Klaus Jansen ! Kim-Manuel Klein ' José Verschae?

"University of Kiel
2Pontificia Universidad Catélica de Chile

ADGO 2016

Problem Definition

Minimum Makespan Scheduling
@ njobs.
@ p;: processing time job j.
@ m machines.

Proc. time

Jobs

Machines

Problem Definition

Minimum Makespan Scheduling
@ njobs.
@ p;: processing time job j.
@ m machines.

Proc. time

Jobs Machines

Problem Definition

Minimum Makespan Scheduling
@ njobs.
@ p;: processing time job j.
@ m machines.
@ Objective: Minimize makespan (maximum machine load).

Makespan

Machines

Determine the optimum solution is (strongly) NP-hard. I

— Seeking poly-time (optimal) algorithms is unrealistic...

Determine the optimum solution is (strongly) NP-hard. l

— Seeking poly-time (optimal) algorithms is unrealistic...

An algorithm is a-approximate if for each instance / then

cost(ALG)) < (iz OPT,.

approx. factor

Determine the optimum solution is (strongly) NP-hard. l

— Seeking poly-time (optimal) algorithms is unrealistic...

An algorithm is a-approximate if for each instance / then

cost(ALG)) < (iz OPT,.

approx. factor

Main Questions

@ Classic question: What is the lowest approx factor achievable in
poly-time?

@ Modern question: Given an approximation factor, what is the best
possible running time?

A family of algorithms (\A.).~¢ is @ Polynomial Time Approximation
Scheme (PTAS) if, for all ¢ > 0,

@ A. is a poly-time algorithm, and
@ A.is (1 + ¢)-approximate.

Classic Question

Definition

A family of algorithms (\A.).~¢ is @ Polynomial Time Approximation
Scheme (PTAS) if, for all ¢ > 0,

@ A. is a poly-time algorithm, and

@ A.is (1 + e)-approximate.

Previous Literature
@ A greedy algorithm is 4/3-approximate.

[Graham '66 + '69]
@ There is a PTAS with running time n°().

[Hochbaum & Shmoys ’87]

Classic Question

Definition

A family of algorithms (\A.).~¢ is @ Polynomial Time Approximation
Scheme (PTAS) if, for all ¢ > 0,

@ A. is a poly-time algorithm, and

@ A.is (1 + e)-approximate.

Previous Literature
@ A greedy algorithm is 4/3-approximate.

[Graham '66 + '69]
@ There is a PTAS with running time n°().

[Hochbaum & Shmoys ’87]

Classic Question: Solved!

Reinterpretation: What is the best running time possible for a PTAS?

There is a PTAS with running time (roughly):

° no(ff) [Hochbaum & Shmoys ’87]

e n°(3) [Leung 97]
ol

0 2% L p [Alon et al. '98 & H. & S. '96]

° 20(52) + nlogn [Jansen ’10]

Modern Question

Reinterpretation: What is the best running time possible for a PTAS?
Known Algorithms
There is a PTAS with running time (roughly):

o n°2) [Hochbaum & Shmoys '87]
e no() [Leung 97]
(1)5(%) , ,

e 2\ +n [Alon et al. '98 & H. & S. '96]
° 20(;7) + nlog n [Jansen ’10]

Lower Bounds

@ If P # NP, no PTAS can have a polynomial dependency on %

[Folkclore]
@ If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2()'~° 4+ nO(), [Chen et al. "13]

Minimum makespan scheduling admits a PTAS with running time

20(1) | po().

Minimum makespan scheduling admits a PTAS with running time
20(1) | po().

@ If the Exponential Time Hypothesis holds, there is no PTAS with
running time 2(2)'° + nO(1), [Chen et al. *13]

General Strategy

General Scheme for designing a PTAS:

@ Round instance ~ (1 + ¢) multiplicative loss in objective.

© Show that optimal solution of rounded instances has a “nice”
structure.

© Look for optimal solution with such structure.

General Strategy

General Scheme for designing a PTAS:

@ Round instance ~ (1 + ¢) multiplicative loss in objective.

© Show that optimal solution of rounded instances has a “nice”
structure.

© Look for optimal solution with such structure.

Rounding

Lemma

After rounding (and scaling) OPT € {1,...,(2/¢)?} and the sizes of
jobs belong to a set P such that:

o Pc{l 141, L}and,
e |P| < O).

o=

o=

m
——
N
“
-
. 1
NN

Let T be a guessed value for OPT.

@ Let T be a guessed value of OPT.
@ Each machine gets at most 2/¢ jobs.

Configurations

@ Let T be a guessed value of OPT.
@ Each machine gets at most 2/¢ jobs.

Configurations

A configuration is a one-machine schedule with total size < T.
Obs: If K is the set of all configurations, then

|P] -
K| < (?) _ 200,

9 0 9 000

Compact description of a schedule

Multiple machines

We consider vector (xx)kek € {0, ..., m} Kl where

Xk : number of machines following configuration k € K.

