principle, the seller’s problem can be written as

max

Z
C

IX
i=1

xi(c)f(c)dc (1)

subject to (p, x) being “feasible.”

This completes the description of our model and the seller’s problem, and we now proceed with our

analysis. Proofs of the results not presented in the main text can be found in Appendix A.

10Notice that Z contains the allocation where the seller keeps all the objects; thus,
z∈Z

pz(c) = 1.
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3. Analysis of the Problem

The seller’s objective is to maximize expected revenue subject to incentive, participation and resource con-

straints. We start by studying the implications of these constraints.

Implications of Incentive Compatibility Given a DRM (p, x), buyer i0s maximized payoff,

Vi(ci) = max
c0i

Z
C−i

ÃX
z∈Z

pz(c0i, c−i)π
z
i (ci, c−i)− xi(c

0
i, c−i)

!
f−i(c−i)dc−i, (2)

is convex, since it is a maximum of convex functions. In the next Lemma, we show that the incentive

constraints translate into the requirement that the derivative of Vi,

Pi(ci) ≡
Z
C−i

X
z∈Z

pz(ci, c−i)
∂πzi (ci, c−i)

∂ci
f−i(c−i)dc−i, (3)

(more precisely, a selection from its subgradient, which is single-valued almost surely), evaluated at the true

type is weakly increasing.11

Lemma 1 A mechanism (p, x) is incentive-compatible iff

Pi(c
0
i) ≥ Pi(ci) for all c0i > ci (4)

Vi(ci) = Vi(ci)−
ciR
ci

Pi(s)ds for all ci ∈ Ci. (5)

Let

Jz(c) ≡
IX
i=1

[πzi (ci, c−i) +
Fi(ci)

fi(ci)

∂πzi (ci, c−i)
∂ci

] (6)

denote the virtual surplus of allocation z. Notice that we are summing over all buyers because an allocation

may affect all of them, and not just the ones that obtain objects. Therefore, the virtual surplus of allocation

z may depend on the whole vector of types:12 This may be true not only when values are interdependent,

but also in a private values setup when buyers care about the entire allocation of the item(s). To see this,

suppose that the profits to firm i from winning a firm take-over is 1 − ci, whereas its competitors’ payoffs

are −cj . Then, when i wins, (6) becomes 1− ci −Σj 6=i
h
cj − Fj(cj)

fj(cj)

i
.

With the help of Lemma 1 and using standard arguments, we can write buyer i’s expected payment as

a function of the assignment rule p, and the payoff that accrues to his worst type,13 Vi(ci) as

IX
i=1

Z
C

xi(c)f(c)dc =

Z
C

X
z∈Z

pz(c)Jz(c)f(c)dc−
IX
i=1

Vi(ci). (7)

Now we turn to examine the implications of the participation constraints.

11 In the classical case, where there is only one object and i0s payoff from obtaining the object is vi, (see Myerson (1981)),
the analog of Pi is Pi(vi) =

V−i
p(vi, v−i)f−i(v−i)dv−i.

12 In Myerson (1981), virtual valuations are buyer-specific. For buyer i, we have Ji(vi) = vi − 1−Fi(vi)
fi(vi)

.
13For more details, see Appendix A.
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Implications of Participation Constraints Since the seller’s revenue is decreasing in Vi(ci), at a solu-

tion, this term must be as small as possible subject to the participation constraint Vi(ci) ≥ U i(ci, p
−i) for all

ci ∈ Ci. At an optimum, there exists a type, which we call “critical type”14 c∗i , where participation payoffs

are exactly equal to non-participation payoffs; that is,

Vi(c
∗
i ) = U i(c

∗
i , p
−i). (8)

This type can be any type in Ci. See Figure 1:

Payoff  to buyer  i

ic

)( ii cV

))(,(* pppc i
i

−

),( i
ii pcU −

Shape o f 

depends on p
E xac t posit ion  is 
p inned dow n  by the  
pa rt ic ipa tion  
c onst ra in t

)( ii cV

Figure 1: PC can bind anywhere

From (5) and (8), we see that Vi(ci) depends on p through two channels: Pi and c∗i (p, p
−i) as follows:

Vi(ci) = U i(c
∗
i (p, p

−i), p−i) +

ciZ
c∗i (p,p−i)

Pi(s)ds. (9)

Recall that we assume that the seller can commit to choose p−i in order to maximize revenue ex-ante.

We now show how this can achieved:

Revenue-maximizing non-participation assignments for fixed p For a given p, a revenue-maximizing

p−i must be chosen in order to minimize Vi(ci), subject to the voluntary participation constraints-namely,

p−i(p) ∈ arg min
ρ−i∈P−i

U i(c
∗
i (p, ρ

−i), ρ−i) +

ciZ
c∗i (p,ρ−i)

Pi(s)ds, (10)

subject to c∗i (p, ρ
−i) satisfying:

c∗i (p, ρ
−i) ∈ argmin

ci

"
−
Z ci

ci

Pi(s)ds− U i(ci, ρ
−i)

#
. (11)

Hence, for each assignment of the objects, p, there is a potentially different revenue-maximizing “threat”

p−i(p), which can be random.15 Additionally, the dependence of c∗i on ρ
−i and on p adds an additional level

of complication, as for any candidate solution of (10) there is possibly a different c∗i satisfying (11).

14 In general, there can be many critical types, and any one can be chosen to stand for c∗i .
15Example 2 in Figueroa and Skreta (2008) has this feature.
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By substituting a solution of the program described in (10) into (9), we have that if ρ−i is chosen

optimally, we have that

Vi(ci; p, p
−i(p)) = U i(c

∗
i (p, p

−i(p)), p−i) +

ciZ
c∗i (p,p−i(p))

Pi(s)ds. (12)

Modified Virtual Surpluses We now demonstrate how the presence of type-dependent outside options

modifies the virtual surpluses of allocations. By substituting (12) into (7), the objective function of the

seller’s problem can be rewritten as

Z
C

X
z∈Z

pz(c)Jz(c)f(c)dc−
IX
i=1

⎡⎢⎣U i(c
∗
i (p, p

−i(p)), p−i) +

ciZ
c∗i (p,p−i(p))

Pi(s)ds

⎤⎥⎦ . (13)

Recalling that Pi(ci) =
R

C−i

P
z∈Z

pz(c)
∂πzi (ci,c−i)

∂ci
f−i(c−i)dc−i, and by rearranging the terms in (13), we can

rewrite it asZ
C

X
z∈Z

pz(c)

"
Jz(c)−

IX
i=1

1ci≥c∗i (p,p−i(p))
∂πzi (c)

∂ci

1

fi(ci)

#
f(c)dc−

IX
i=1

U i(c
∗
i (p, p

−i(p)), p−i).

