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A Basic Convex Problem

Solve
minimize  f(x)

subject to x € (@,
in z € R"™.

= Here, f(x) is convex, smooth.

m Assume (Q C R"™ is compact, convex and simple.

Alex d'Aspremont

ADGO, Santiago, Feb. 2016. 2/22



Complexity

Newton’s method. At each iteration, take a step in the direction

Azy = —V2f(2) ' V()
Assume that

= the function f(z) is self-concordant, i.e. |f"(x)| < 2f"(x)3/?,

= the set ) has a self concordant barrier g(x).

[Nesterov and Nemirovskii, 1994] Newton's method produces an € optimal
solution to the barrier problem

minh(z) 2 f(z) +tg(x)

X
for some ¢ > 0, in at most

20 — S«
af(l —2a)?

(h(xg) — h™) + log, log,(1/€) iterations

where 0 < a < 0.5 and 0 < 8 < 1 are line search parameters.
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Complexity

Newton’s method. Basically

# Newton iterations < 375 (h(xzg) — h™) + 6

m Empirically valid, up to constants.
m Independent from the dimension n.
m Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

m Form the Hessian.

= Solve the Newton (or KKT) system V2f(z)Ax, = —V f(x).
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Affine Invariance

Set x = Ay where A € R™*" is nonsingular

minimize  f(z) becomes minimize  f(y)
subject to z € @, subject to y € @,

in the variable y € R", where f(y) 2 f(Ay) and Q £ A71Q.

= ldentical Newton steps, with Axr,; = AAy,;
= Identical complexity bounds 375 (h(zo) — h*) + 6 since h* = h*

Newton's method is invariant w.r.t. an affine change of coordinates.
The same is true for its complexity analysis.
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Large-Scale Problems

The challenge now is scaling.

= Newton’'s method (and derivatives) solve all reasonably large problems.

m Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?
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Franke-Wolfe

Conditional gradient. At each iteration, solve

minimize  (V f(zg),u)
subject to wu € Q)

in u € R™. Define the curvature

Cre s —(fly) - @)~y — o V).
Rt

The Franke-Wolfe algorithm will then produce an ¢ solution after

4C
Nmax = !
€

Iterations.

m (' is affine invariant but the bound is suboptimal in e.

m If f(x) has a Lipschitz gradient, the lower bound is O (%)
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Optimal First-Order Methods

Smooth Minimization algorithm in [Nesterov, 1983] to solve

minimize  f(x)
subject to x € (),

Original paper was in an Euclidean setting. In the general case. . .

s Choose a norm || - ||. Vf(x) Lipschitz with constant L w.r.t. || - ||
F9) < f(@) + (V@) y— o)+ Ly~ zy€Q
m Choose a prox function d(z) for the set @), with
3l —ol* < d(a)
for some o > 0.
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Optimal First-Order Methods

Smooth minimization algorithm [Nesterov, 2005]

Input: x(, the prox center of the set ().
1: for k=0,...,N do
2. Compute V f(zg).
- C = argmi v — 2+ 3Ly — 27}
3. ompute y;, = argmin, o {(Vf(zr),y — xx) + 3Ly — &
4. Compute z; = argmin, {Z?:o ;[ f(x;) + (V[ (x;),x — )] + %d(x)}
5: Set Thkt+1 = TRk T (1 — Tk)yk-
6: end for
Output: zn,yn € Q.

Produces an e-solution in at most

N \/SL d(z*)

€ o

iterations. Optimal in ¢, but not affine invariant.

Heavily used: TFOCS, NESTA, Structured ¢4, . . .

Alex d’'Aspremont ADGO, Santiago, Feb. 2016. 9/22



Optimal First-Order Methods

Choosing norm and prox can have a big impact, beyond the immediate
computational cost of computing the prox steps. Consider the following matrix

game problem

min max 1 Ay
{1T2z=1,2>0} {1Tz=1,2>0}

= Euclidean prox. Pick || - ||2 and d(z) = ||z||3/2, after regularization, the
complexity bound is
4/|A
v Al
N +1

= Entropy prox. Pick || - ||1 and d(z) = ). z;log z; + logn, the bound becomes

N . 4\/10gnlogm maxXs; ; ‘A’LJ|
max ~— N +1

which can be significantly smaller.

Speedup is roughly y/n when A is Bernoulli. . .
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Choosing the norm

Invariance means || - || and d(z) constructed using only f and the set Q).

Minkovski gauge. Assume () is centrally symmetric with non-empty interior.

The Minkowski gauge of Q is a norm: ||z]|g = inf{\ > 0: 2z € \Q}

Lemma

Affine invariance. The function f(x) has Lipschitz continuous gradient with
respect to the norm || - || with constant Lg > 0, i.e.

1

fy) < f@)+ (V@) y—2) +SLlally —zlg =y eq,

if and only if the function f(Aw) has Lipschitz continuous gradient with respect
to the norm || - || 41 with the same constant L.

A similar result holds for strong convexity. Note that |[z||7, = |[z| g
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Choosing the prox.

How do we choose the prox.? Start with two definitions.

