
1

An (almost) optimal approximation scheme for minimum
makespan scheduling

Klaus Jansen 1 Kim-Manuel Klein 1 José Verschae2

1University of Kiel
2Pontificia Universidad Católica de Chile

ADGO 2016

Problem Definition

Minimum Makespan Scheduling
n jobs.
pj : processing time job j .
m machines.

Objective: Minimize makespan (maximum machine load).

Proc. time

Makespan

Jobs Machines

Problem Definition

Minimum Makespan Scheduling
n jobs.
pj : processing time job j .
m machines.

Objective: Minimize makespan (maximum machine load).

Proc. time

Makespan

Jobs Machines

Problem Definition

Minimum Makespan Scheduling
n jobs.
pj : processing time job j .
m machines.
Objective: Minimize makespan (maximum machine load).

Proc. time

Makespan

Jobs

Machines

What do we seek?

Theorem
Determine the optimum solution is (strongly) NP-hard.

→ Seeking poly-time (optimal) algorithms is unrealistic...

Definition
An algorithm is α-approximate if for each instance I then

cost(ALGI) ≤ α
↓

approx. factor

OPTI .

What do we seek?

Theorem
Determine the optimum solution is (strongly) NP-hard.

→ Seeking poly-time (optimal) algorithms is unrealistic...

Definition
An algorithm is α-approximate if for each instance I then

cost(ALGI) ≤ α
↓

approx. factor

OPTI .

What do we seek?

Theorem
Determine the optimum solution is (strongly) NP-hard.

→ Seeking poly-time (optimal) algorithms is unrealistic...

Definition
An algorithm is α-approximate if for each instance I then

cost(ALGI) ≤ α
↓

approx. factor

OPTI .

Main Questions

Classic question: What is the lowest approx factor achievable in
poly-time?

Modern question: Given an approximation factor, what is the best
possible running time?

Classic Question

Definition
A family of algorithms (Aε)ε>0 is a Polynomial Time Approximation
Scheme (PTAS) if, for all ε > 0,

Aε is a poly-time algorithm, and
Aε is (1 + ε)-approximate.

Previous Literature
A greedy algorithm is 4/3-approximate.

[Graham ’66 + ’69]

There is a PTAS with running time nÕ(1
ε2).
[Hochbaum & Shmoys ’87]

Classic Question: Solved!

Classic Question

Definition
A family of algorithms (Aε)ε>0 is a Polynomial Time Approximation
Scheme (PTAS) if, for all ε > 0,

Aε is a poly-time algorithm, and
Aε is (1 + ε)-approximate.

Previous Literature
A greedy algorithm is 4/3-approximate.

[Graham ’66 + ’69]

There is a PTAS with running time nÕ(1
ε2).
[Hochbaum & Shmoys ’87]

Classic Question: Solved!

Classic Question

Definition
A family of algorithms (Aε)ε>0 is a Polynomial Time Approximation
Scheme (PTAS) if, for all ε > 0,

Aε is a poly-time algorithm, and
Aε is (1 + ε)-approximate.

Previous Literature
A greedy algorithm is 4/3-approximate.

[Graham ’66 + ’69]

There is a PTAS with running time nÕ(1
ε2).
[Hochbaum & Shmoys ’87]

Classic Question: Solved!

Modern Question

Reinterpretation: What is the best running time possible for a PTAS?

Known Algorithms
There is a PTAS with running time (roughly):

nÕ(1
ε2) [Hochbaum & Shmoys ’87]

nÕ(1
ε
) [Leung 97]

2(1
ε
)Õ(1

ε) + n [Alon et al. ’98 & H. & S. ’96]

2Õ(1
ε2) + n log n [Jansen ’10]

Lower Bounds
If P 6= NP, no PTAS can have a polynomial dependency on 1

ε
[Folkclore]

If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2(1

ε
)1−δ

+ nO(1). [Chen et al. ’13]

Modern Question

Reinterpretation: What is the best running time possible for a PTAS?

Known Algorithms
There is a PTAS with running time (roughly):

nÕ(1
ε2) [Hochbaum & Shmoys ’87]

nÕ(1
ε
) [Leung 97]

2(1
ε
)Õ(1

ε) + n [Alon et al. ’98 & H. & S. ’96]

2Õ(1
ε2) + n log n [Jansen ’10]

Lower Bounds
If P 6= NP, no PTAS can have a polynomial dependency on 1

ε
[Folkclore]

If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2(1

ε
)1−δ

+ nO(1). [Chen et al. ’13]

Our Main Result

Theorem
Minimum makespan scheduling admits a PTAS with running time

2Õ(1
ε
) + nO(1).