We define the “modified virtual surplus” of allocation z as

Ĵz(c) ≡ Jz(c)−
IX
i=1

1ci≥c∗i (p,p−i(p))
∂πzi (c)

∂ci

1

fi(ci)
. (14)

Observe that the modified virtual surplus depends on p and on p−i through c∗i (p, p
−i(p)), which depends,

in turn, on the shape of the participation payoffs, which are determined by p, and on the shape of non-

participation payoffs, which are determined by {p−i}i∈I .
It is useful to compare the modified virtual surplus of an allocation z, Ĵz, with the virtual surplus of that

allocation, Jz, and with the actual surplus of that allocation Sz, which is given by Sz(c) =
IP
i=1

πzi (ci, c−i).

This is interesting because the degree of efficiency of a revenue-maximizing mechanism depends on these

comparisons.

If c∗i = c̄i for all i, the modified virtual surplus coincides with the virtual surplus; hence,16

Ĵz(c) = Jz(c). (15)

This is because the virtual surplus is modified only for ci ≥ c∗i .

If, on the other hand, c∗i = ci for all i, then
17

Ĵz(c) = Jz(c)−
IX
i=1

∂πzi (c)

∂ci

1

fi(ci)
, (16)

16With constant with respect to own type outside options, the critical type is always the worst type. See, for instance,
Myerson (1981) or Jehiel, Moldovanu and Stacchetti (1996). This implies that the modified virtual surplus is equal to the
virtual surplus and independent of the assignment rule p. In this case, a revenue-maximizing p is independent of the outside
options that buyers face, and it has a simple characterization, because revenue is always linear in p. This is true even if, as in
this paper and in Jehiel, Moldovanu and Stacchetti (1996), the seller can choose p−i. The reason is that, when outside options
give a type-independent payoff, they are essentially just a number. All the seller needs to do is to choose the option that
guarantees the lowest number for i. In that case, optimal threats p−i are independent of p and deterministic. In contrast, with
type-dependent outside options, p−i can depend on p, can be random and cannot be chosen by simple inspection.
17Example 1 in Figueroa and Skreta (2009a) has this feature.
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which can be rewritten as

Ĵz(c) =
IX
i=1

∙
πzi (c) +

Fi(ci)− 1
fi(ci)

∂πzi (c)

∂ci

¸
. (17)

In this case, Ĵz(c) > Jz(c) because
IP
i=1

∂πzi (c)
∂ci

1
fi(ci)

is negative, which follows from the fact that πzi is decreasing

in ci. Moreover, since the amount
³
Fi(ci)−1
fi(ci)

∂πzi (ci,c−i)
∂ci

´
is positive, we also have that the “modified virtual

surplus” of allocation z is actually larger than the actual surplus of allocation z-that is, Ĵz(c) ≥ Sz(c).

Finally, if c∗i is interior
18 for all i-namely, c∗i ∈ (ci, c̄i)-then Ĵz(c) depends on how a vector c compares

to the vector c∗. Consider, for instance, (c̃i, c̃−i), where for all i we have that c̃i < c∗i ; then, it holds that

Ĵz(c̃) = Jz(c̃), as in (15), and at that c̃ the modified virtual surplus is less than Sz(ĉ). Now, take a (ĉi, ĉ−i),

where for all i we have that ĉi ≥ c∗i ; then, it holds that Ĵz(ĉ) = Jz(ĉ)−
IP
i=1

∂πzi (ĉ)
∂ci

1
fi(ĉi)

, as in (16), and at ĉ

we have that Ĵz(ĉ) > Jz(ĉ) and Ĵz(ĉ) ≥ Sz(ĉ). For a vector (ci, c−i) where ci > c∗i for some i, and cj ≤ c∗j

for some j, we can see from (14), that there is no modification to Jz for j, but there is for i. Then, we can

still conclude that Ĵz(c) ≥ Jz(c), but depending on the exact comparison of (ci, c−i) with (c∗i , c
∗
−i), both

Ĵz(c) ≥ Sz(c) and Ĵz(c) < Sz(c) are possible.

How the modified virtual surplus of an allocation, (the Ĵz), compares with the actual virtual surplus of

that allocation, (the Sz), is important because it affects the degree of efficiency of the revenue-maximizing

mechanisms.

Revenue-maximizing Mechanisms Here, we put together all the implications we derived in the previous

section and describe the conditions that revenue-maximizing mechanisms satisfy.

Using (14), the seller’s objective function given by (13) can be rewritten asZ
C

X
z∈Z

pz(c)Ĵz(c)f(c)dc−
IX
i=1

U i(c
∗
i (p, p

−i(p)), p−i). (18)

The following Proposition characterizes necessary conditions of revenue-maximizing mechanisms.

Proposition 2 If, in a mechanism, the allocation and non-participation rules (p, {p−i}i∈I) satisfy that (i)
the assignment function p maximizes (18) subject to resource constraints and (4); (ii) p−i = p−i(p) according

to (10); and (iii) the payment function x for all i is given by:

xi(c) =
X
z∈Z

pz(c)πzi (c) +

ciZ
ci

X
z∈Z

pz(s, c−i)
∂πzi (s, c−i)

∂s
ds− Vi(ci; p, p

−i(p)), (19)

with Vi(ci; p, p
−i(p)) given by (12), then it is revenue-maximizing.

Proof. We have already argued that in a revenue-maximizing mechanism, there must exist at least one type

for each buyer where the participation constraint binds- that is, a type where (8) is satisfied. This type is

denoted by c∗i (p, p
−i), and it satisfies (11). These are the implications of the participation constraints on the

solutions.
18For an illustration of such a case, see Example 2 in Figueroa and Skreta (2009a).
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The implications of the incentive constraints are that revenue can be expressed as in (7). Combining these

implications, we showed how we can express revenue by (18). Since the amount of revenue the seller can

extract depends also on the shape and location of non-participation payoffs, then in a revenue-maximizing

mechanism p−i has to satisfy (10).

Now, in order for a mechanism to be a valid solution, it must have an allocation rule p that satisfies (4)

and resource constraints.

Finally, if, in a mechanism, the payment rule is given by (19), then for all i ∈ I, i0s payoff is the

lowest it can be, while ensuring voluntary participation since c∗i is indifferent between participating or not

participating. To see this, note that by substituting (12) into (19), and by taking expectations with respect

to c−i, we obtain that

Z
C−i

xi(c)f−i(c−i)dc−i =

Z
C−i

⎡⎣X
z∈Z

pz(c)πzi (c) +

ciZ
ci

X
z∈Z

pz(s, c−i)
∂πzi (s, c−i)

∂s
ds

⎤⎦ f−i(c−i)dc−i
−U i(c

∗
i (p, p

−i(p)), p−i)−
ciZ

c∗i (p,p−i(p))

Pi(s)ds. (20)

By recalling (3), (20) implies that

Vi(ci) = U i(c
∗
i (p, p

−i(p)), p−i)−
c∗i (p,p

−i(p))Z
ci

Pi(s)ds,

from which we immediately get that

Vi(c
∗
i ) = U i(c

∗
i (p, p

−i(p)), p−i).