Banach-Mazur distance. Suppose ||-||x and ||- ||y are two norms on a space E,
the distortion d(|| - || x, || - ||y) is the

1
smallest product ab > 0 such that EHZIZ‘HY < ||z||x < al|lx||y, forall x € E.

log(d(|| - [|x, || - [ly)) is the Banach-Mazur distance between X and Y.
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Choosing the prox.

Regularity constant. Regularity constant of (E, || - ||), defined in [Juditsky and
Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach (E,||.||). The smallest constant A > 0 for
which there exists a smooth norm p(x) such that

m The prox p(x)?/2 has a Lipschitz continuous gradient w.r.t. the norm p(x),
with constant n where 1 < u < A,

s The norm p(x) satisfies

AN 1/2
2]l < p(@) < |2 (;)  forallzeE

ie. d(p(z), ||l) < VA
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Complexity

Using the algorithm in [Nesterov, 2005] to solve

minimize  f(x)
subject to z € Q.

Proposition [d’Aspremont, Guzman, and Jaggi, 2013]

Affine invariant complexity bounds. Suppose f(x) has a Lipschitz continuous
gradient with constant Lq with respect to the norm ||-||q and the space (R", ||-||7,)
is Dg-regular, then the smooth algorithm in [Nesterov, 2005] will produce an

e solution in at most
41, D
l- .IIlaX Ci Q

iterations. Furthermore, the constants Lg and Dg are affine invariant.
We can show Cy < LgDg, but it is not clear if the bound is attained. . .
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Complexity

A few more facts about Lg and Dg. . .

Suppose we scale () — a@), with o > 0,

= the Lipschitz constant L, satisfies a?Lg < Lag.
m the smoothness term Dg remains unchanged.

= Given our choice of norm (hence Lg), LgDg is the best possible bound.

Also, from [Juditsky and Nemirovski, 2008], in the dual space

m The regularity constant decreases on a subspace F', i.e. Donr < Dg.

m From D regular spaces (F;, || - ||), we can construct a 2D + 2 regular product
space B/ X ... X E,,.
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Complexity, /1 example

Minimizing a smooth convex function over the unit simplex

minimize  f(x)
subjectto 17z <1,z >0

in r € R™.

= Choosing || - ||1 as the norm and d(z) =logn + Y . | z;logz; as the prox
function, complexity bounded by

\/8L1 logn
€

(note L, is lowest Lipschitz constant among all £, norm choices.)

= Symmetrizing the simplex into the ¢; ball. The space (R™, || - ||s) is 2logn
regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen
here is || - ||2/2, with a = 2logn/(2logn — 1) and our complexity bound is

\/16L1 logn
€
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In practice

Easy and hard problems.

m The parameter L satisfies

f) < F@) + (VI@)y—2)+ laly — =l wyeQ,

On easy problems, || - || is large in directions where V f is large, i.e. the
sublevel sets of f(x) and () are aligned.

m For [, spaces for p € [2, 00|, the unit balls B, have low regularity constants,
Dp, <min{p —1,2logn}

while Dp, = n (worst case). By duality, problems over unit balls B, for
g € [1,2] are easier.

m Optimizing over cubes is harder.

Alex d'Aspremont ADGO, Santiago, Feb. 2016. 17/22



Optimality

How good are these bounds?

m Affine invariance does not imply that this complexity bound is tight. . .

Ld(

m In fact, the worst choice of norm and prox. yields a bound in Tx) that is also

affine invariant.

Can we show optimality?
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Optimality: upper bounds

Optimizing over /,, balls. Focus now on the problem of solving

minimize  f(x)
subject to x € B,

in the variable x € R", where B, is the £, ball. We show that

AL,D,

€

Nmax —

The constants D,, can be computed explicitly (idem for the corresponding norms).

p—2

s When p € |2, 00|, we have D, =n

s When p € [1, 2], Juditsky et al. [2009, Ex. 3.2] show

2(p—1)
D,= inf (p— 1)n%_ 7 < min {L, C'log n}
2<p<zty p—1

where C' > 0 is an absolute constant.
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Optimality: lower bounds

Optimizing over ¢, balls. In the range p < [1, 2| the lower bound on risk from
Guzmdn and Nemirovski [2013] is given by

)

which translates into the following lower bound on iteration complexity

L

Y/
clogn

Our bound, given by

N — \/4C’L logn

€
where C' > 0 is an absolute constant, and is thus optimal up to a
poly-logarithmic factor.
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Optimality: lower bounds

Optimizing over ¢, balls. In the range p € |2, 00| the lower bound on risk from
Guzman and Nemirovski [2013] can be translated to

0 Linl—=2/p
min|p, log n)e

N \/4Ln1—2/P

€
which is again optimal up to poly-logarithmic factors.

Our bound is then
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Conclusion

= Affine invariant complexity bound for the optimal algorithm [Nesterov, 1983]

4L oD
Nmax — ¢
€

= Matches (up to polylog terms) best known lower bounds on ¢,-balls.

Open problems.

m Optimality of product LoD in the general case?
m Matches curvature C?
m Best norm choice for non-symmetric sets ()7

m Systematic, tractable procedure for smoothing ()7
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