Lower Bound
If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2(1

ε
)1−δ

+ nO(1). [Chen et al. ’13]

Our Main Result

Theorem
Minimum makespan scheduling admits a PTAS with running time

2Õ(1
ε
) + nO(1).

Lower Bound
If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2(1

ε
)1−δ

+ nO(1). [Chen et al. ’13]

General Strategy

General Scheme for designing a PTAS:

1 Round instance (1 + ε) multiplicative loss in objective.
2 Show that optimal solution of rounded instances has a “nice”

structure.
3 Look for optimal solution with such structure.

General Strategy

General Scheme for designing a PTAS:

1 Round instance (1 + ε) multiplicative loss in objective.
2 Show that optimal solution of rounded instances has a “nice”

structure.
3 Look for optimal solution with such structure.

Rounding

Lemma
After rounding (and scaling) OPT ∈ {1, . . . , (2/ε)2} and the sizes of
jobs belong to a set P such that:

P ⊆ {1
ε ,

1
ε + 1, . . . , 1

ε2 } and,

|P| ≤ Õ(1
ε).

Example

1
ε2

1
ε

Let T be a guessed value for OPT.

Configurations

Let T be a guessed value of OPT .
Each machine gets at most 2/ε jobs.

Configurations
A configuration is a one-machine schedule with total size ≤ T .
Obs: If K is the set of all configurations, then

|K | ≤
(

2
ε

)|P|
= 2Õ(1

ε
).

Example

K = , , , . . .

Configurations

Let T be a guessed value of OPT .
Each machine gets at most 2/ε jobs.

Configurations
A configuration is a one-machine schedule with total size ≤ T .
Obs: If K is the set of all configurations, then

|K | ≤
(

2
ε

)|P|
= 2Õ(1

ε
).

Example

K = , , , . . .

Compact description of a schedule
Multiple machines

We consider vector (xk)k∈K ∈ {0, . . . ,m}|K |, where

xk : number of machines following configuration k ∈ K .

Example

xk1 = 4 xk2 = 2 xk3 = 3

Integer Programming Formulation

Observation
The vector (xk)k∈K belongs to the system

∑
k∈K

xk = m∑
k∈K

kpxk = np for all p ∈ P

x ∈ ZK
≥0


of constraints: Õ(1

ε)

variables: 2Õ(1
ε
)

Integer Programming Formulation

Observation
The vector (xk)k∈K belongs to the system

∑
k∈K

xk = m∑
k∈K

kpxk = np for all p ∈ P

x ∈ ZK
≥0


of constraints: Õ(1

ε)

variables: 2Õ(1
ε
)

Solving the IP: First Approach
Direct method [Alon et al. ’98]

Use the following result:

Theorem (Kannan ’87)

An integer program with d variables can be solved in time 2Õ(d)s
(where s is the length of the input).

In our case d = |K | = 2Õ(1
ε
) and thus the running time is at least

dd = 22Õ(1
ε)

← doubly exponential!

If we only could decrease the number of variables...

Solving the IP: First Approach
Direct method [Alon et al. ’98]

Use the following result:

Theorem (Kannan ’87)

An integer program with d variables can be solved in time 2Õ(d)s
(where s is the length of the input).

In our case d = |K | = 2Õ(1
ε
) and thus the running time is at least

dd = 22Õ(1
ε) ← doubly exponential!

If we only could decrease the number of variables...

Solving the IP: First Approach
Direct method [Alon et al. ’98]

Use the following result:

Theorem (Kannan ’87)

An integer program with d variables can be solved in time 2Õ(d)s
(where s is the length of the input).

In our case d = |K | = 2Õ(1
ε
) and thus the running time is at least

dd = 22Õ(1
ε) ← doubly exponential!

If we only could decrease the number of variables...

Solving the IP: Second Approach
Guess the support [Jansen ’10]

Theorem (Eisenbrand & Shmonin 2006)
A problem {ctx : Ax = b, x ∈ Z≥0}
where A has h rows, admits an optimal solution x∗ with

|supp(x∗)| ≤ O(h log(h + s)).