From these considerations, it follows that a mechanism (p, x,
¡
p−i
¢
i∈I) that satisfies all these conditions

is revenue-maximizing.

Proposition 2 is in the same spirit as Lemma 3 in Myerson (1981). As in that paper, we have revenue

equivalence. Any two mechanisms that allocate the objects in the same way and give the same expected

payoff to the worst type generate the same revenue. There are, however, important differences. The most

important one is that in our problem, the objective function can depend non-linearly on p. To see this, notice

that c∗i may depend on the whole shape of p (.) non-linearly (both directly and indirectly through p−i(p)).

Moreover, revenue depends on c∗i through Vi(c̄i), and this effect, as we have seen, can be decomposed between

an effect on Ĵz and another on the term
IP
i=1

U i(c
∗
i (p, p

−i(p)), p−i). Because the seller’s objective function can

depend non-linearly on p19 , and because of the interdependence of p, p−i and c∗i it is, in general, impossible

to find an analytical expression for the revenue-maximizing assignment. However, the problem has enough

structure to allow the use of variational methods once one has the specifics of the problem in hand (the Fi’s

and the π’s). In particular, if the functions πzi (·, c−i) are smooth enough, then c∗i (p, p−i(p)) is a differentiable
function of p, thus guaranteeing that the objective function is differentiable and, hence, continuous. It is not

19For an example, see Appendix B.
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hard to show that the feasible set is sequentially compact. A continuous function over a sequentially compact

set has a maximum. The solution will depend on the particular shapes of πzi and of the distributions Fi.

Despite the fact that, in general, we cannot get an explicit expression for the revenue-maximizing assign-

ment, we can say the following: First, when virtual surpluses of allocations depend on more than one cost

parameter, simple auctions with flat entry fees and reserve prices are likely to be outperformed by ones where

reserve prices depend on other buyers’ bids. Second, because modified virtual surpluses are (weakly) greater

than virtual surpluses, and can be even greater than actual surpluses, sometimes revenue-maximizing auc-

tions may oversell or may be even ex-post efficient. Finally, it is possible that both the revenue-maximizing

assignment and the non-participation assignment are random. In fact, the revenue-maximizing assignment

can be random even if revenue is linear in the assignment rule. An example with this feature is analyzed in

Figueroa and Skreta (2009b). For an example where the revenue-maximizing non-participation assignment

rule is random, see Figueroa and Skreta (2009a).

Additionally, there are interesting cases where the problem becomes linear and, hence, analytical solutions

can be obtained through a procedure similar to the one used in Myerson (1981). Their analytical tractability

allows one to clearly see the role of the shape of outside options for the efficiency properties and other

characteristics of revenue-maximizing mechanisms vis-a-vis the case of type-independent outside options

studied in Myerson (1981), and in Jehiel, Moldovanu and Stacchetti (1996) for the case of externalities.

These cases are described in the following section.

4. Revenue-maximizing Mechanisms with Critical Types Independent of p

In many cases with interesting economic insights, critical types are independent from p when p−i is optimally

chosen. Whether or not this happens, depends on how sensitive the outside payoff of a buyer is with respect

to his own type, relative to the one of participation payoffs. This can occur in many cases, including: (i) the

case where outside options can depend on p and on the type of competitors, but not on the buyer’s type; (ii)

the somewhat opposite case, where the outside option is steep in the buyer’s type; and (iii) an intermediate

case where both options are present: The buyer can be threatened with an allocation that yields him a

type-independent payoff, and with an allocation where the payoff is very steep with respect to type. When

there is a critical type that is independent of p when p−i is optimally chosen, then revenue is linear in the

allocation rule.

Below, we describe conditions on the shape of πzi (·, c−i) and on the sets Z−i0s under which each of these
cases prevails. The analysis of these cases illustrates the main economic insights of the influence of outside

options on the shape of revenue-maximizing mechanisms.
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4.1 Environments with Critical Types Independent of p

We now present the three previously-described environments. A more detailed description can be found in

Appendix C. In what follows, we use the notation:

π̄zi (ci) ≡
Z
C−i

πzi (ci, c−i)f−i(c−i)dc−i.

Case 1: Flat Payoff from Worst Allocation for i

Suppose that there is an allocation in zFi ∈ Z−i, that gives i a type-independent payoff- that is, πz
F
i
i (c) =

π
zFi
i (c−i) for all ci- and it satisfies the following two conditions:

0 =
dπ

zFi
i (ci)

dci
≥ dπzi (ci)

dci
for all z ∈ Z

π
zFi
i (c−i) ≤ πzi (ci, c−i) for all z ∈ Z−i and ci ∈ Ci.

Then, a revenue-maximizing outside option from the seller’s perspective is (p−i)z
F
i = 1 since it solves, for all

p,

p−i(p) ∈ arg min
ρ−i∈P−i

U i(c
∗
i (p, ρ

−i), ρ−i) +

ciZ
c∗i (p,ρ−i)

Pi(s)ds, (21)

implying that

U i(c
∗
i (p, p

−i(p)), p−i(p)) = π̄
zFi
i (c̄i).

When outside options are type-independent, then

c∗i (p, p
−i(p)) = c̄i. (22)

This is because Vi(ci) is decreasing in ci : If outside options are type-independent, then it is immediate that

the participation constraint binds at the highest cost type, namely c∗i = ci, irrespectively of the exact shape

of Vi.

Environments that fall in this category are those in Myerson (1981) and in Jehiel, Moldovanu and

Stacchetti (1996). In terms of applications, this assumption is satisfied whenever the outside options are

independent from the parameter that affects the payoffs of participation in the auction. For example, it could

be satisfied in a procurement setting for some specialized project. The firms’ private information affects their

cost of production of the project, but not their profits if they stay out of the competition.

Case 2: Very Steep Payoff from Worst Allocation for i

Another case is the polar opposite of the previous one. Here, the worst allocation for buyer i is type-

dependent, and very sharply so. More precisely, there exists an allocation zSi ∈ Z−i, at which i0s payoff is

very sensitive to type, and guarantees the lowest payoff at ci:
20

20 Such a case is illustrated in Example 1 in Figueroa and Skreta (2009a).

14



dπ
zSi
i (ci)

dci
≤ dπzi (ci)

dci
for all z ∈ Z,

π
zSi
i (ci) ≤ πzi (ci) for all z ∈ Z.