The vector (x)kek belongs to the system

S —m
keK
> koxq =n, forallpeP
keK
x €ZX,

Integer Programming Formulation

Observation
The vector (x)kek belongs to the system

S =m

kek # of constraints: O(1)
> koxk =n, forallpeP # variables: 20(2)
kek

K
X GZzo

Use the following result:

An integer program with d variables can be solved in time 209 s
(where s is the length of the input).

Inour case d = |K| = 20(2) and thus the running time is at least

g — 22°°)

Solving the IP: First Approach

Direct method [Alon et al. 98]

Use the following result:
Theorem (Kannan '87)

An integer program with d variables can be solved in time 209 s
(where s is the length of the input).

In our case d = |K| = 2°(2) and thus the running time is at least

ol
d? = 22”% . doubly exponential!

Solving the IP: First Approach

Direct method [Alon et al. 98]

Use the following result:
Theorem (Kannan '87)

An integer program with d variables can be solved in time 209 s
(where s is the length of the input).

In our case d = |K| = O(2) and thus the running time is at least

ol
d? = 22”% . doubly exponential!

If we only could decrease the number of variables...

A problem {c!x: Ax = b,x € Z>o}
where A has h rows, admits an optimal solution x* with

supp(x*)| < O(hlog(h + s)).

For our case:
@ h=|P|+1~ llog(l), and
@ supp(x*) < O(1)

Solving the IP: Second Approach

Guess the support [Jansen ’10]

Theorem (Eisenbrand & Shmonin 2006)

A problem {c!x: Ax = b,x € Z>o}
where A has h rows, admits an optimal solution x* with

|supp(x*)| < O(hlog(h + s)).

For our case:
@ h=I|Pl+1~ 1Iog(g), and

€
® supp(x*) < O(%)
Idea: N
@ Try each possible support S: there are (5‘2(1')) _ 20() many
possibilities. :
© For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

@ Total running time: 2°(2).

r\J“‘

Solving the IP: Third Approach

Understanding the Optimum

Definition

A configuration k is complex if contains more than log(1/2) different
sizes; 0.w. is simple.

4

< log(1/<?) sizes

> log(1/£?) sizes
(colors)

(colors)

log(%) =3

Simple Complex

Solving the IP: Third Approach

Understanding the Optimum

Definition (Informal)

A “subconfiguration” of a configuration k is called maximal if it contains
all possible jobs of each taken size.

y

Original Maximal Non-Maximal
Configuration Subconfiguration Subconfiguration

v

Lemma

Every complex conf. k € K contains two maximal subconfigurations
ki, ko s.t. the total size of ky and ko coincide.

Complex Subconfiguration Subconfiguration
Configuration k ki ko

Lemma

Every complex conf. k € K contains two maximal subconfigurations
ki, ko s.t. the total “size” of ky and ko coincide.

Proof.
@ Let C > log ;—2 be the number of sizes (colors) in k.
@ Number of maximal subconfigurations 2¢ > ;—2

@ The total size of each configuration belongs to {1,2,..., ;—2}.

@ = there must be two maximal subconfigurations of same total
size.

Solving the IP: Third Approach

Understanding the Optimum

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

Solving the IP: Third Approach

Understanding the Optimum

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

Solving the IP: Third Approach

Understanding the Optimum

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

2 AN

Solving the IP: Third Approach

Understanding the Optimum

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can
replace it by two other “less complex” configurations.

Proof.

Solving the IP: Third Approach

Understanding the Optimum

Theorem (Thin Solutions)

If the IP is not empty, then there is a solution x* such that:
@ At most 5(%) machines get complex configurations
@ Each complex configuration is used at most once
® |supp(x*)| < O(2).

Simple Confs. Complex Confs.

Solving the IP: Third Approach

Solving the IPs

Part 1:

@ Guess jobs assigned to complex configurations, and number of
complex machines.

© Solve that subinstance optimally (with a Dynamic Program).

Solving the IP: Third Approach

Solving the IPs

Part 1:

@ Guess jobs assigned to complex configurations, and number of
complex machines.

© Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.

@ Guess the (simple!) configurations that x uses: there are
2og®(1)
(o(l)

© For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

) = 20(1) many possibilities.

Solving the IP: Third Approach

Solving the IPs

Part 1:

@ Guess jobs assigned to complex configurations, and number of
complex machines.

© Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.

@ Guess the (simple!) configurations that x uses: there are
2og®(1)
(o(l)

© For each possibility solve the IP restricted to those variables with
Kannan’s algorithm.

) = 20(1) many possibilities.

Total running time: 20(3)

Summary of Results

Qo The minimum makespan problem can be solved in time
20(2) 4 poly(n).

© The result is best possible up to logarithmic factors in the
exponent (assuming ETH).

© Possibility to apply the same idea to other problems: in particular
for the related machines makespan scheduling.

	Introduction