For our case:
h = |P|+ 1 ≈ 1

ε log(1
ε), and

supp(x∗) ≤ Õ(1
ε)

Idea:
1 Try each possible support S: there are

(|K |
Õ(1

ε
)

)
= 2Õ(1

ε2) many

possibilities.
2 For each possibility solve the IP restricted to those variables with

Kannan’s algorithm.
3 Total running time: 2Õ(1

ε2).

Solving the IP: Second Approach
Guess the support [Jansen ’10]

Theorem (Eisenbrand & Shmonin 2006)
A problem {ctx : Ax = b, x ∈ Z≥0}
where A has h rows, admits an optimal solution x∗ with

|supp(x∗)| ≤ O(h log(h + s)).

For our case:
h = |P|+ 1 ≈ 1

ε log(1
ε), and

supp(x∗) ≤ Õ(1
ε)

Idea:
1 Try each possible support S: there are

(|K |
Õ(1

ε
)

)
= 2Õ(1

ε2) many

possibilities.
2 For each possibility solve the IP restricted to those variables with

Kannan’s algorithm.
3 Total running time: 2Õ(1

ε2).

Solving the IP: Third Approach
Understanding the Optimum

Definition
A configuration k is complex if contains more than log(1/ε2) different
sizes; o.w. is simple.

Example

Simple

≤ log(1/ε2) sizes
(colors)

ComplexComplex

> log(1/ε2) sizes
(colors)

log(1
ε2) = 3

Solving the IP: Third Approach
Understanding the Optimum

Definition (Informal)
A “subconfiguration” of a configuration k is called maximal if it contains
all possible jobs of each taken size.

Example

Original
Configuration

Maximal
Subconfiguration

Non-Maximal
Subconfiguration

Lemma
Every complex conf. k ∈ K contains two maximal subconfigurations
k1, k2 s.t. the total size of k1 and k2 coincide.

Example

Complex
Configuration k

Subconfiguration
k1

h

Subconfiguration
k2

h

Lemma
Every complex conf. k ∈ K contains two maximal subconfigurations
k1, k2 s.t. the total “size” of k1 and k2 coincide.

Proof.
Let C > log 1

ε2 be the number of sizes (colors) in k .

Number of maximal subconfigurations 2C ≥ 1
ε2 .

The total size of each configuration belongs to {1,2, . . . , 1
ε2 }.

⇒ there must be two maximal subconfigurations of same total
size.

Solving the IP: Third Approach
Understanding the Optimum

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

k2

k2

Solving the IP: Third Approach
Understanding the Optimum

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

k2

k1

k2

k1

k1

k1

k2

k2

Solving the IP: Third Approach
Understanding the Optimum

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

k2

k1

k2

k1

k1

k1

k2

k2

Solving the IP: Third Approach
Understanding the Optimum

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

Solving the IP: Third Approach
Understanding the Optimum

Theorem (Thin Solutions)
If the IP is not empty, then there is a solution x∗ such that:

At most Õ(1
ε) machines get complex configurations

Each complex configuration is used at most once

|supp(x∗)| ≤ Õ(1
ε).

Example

Simple Confs. Complex Confs.

Solving the IP: Third Approach
Solving the IPs

Part 1:
1 Guess jobs assigned to complex configurations, and number of

complex machines.
2 Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.
1 Guess the (simple!) configurations that x uses: there are(2log2(1

ε)

Õ(1
ε
)

)
= 2Õ(1

ε
) many possibilities.

2 For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

Total running time: 2Õ(1
ε
)

Solving the IP: Third Approach
Solving the IPs

Part 1:
1 Guess jobs assigned to complex configurations, and number of

complex machines.
2 Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.
1 Guess the (simple!) configurations that x uses: there are(2log2(1

ε)

Õ(1
ε
)

)
= 2Õ(1

ε
) many possibilities.

2 For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

Total running time: 2Õ(1
ε
)

Solving the IP: Third Approach
Solving the IPs

Part 1:
1 Guess jobs assigned to complex configurations, and number of

complex machines.
2 Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.
1 Guess the (simple!) configurations that x uses: there are(2log2(1

ε)

Õ(1
ε
)

)
= 2Õ(1

ε
) many possibilities.

2 For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

Total running time: 2Õ(1
ε
)

Summary of Results

1 The minimum makespan problem can be solved in time
2Õ(1

ε
) + poly(n).

2 The result is best possible up to logarithmic factors in the
exponent (assuming ETH).

3 Possibility to apply the same idea to other problems: in particular
for the related machines makespan scheduling.

	Introduction