It is easy to see (the details are in Appendix C) that the revenue-maximizing outside option from the seller’s

perspective is (p−i)z
S
i = 1 for all p since, for all p, it solves

p−i(p) ∈ arg min
ρ−i∈P−i

U i(c
∗
i (p, ρ

−i), ρ−i) +

ciZ
c∗i (p,ρ−i)

Pi(s)ds. (23)

In that case, we have

c∗i (p, p
−i(p)) = ci and (24)

U i(c
∗
i (p, p

−i(p)), p−i(p)) = π̄
zSi
i (ci);

see Figure 2:

Payoff to buyer 1

)( 11 cV
1c

)(c
Szπ

Figure 2: PC binds at BEST type

To understand why the critical type is the lowest cost (best type) in this case, recall that the critical type

is the one where gains from trade are minimal. Now, in this case, as the cost gets higher, the outside options

worsen faster than any feasible participation payoff. This implies that the gains from trade are minimal

for the lowest cost. For the same reason, the participation constraint binds at the best type (the highest

valuation) for the seller in the classical bilateral trading problem in Myerson and Satterthwhaite (1983).

Case 3: Coexistence of Flat and Very Steep Worst Allocations for i

Another interesting case is the one where options like zSi and z
F
i coexist, and it is not obvious which one

the seller should use because

dπ̄
zSi
i (ci)

dci
≤ dπ̄zi (ci)

dci
≤ dπ̄

zFi
i (ci)

dci
for all z ∈ Z, ci ∈ Ci

π̄
zSi
i (ci) ≥ π̄

zFi
i (ci).
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As one can see from Figure 3, for some types, zFi hurts more, and for others z
S
i .

B u ye r’s  
p a yo ff

c

iĉ

)( c
Szπ

)( c
Fzπ

Figure 3: PC binds at an interior type.

In this case21 , the solution to

p−i(p) ∈ arg min
ρ−i∈P−i

ρ−iπ̄z
F
i
i (c

∗
i ) + (1− ρ−i)π̄z

S
i
i (c

∗
i ) +

ciZ
c∗i

Pi(s)ds, (25)

is such that

c∗i (p, p
−i(p)) = ĉi and (26)

U i(c
∗
i (p, p

−i(p)), p−i(p)) = π̄
zFi
i (ĉi) = π̄

zSi
i (ĉi) for all p and p−i(p)

where ĉi is the type where the payoffs cross-that is,

π̄
zFi
i (ĉi) = π̄

zSi
i (ĉi). (27)

The critical type is independent of p, despite the fact that the revenue-maximizing p−i can depend on p.

This is because (8) implies that if c∗i is interior, Vi and U i must be tangent at c
∗
i ; namely, it must be the

case that
∂U i(c

∗
i , p
−i)

∂ci
∈ ∂Vi(c

∗
i ). (28)

Then, for every possible assignment rule p, when the seller chooses p−i ∈ P−i optimally-that is, according
to (10)- the following are true:

c∗i (p, p
−i(p)) ≡ c∗i and (29)

U i(c
∗
i , p
−i(p)) ≡ U i(c

∗
i ).

In contrast to the previous two cases the critical type can be interior in this case.

Summing up, in all these cases22 , neither c∗i (p, p
−i(p)), nor the level of U i(., p

−i(p)), evaluated at the

critical type c∗i , depend on p.

21 Such a case is illustrated in Example 2 in Figueroa and Skreta (2009a).
22These are not the only cases where revenue will be linear in p, but they are suggestive of the classes of environments that

are likely to exhibit this property.
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Proposition 3 If (29) is satisfied, the seller’s expected revenue can be expressed as a linear function of the

assignment rule, Z
C

X
z∈Z

pz(c)Ĵz(c)f(c)dc−
IX
i=1

U i(c
∗
i ), (30)

where Ĵz is the modified virtual surplus of allocation z defined in (14).

We now discuss the solution of such problems.

4.2 Revenue-maximizing Mechanisms

When revenue can be expressed by (30), we can break down the characterization of revenue-maximizing

mechanisms into two steps: First, find a revenue-maximizing non-participation assignment rule {p−i(p)}i∈I ,
as we have done in (21), (23), or (25), and then find a revenue-maximizing assignment rule p that solves:

max
p∈∆(Z)

Z
C

X
z∈Z

pz(c)Ĵz(c)f(c)dc (31)

s.t. Pi increasing.

This problem has a structure similar to the classical one in Myerson (1981), but with modified virtual

surpluses, and can be solved using relatively conventional methods. Despite this, the qualitative features of

the solution will often exhibit stark differences from the classical one.

The solution is straightforward if the assignment rule that solves the relaxed program,

max
p∈∆(Z)

Z
C

X
z∈Z

pz(c)Ĵz(c)f(c)dc,

also satisfies the requirement of Pi being increasing since, in that case, the relaxed program can be solved by

pointwise maximization. Following Myerson (1981), we will refer to this as the regular case. On the other

hand, in the general case, pointwise optimization will lead to a mechanism that may not be feasible.

In the classical problem, a sufficient condition for the problem to be regular is that the virtual surpluses

are increasing. A mild condition on the distribution function Fi (MHR) guarantees that. Unfortunately, in

our more general environment, the problem fails to be regular even if virtual surpluses (or modified virtual

surpluses) are monotonic, so Myerson’s technique of obtaining ‘ironed’ virtual valuations will not work.

Dealing with these complications is beyond the theme of this paper, the primary focus of which is the effect

of type-dependent outside options.23

We now state a condition that guarantees that pointwise optimization will lead to a feasible solution.

Before stating the Assumption, let us provide some explanation. Recall that IC requires Pi to be increasing

in ci. Pointwise optimization assigns probability one to the allocation with the highest virtual surplus at

each vector of types. Along a region where there is no switch, one allocation, say z1, is selected throughout,
23 In Figueroa and Skreta (2009b), we illustrate this phenomenon and show a way to solve the general case, which does not

impose additional assumptions, such as differentiability, on the mechanism. There, we argue that in the general case an optimal
mechanism will involve randomizations between allocations. Such lotteries are quite surprising given that buyers are risk-neutral
and types are single-dimensional.
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and Pi(ci) =
R

C−i

∂π
z1
i (ci,c−i)
∂ci

f−i(c−i)dc−i, which is increasing by the convexity of πi. Incentive compatibility

can be violated, though, when the seller wishes to switch, say, from allocation z1 to z2. At such a point c, we

have that Ĵz2(c) ≥ Ĵz1(c) and IC requires that Pi does not decrease-namely,
R

C−i

∂π
z2
i (ci,c−i)
∂ci

f−i(c−i)dc−i ≥R
C−i

∂π
z1
i (ci,c−i)
∂ci

f−i(c−i)dc−i. Our condition guarantees precisely this.

Assumption 4 24 Let z1,z2 ∈ Z be any two allocations. For a given cost realization (ci, c−i), if z1 ∈
argmax

z∈Z
Ĵz(c

−
i , c−i) and z2 ∈ argmax

z∈Z
Ĵz(c

+
i , c−i), then

∂π̄
z2
i (ci)

∂ci
≥ ∂π̄

z1
i (ci)

∂ci
.25

We now state another condition that is more stringent, but often easier to verify than Assumption 4.

Note that this assumption requires knowledge of Ĵz, which depends on c∗, but c∗ is independent of p in the

cases we consider here.

Assumption 5 For all i and for all c−i, when
∂Ĵz2 (ci,c−i)

∂ci
≥ ∂Ĵz1 (ci,c−i)

∂ci
, then ∂π̄

z2
i (ci)

∂ci
≥ ∂π̄

z1
i (ci)

∂ci
.

Lemma 6 Assumption 5 is sufficient for Assumption 4.

For the special class where payoffs are linear in their own type, there is an even simpler condition that is

sufficient for Assumption 4−namely, the well known monotone hazard rate condition. Hence, Assumption 4
generalizes the standard regularity condition.

Lemma 7 If the expected payoff functions are of the linear form π̄zi (ci) ≡ Az
i +Bz

i ci,
Fi(ci)
fi(ci)

and Fi(ci)−1
fi(ci)

are

increasing in ci for all i, then Assumption 4 is satisfied.

With the help of Assumption 4, it is straightforward to find a revenue-maximizing assignment rule, which

is described in the following result.

Proposition 8 Suppose that (29) holds. If Assumption 4 is satisfied, then a revenue-maximizing allocation

p is given by: 26

pz
∗
(c) =

(
1 if z∗ ∈ argmax

z
Ĵz(c)

0 otherwise
.

The qualitative features of the solution depend on whether the conditions in (29) are satisfied for c∗i = ci,

c∗i = ci, or c
∗
i ∈ (ci, ci). If c∗i = c̄i, then Ĵz(c) < Sz(c) and the seller sells less often than is efficient. When

the conditions in (29) are satisfied for c∗i = ci, Ĵz(c) ≥ Sz(c) and overselling occurs, as stated in the next

corollary:

Corollary 9 Suppose that c∗i (p, p
−i(p)) = ci for all i. Suppose, also, that when the seller keeps all ob-

jects, every buyer gets a payoff independent of his type- zero, for example. Then, at a revenue-maximizing

assignment rule, the seller keeps all the objects less often than is ex-post efficient.
24This condition has similar flavor to condition 5.1 in the environment of Jehiel and Moldovanu (2001b). We are grateful to

Benny Moldovanu for bringing this connection to our attention.
25The notation c−i means limit from the left to ci and c+i means limit from the right to ci.
26Ties can be broken arbitrarily. If for fixed c−i there is an interval, subset of Ci, with a tie between two allocations,

Assumption 4 implies that the partial derivatives are equal, so the selection does not affect incentive compatibility.
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As noted in the introduction, “overselling” is in contrast with a standard intuition from monopoly theory,

where the monopolist restricts supply in order to generate higher revenue. The intuition behind overselling

in our context is as follows: With type-dependent outside payoffs, the seller may be able to design outside

options that hurt bad types relatively more than good types. This allows her to charge a higher price

without restricting supply; good types pay due to their high valuation, and bad types pay because their

outside options are relatively worse.

The reason that the seller can design outside options that hurt bad types relatively more than good

types is as follows. When outside options are type-dependent, the critical type is endogenous, and the

virtual surplus of allocating the object to a buyer (actual surplus minus information rents) is increased for

all types worse than the critical type (the information rents are reduced). Hence, the “modified virtual

surplus” can be weakly higher than the actual surplus of an allocation. Depending on this comparison, the

revenue-maximizing mechanism may be ex-post efficient or may even induce overselling.

When c∗i ∈ (ci, ci), then Ĵz(c) < Sz(c) for some type profiles, and Ĵz(c) ≥ Sz(c) for others. Here,

underselling and overselling can occur simultaneously (the seller keeps the objects in some cases where she

should sell and sells them in cases where she should keep them), or even ex-post efficiency can occur.

As already discussed, revenue will be non-linear in p when c∗i (p, p
−i(p)) depends on p. In such cases,

the analysis can proceed on a case-by-case basis. However, the main qualitative features of the revenue-

maximizing assignments discussed above for the linear case remain: The degree of efficiency of the revenue-

maximizing assignments depends on the relation between the modified virtual surpluses and the real sur-

pluses. In turn, this last relationship depends on the actual values of c∗i (p, p
−i(p)), for i ∈ I, at a revenue-

maximizing p.

Another difference from the standard case is that the revenue-maximizing reserve price that a buyer faces

will often depend on the other buyers’ reports. This is because when values are interdependent, or when

buyers care about the entire allocation of the objects, the virtual surplus of an allocation (6) and, hence, the

modified virtual surplus of an allocation can depend on the entire vector of reports.

5. Concluding Remarks

This paper shows that key intuitions from earlier work on revenue-maximizing auctions, such as flat reserve

prices and underselling, fail to generalize. In our analysis, it turns out that revenue-maximizing reserve

prices should often depend on other buyers’ bids. We also show that type-dependent non-participation

payoffs change the nature of the distortions that arise from the presence of asymmetric information. The

designer, by creating the “appropriate” outside options, can increase both revenue and the overall efficiency

of the mechanism.

More broadly, this work presents a very general allocation problem, formalized in an elegant way, that

encompasses virtually all works with quasi-linear payoffs, single-dimensional private information and risk-

neutral buyers. Potential applications of our model, other than the aforementioned ones, include the allo-
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cation of rights to a new technology, of positions in teams, of students to schools, and many more. Our

model is so versatile that it encompasses various papers in the previous literature. But we do not only

reformulate previous work: Our model has features, such as type-dependent non-participation payoffs and

the possibility of non-linear payoffs, that lead to new phenomena and complications previously unaddressed

in the literature. We identify those difficulties and show how far one can go using Myerson-like techniques.

In some complementary work (Figueroa and Skreta (2009b)), we show an instance where those techniques

are insufficient even with virtual surpluses strictly monotonic in type.

6. Appendix A

Proof of Lemma 127

By the convexity of πzi (·, c−i), we have that Vi is a maximum of convex functions, so it is convex and,

therefore, differentiable a.e. It is also easy to check that the following are equivalent:

(a) (p, x) is incentive-compatible

(b) Pi(ci) ∈ ∂Vi(ci)

(c) Ui(ci, ci; (p, x)) = Vi(ci)

We now use these equivalent statements to prove necessity and sufficiency in our Lemma.

(=⇒) Here, we use the fact that incentive compatibility implies (b). A result in Krishna and Maenner
(2001) then implies (5). By the convexity of Vi, we know that ∂Vi is monotone, so:

(Pi(ci)− Pi(c
0
i))(ci − c0i) ≥ 0.

This immediately implies (4).

(⇐=) To prove that (4) implies incentive compatibility, it’s enough to show that Pi(ci) ∈ ∂Vi(ci). By (4)

and (5),

Vi(c
0
i)− Vi(ci) =

c0iZ
ci

Pi(s)ds

≥ Pi(ci)(c
0
i − ci),

which shows Pi(ci) ∈ ∂Vi(ci).

Expected Payment in an Incentive-Compatible Mechanism28

Recall that

Vi(ci) =

Z
C−i

"X
z∈Z

pz(c)πzi (c)− xi(c)

#
f−i(c−i)dc−i. (32)

By integrating (32) with respect to ci, and by rearranging, we get thatZ
C

xi(c)f(c)dc =

Z
C

X
z∈Z

pz(c)πzi (c)f(c)dc−
Z
Ci

Vi(ci)fi(ci)dci. (33)

27This proof is relatively standard (see, for instance, Jehiel, Moldovanu and Stacchetti (1999)) and is included for completeness.
28This proof is standard and is included for completeness.
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Integrating the second condition in (5) over C−i and by changing the order of integration, we get:

Z
Ci

Vi(ci)dci =

Z
Ci

[Vi(ci)−
ciZ
ci

Pi(si)dsi]fi(ci)dci

= Vi(ci)−
Z
Ci

Pi(si)

siZ
ci

fi(ci)dcidsi

= Vi(ci)−
Z
Ci

Pi(ci)Fi(ci)dci

= Vi(ci)−
Z
Ci

Z
C−i

X
z∈Z

pz(ci, c−i)
∂πzi (ci, c−i)

∂ci
f−i(c−i)dc−iFi(ci)dci

= Vi(ci)−
Z
C

X
z∈Z

pz(ci, c−i)
∂πzi (ci, c−i)

∂ci

Fi(ci)

fi(ci)
f(c)dc.

Combining (33) with the last expression, the result follows.

Proof of Lemma 6

If there exists a point (ci, c−i) such that z1 ∈ argmax
z∈Z

Ĵz(c
−
i , c−i) and z2 ∈ argmax

z∈Z
Ĵz(c

+
i , c−i), then it

must be the case that ∂Jz2 (ci,c−i)
∂ci

≥ ∂Jz1 (ci,c−i)
∂ci

. If Assumption 5 is satisfied, then we have that dπ̄
z2
i (ci)

dci
≥

dπ̄
z1
i (ci)

dci
, which implies that Assumption 4 is also satisfied.

Proof of Lemma 7

We just need to prove that Assumption 5 is satisfied. Suppose that ci < c∗i and that
∂Jz1 (ci,c−i)

∂ci
≥

∂Jz2 (ci,c−i)
∂ci

. By the linearity assumption, we have that Bz1
i

∙
1 +

³
Fi(ci)
fi(ci)

´0¸
≥ Bz2

i

∙
1 +

³
Fi(ci)
fi(ci)

´0¸
. Then,

since
³
Fi(ci)
fi(ci)

´0
≥ 0 by assumption, we get Bz1

i ≥ Bz2
i , which is equivalent to

dπ̄
z1
i (ci)

dci
≥ dπ̄

z2
i (ci)

dci
under the

linearity assumption. The proof is analogous for ci > c∗i .

Proof of Proposition 8

The solution proposed corresponds to pointwise maximization, so the only possibility that is not revenue-

maximizing is that it is not feasible. To check feasibility, remember that Pi(ci) =
R

C−i

P
z∈Z

pz(ci, c−i)
∂πzi (ci,c−i)

∂ci
f−i(c−i)dc−i

and consider a fixed c−i. In a region of cost realizations where z ∈ argmax
z∈Z

Ĵz(c), the allocation rule p(c) does

not change since, along this region, pz̄(c) = 1. Then, Pi(ci) is increasing by the convexity of πz̄i (·, c−i). For
a c∗i where z1 ∈ argmax

z∈Z
Ĵz(c

∗−
i , c−i) and z2 ∈ argmax

z∈Z
Ĵz(c

∗+
i , c−i), pz1(c∗i

−, c−i) = 1 and pz2(c∗i
+, c−i) = 1,

Pi(ci) is increasing by Assumption 4.

Proof of Corollary 9

Let’s denote by z0 the allocation where the seller keeps all the objects and consider a fixed realization

of types c. Since πz0i (c) is constant for all i, its derivative vanishes, and we have that Jz0(c) =
NP
i=1

πz0i (c) =

Sz0(c). On the other hand, for every allocation z, its virtual surplus is given by

Jz(c) =
NX
i=1

∙
πzi (c) +

∂πzi (c)

∂ci

Fi(ci)− 1
fi(ci)

¸
> Sz(c) ≡

NX
i=1

πzi (c).

Then, it is easy to see that the set where the seller keeps the objects,
n
c|z0 ∈ argmax

z
Sz(c)

o
, is a subset of
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the set where it would be efficient to keep them,
n
c|z0 ∈ argmax

z
Jz(c)

o
.

7. Appendix B: An Example where Revenue Depends Non-Linearly on p.

Suppose that there is one buyer and three possible allocations z1, z2, z3 and that c is uniformly distributed

on [0, 1]. The payoffs of the allocations are πz1(c) = 10 − 10c, πz2(c) = 0 and πz3(c) = −5c, where
c ∈ [c, c̄]. Then, it is easy to see that, irrespective of p, a revenue-maximizing non-participation assignment
rule is (p−1)z3 = 1, so the non-participation assignment rule assigns probability one to allocation z3. An

assignment rule p(c) = (pz1(c), pz2(c), pz3(c)) induces a surplus

V (c) = V (c; p, p−1)−
cZ
c

P (s)ds,

which, at the points where it is differentiable, satisfies dV (c)
dc = P (c) = −10pz1(c)− 5pz3(c). The type where

the participation constraint binds depends on how P (c), which is the slope of the payoff from participating

in the mechanism, compares to the slope of the payoff from not participating, which is given by −5. The
critical type c∗ depends non-linearly on p, and it is given by

c∗(p, p−1) =

⎧⎨⎩ c if − 5 ≤ −10pz1(0)− 5pz3(0)
c̄ if − 5 ≥ −10pz1(1)− 5pz3(1)
c∗ otherwise

,

where c∗ satisfies that −10pz1(c∗−)− 5pz3(c∗−) ≤ −5 ≤ −10pz1(c∗+)− 5pz3(c∗+). Since

V (c̄, p, p−1) = −5c∗(p, p−1) +
c̄Z

c∗(p,p−1)

[−10pz1(c)− 5pz3(c)]dc,

we have that the objective function is non-linear in the assignment rule p.

8. Appendix C: Two Specific Environments where Critical Types are Independent of p.

I: Steep Outside Options: Participation Constraints bind at the best type c∗i = ci.

We now provide the precise conditions for the case of “very responsive” outside options and argue that,

under those conditions, (29) is satisfied at c∗i = ci.

Recall that we use πzi (ci) =
R

C−i
πzi (ci, c−i)f−i(c−i)dc−i to denote the expected payoff to agent i if allo-

cation z is implemented.

Assumption 10 Suppose that outside options are steep, in the sense that for all i ∈ I, there exists an

allocation zSi ∈ Z−i such that

dπ
zSi
i (ci)

dci
≤ dπzi (ci)

dci
for all z ∈ Z (34)

and

π
zSi
i (ci) ≤ πzi (ci) for all z ∈ Z. (35)
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Proposition 11 Under Assumption 10, it follows that for all p (a) (p̂−i)z ≡
½
1 if z = zSi
0 if not

, for all i is

a revenue-maximizing non-participation assignment rule, (b) c∗i = ci, for all i, and (c) U i(c
∗
i ) ≡ π

zSi
i (ci).

Proof. (a)The optimality of p̂−i follows immediately from (34) and (35).

(b) Now we show that c∗i = ci, by establishing that if the participation constraint is satisfied at ci = ci,

then it is satisfied for all ci ∈ Ci. This follows from three observations.

(i) Pi(ci) ∈ ∂Vi(ci),

(ii)

Pi(ci) =

Z
C−i

X
z∈Z

pz(c)
∂πzi (ci, c−i)

∂ci
f−i(c−i)dc−i

≥
Z
C−i

X
z∈Z

pz(c)
∂π

zSi
i (ci, c−i)
∂ci

f−i(c−i)dc−i =
dπ̄

zSi
i (ci)

dci

(iii) Vi(ci) ≥ π̄
zSi
i (ci).

Observations (i) and (ii) imply that the derivative of Vi is always greater than the derivative of π̄
zSi
i .

These two, together with (iii), imply that V (ci) ≥ π̄
zSi
i (ci) for all ci ∈ Ci.

(c) Finally, it follows immediately that U i(c
∗
i ) ≡ π

zSi
i (ci).

II: Coexistence of Steep and Flat Outside Options: Participation Constraints bind at interior types

c∗i ∈ (ci, c̄i).

Suppose that there are two extreme allocations for each buyer, one that gives the flattest payoff zSi , and

one that gives the steepest, zFi . If the flattest option were to be used, then c∗i = c̄i, and if the steepest

option were to be used, then c∗i = ci. When neither of these two options is clearly worse, it turns out that

a revenue-maximizing p−i(p) randomizes between the two options, and the participation constraint always

binds at the type who is indifferent between zSi and z
F
i .We now describe the precise conditions and establish

the claim.

Assumption 12 Suppose that Z−i = {zSi , zFi } and that dπ̄
zSi
i (ci)
dci

≤ dπ̄zi (ci)
dci

≤ dπ̄
zFi
i (ci)
dci

for all z ∈ Z and

ci ∈ Ci and π̄
zSi
i (ci) ≥ π̄

zFi
i (ci). Suppose, also, that either (i) values are private or (ii) the seller can only use

non-participation assignment rules that do not depend on the types of other players (that is p−i ∈ P−i =⇒
p−i(c−i) ≡ p−i).

Proposition 13 Under Assumption 12, it follows that (a) for all p, the critical type is c∗i = ĉi where ĉi

satisfies

π̄
zSi
i (ĉi) = π̄

zFi
i (ĉi); (36)

(b) a revenue-maximizing p−i given p is determined by the condition (p−i(p))z
S
i
dπ̄

zSi
i (ĉi)

dci
+(1−(p−i(p))zFi )dπ̄

zFi
i (ĉi)

dci
∈

∂Vi(ĉi); and (c) for all p, we have U i(c
∗
i (p, p

−i(p)), p−i(p)) = π̄
zFi
i (ĉi) = π̄

zSi
i (ĉi).
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Proof: To prove this Proposition, we first prove the following Lemma:

Lemma A.

dVi(ci)

d(ρ−i)z

¯̄̄̄
ρ−i=p−i(p)

=
∂Vi(ci)

∂(ρ−i)z

¯̄̄̄
ρ−i=p−i(p)

= π̄zi (c
∗
i (p, p

−i(p))), for all z ∈ Z−i. (37)

Proof. We suppose for simplicity that the derivative ∂c∗i (p,ρ
−i)

∂ρ−i is well defined, (otherwise, we can do all the

analysis with subgradients). Then, differentiating Vi(c̄i) = U i(c
∗
i (p, ρ

−i), ρ−i)+
c̄iR

c∗i (p,ρ−i)
Pi(s)ds with respect

to (ρ−i)z we obtain that

dVi(ci)

d(ρ−i)z
=

∂U i(c
∗
i (p, ρ

−i), ρ−i)
∂(ρ−i)z

+

∙
∂U i(c

∗
i (p, ρ

−i), ρ−i)
∂ci

− Pi(c
∗
i (p, ρ

−i))
¸
∂c∗i (p, ρ

−i)
∂(ρ−i)z

. (38)

Given an assignment rule p and a non-participation assignment rule ρ−i, we know that in a revenue-

maximizing mechanism, c∗i (p, ρ
−i) satisfies c∗i (p, ρ

−i) ∈ argmin
ci

"
−

ciR
ci

Pi(s)ds− U i(ci, ρ
−i)

#
. Depending on

whether c∗i (p, ρ
−i) ∈ (ci, c̄i), or c∗i (p, ρ−i) = ci or c∗i (p, ρ

−i) = c̄i, there are three cases to consider.

Case 1: c∗i (p, ρ
−i) ∈ (ci, c̄i)

Since c∗i (p, ρ
−i) ∈ argmin

ci

"
−

ciR
ci

Pi(s)ds− U i(ci, ρ
−i)

#
, and is an interior solution, it must satisfy

dVi(ci)

dci

¯̄̄̄
ci=c∗i (p,ρ−i)

=
∂U i(ci(p, ρ

−i), ρ−i)
∂ci

¯̄̄̄
ci=c∗i (p,ρ−i)

. (39)

Then, recall that Vi(ci) = Vi(ci)−
ciR
ci

Pi(s)ds , which implies that

dVi(ci)

dci

¯̄̄̄
ci=c∗i (p,ρ−i)

= Pi(c
∗
i (p, ρ

−i)). (40)

Then, substituting (39) and (40) into (38), we obtain that

dVi(ci)

d(ρ−i)z

¯̄̄̄
ρ−i=p−i(p)

=
∂U i(c

∗
i (p, p

−i(p)), p−i(p))
∂(ρ−i)z

= π̄zi (c
∗
i (p, p

−i(p))), for all z ∈ Z−i,

which is what we wanted to show.

Case 2: c∗i (p, ρ
−i) = ci

If p and ρ−isuch that c∗i (p, ρ
−i) = ci, and we change the zth component of the non-participation assign-

ment rule p−i, then two things can happen. One possibility is that

∂c∗i (p, ρ
−i)

∂(ρ−i)z
= 0;

in that case, (38) reduces to (37). Another possibility is that we move to a c∗i in the interior, in which case

we are back to Case 1.29

Case 3: c∗i (p, ρ
−i) = c̄i

This case is identical to the previous one.

29Note that since both Vi and Ui are smooth a.s in ci, changing (p−i)z slightly cannot result in c∗i moving from ci to c̄i.
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Now, we prove the Proposition.

(a) Because there are only zSi and zFi in Z−i, we can write

Vi(ci) = ρ−iπ̄z
S
i
i (c

∗
i (p, ρ

−i)) + (1− ρ−i)π̄z
F
i
i (c

∗
i (p, ρ

−i)) +

c̄iZ
c∗i (p,ρ−i)

Pi(s)ds.

Also (37), implies

dVi(ci)

dρ−i

¯̄̄̄
ρ−i=p−i(p)

=
∂Vi(ci)

∂ρ−i

¯̄̄̄
ρ−i=p−i(p)

= π̄
zSi
i (c

∗
i (p, ρ

−i))− π̄
zFi
i (c

∗
i (p, ρ

−i)). (41)

When ρ−i is in a neighborhood of 0, then the outside option is flat and c∗i = c̄i.When ρ−i is in a neighborhood

of 1, then the outside option is very steep and c∗i = ci. This means that
∂c∗i (p,ρ

−i)
∂ρ−i

¯̄̄
ρ−i=0

=
∂c∗i (p,ρ

−i)
∂ρ−i

¯̄̄
ρ−i=1

=

0, and also we get that

dVi(c̄i)

dρ−i

¯̄̄̄
ρ−i=0

= π̄
zSi
i (c

∗
i (p, 0))− π̄

zFi
i (c

∗
i (p, 0))

= π̄
zSi
i (c̄i)− π̄

zFi
i (c̄i) < 0

dVi(c̄i)

dρ−i

¯̄̄̄
ρ−i=1

= π̄
zSi
i (c

∗
i (p, 1))− π̄

zFi
i (c

∗
i (p, 1))

= π̄
zSi
i (ci)− π̄

zFi
i (ci) > 0.

These two inequalities imply that the optimally chosen ρ−i-that is, p−i(p)- is interior, so it satisfies the

FONC dVi(c̄i)
dρ−i

¯̄̄
ρ−i=p−i(p)

= 0. This implies, from (41), that π̄z
S
i
i (c

∗
i (p, ρ

−i)) = π̄
zFi
i (c

∗
i (p, ρ

−i)), from which we

get that irrespective of p, we have that c∗i = ĉi, where ĉi satisfies (36). Moreover, because of the assumptions,

the functions π̄z
S
i
i and π̄

zFi
i cross at most once, so c∗i is uniquely determined.

(b) By (28), it follows immediately that a revenue-maximizing p−i given pmust satisfy that p−i(p)dπ̄
zSi
i (ĉi)
dci

+

(1− p−i(p))dπ̄
zFi
i (ĉi)
dci

∈ ∂Vi(ĉi).

(c) It is immediate.

References

[1] Armstrong, M. (2000): “Optimal Multi-Object Auctions,” Review of Economic Studies, 67, 455-181.

[2] Aseff, J. and H. Chade (2008): “An Optimal Auction with Identity-Dependent Externalities,”

RAND Journal of Economics, 39, 731-746.

[3] Publisher: Blackwell Publishing

[4] Athey, S. and G. Ellison (2008): “Position Auctions with Consumer Search,” mimeo Harvard

University and MIT.

25



[5] Avery, C. and T. Hendershott (2000): “Bundling and Optimal Auctions of Multiple Products,”

Review of Economic Studies, Vol. 67, No. 3.

[6] Branco, F. (1996): “Multiple Unit Auctions of an Indivisible Good,” Economic Theory, vol. 8(1),

pages 77-101.

[7] Brocas, I., (2007): “Auctions with Type-Dependent and Negative Externalities: The Optimal Mech-

anism,” mimeo, University of Southern California.

[8] Bulow, J. and J. Roberts (1989): “The Simple Economics of Optimal Auctions,” The Journal of

Political Economy, 97, 1060-1090.

[9] Dana, J. and K. Spier (1994): “Designing an Industry: Government Auctions with Endogenous

Market Structure,” Journal of Public Economics, 53, 127-147.

[10] Edelman, B., Ostrovsky, M. and M. Schwarz (2007): “Internet Advertising and the Generalized

Second Price Auction: Selling Billions of Dollars Worth of Keywords,” American Economic Review, 97,

242-259.

[11] Figueroa, N. and V.Skreta (2009a): “The Role of Optimal Threats in Auction Design,” Journal of

Economic Theory, 14, 884-897.

[12] Figueroa, N. and V.Skreta (2009b): “A Note on Optimal Allocation Mechanisms,” Economics

Letters, 102, 169-173.

[13] Gale, I. (1990): “A multiple-object Auction with Superadditive Values,” Economic Letters, 34, 323-

328.

[14] Jehiel, P. and B. Moldovanu, (2001): “A Note of Revenue Maximization and Efficiency in Multi-

object Auctions,” Economics Bulletin, Vol. 3 no. 2, 1-5.

[15] Jehiel, P. and B. Moldovanu (2001b): “Efficient Design with Interdependent Values,” Econometrica

69, 1237-1259.

[16] Jehiel, P., B. Moldovanu and E. Stacchetti (1996): “How (Not) to sell Nuclear Weapons,”

American Economic Review, 86, 814-829.

[17] Jehiel, P., B. Moldovanu and E. Stacchetti (1999): “Multidimensional Mechanism Design for

Auctions with Externalities,” Journal of Economic Theory, 85, 258-293.

[18] Jullien, B. (2000): “Participation Constraints in Adverse Selection Models,” Journal of Economic

Theory, 93. 1-47.

[19] Krishna, V. and E. Maenner (2001): “Convex Potentials with Applications to Mechanism Design,”

Econometrica, 69, 1113-1119.

26



[20] Krishna, V. and M. Perry (2000): “Efficient Mechanism Design,” mimeo Penn State University.

[21] Levin, J., (1997): “An Optimal Auction for Complements,” Games and Economic Behavior, 18,

176-192.

[22] Lewis, T. R. and D. E. M. Sappington (1989): “Countervailing Incentives in Agency Problems,”

Journal of Economic Theory, 49, 294-313.

[23] Maskin, E. and J. Riley (1984): “Optimal Auctions with Risk Averse Buyers,” Econometrica, 52,

1473-1518.

[24] Maskin, E. and J. Riley (1989): “Optimal Multi-Unit Auctions,” in The Economics of Missing

Markets, ed. by F. Hahn, 312-335.

[25] Milgrom, P. (1996): “Procuring Universal Service: Putting Auction Theory to Work,” Lecture at

the Royal Academy of Sciences.

[26] Myerson, (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6: 58-73.

[27] Myerson R. B. and M. A. Satterthwaite (1983): “Efficient Mechanisms for Bilateral Trading,”

Journal of Economic Theory, 29(2):p. 265—281.

[28] Riley, J. G. and W. F. Samuelson (1981): “Optimal Auctions,” American Economic Review, 71,

381-392.

[29] Varian, Hal R. (2007): “Position Auctions,” International Journal of Industrial Organization 25,

1163-1178.

27


