An (almost) optimal approximation scheme for minimum makespan scheduling

Klaus Jansen¹ Kim-Manuel Klein¹ José Verschae²

¹University of Kiel ²Pontificia Universidad Católica de Chile

ADGO 2016

Problem Definition

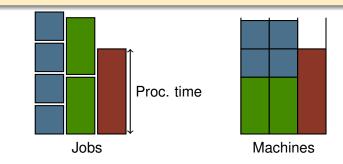
Minimum Makespan Scheduling

- *n* jobs.
- p_j : processing time job *j*.
- *m* machines.

Problem Definition

Minimum Makespan Scheduling

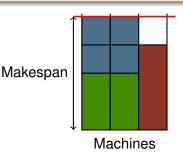
- *n* jobs.
- p_j : processing time job *j*.
- *m* machines.



Problem Definition

Minimum Makespan Scheduling

- *n* jobs.
- p_j : processing time job *j*.
- *m* machines.
- Objective: Minimize makespan (maximum machine load).



Determine the optimum solution is (strongly) NP-hard.

 \rightarrow Seeking poly-time (optimal) algorithms is unrealistic...

Determine the optimum solution is (strongly) NP-hard.

 \rightarrow Seeking poly-time (optimal) algorithms is unrealistic...

Definition An algorithm is α -approximate if for each instance I then $cost(ALG_I) \leq \alpha$ OPT_I. \downarrow approx. factor

Determine the optimum solution is (strongly) NP-hard.

 \rightarrow Seeking poly-time (optimal) algorithms is unrealistic...

Definition An algorithm is α -approximate if for each instance I then $cost(ALG_I) \leq \alpha$ OPT_I. \downarrow approx. factor

- *Classic question*: What is the lowest approx factor achievable in poly-time?
- *Modern question*: Given an approximation factor, what is the best possible running time?

Definition

A family of algorithms $(\mathcal{A}_{\varepsilon})_{\varepsilon>0}$ is a *Polynomial Time Approximation* Scheme (PTAS) if, for all $\varepsilon > 0$,

- $\mathcal{A}_{\varepsilon}$ is a poly-time algorithm, and
- $\mathcal{A}_{\varepsilon}$ is $(1 + \varepsilon)$ -approximate.

Definition

A family of algorithms $(\mathcal{A}_{\varepsilon})_{\varepsilon>0}$ is a *Polynomial Time Approximation* Scheme (PTAS) if, for all $\varepsilon > 0$,

- $\mathcal{A}_{\varepsilon}$ is a poly-time algorithm, and
- $\mathcal{A}_{\varepsilon}$ is $(1 + \varepsilon)$ -approximate.

Previous Literature

• A greedy algorithm is 4/3-approximate.

```
[Graham '66 + '69]
```

• There is a PTAS with running time $n^{\widetilde{O}(\frac{1}{\varepsilon^2})}$.

[Hochbaum & Shmoys '87]

Definition

A family of algorithms $(\mathcal{A}_{\varepsilon})_{\varepsilon>0}$ is a *Polynomial Time Approximation* Scheme (PTAS) if, for all $\varepsilon > 0$,

- $\mathcal{A}_{\varepsilon}$ is a poly-time algorithm, and
- $\mathcal{A}_{\varepsilon}$ is $(1 + \varepsilon)$ -approximate.

Previous Literature

• A greedy algorithm is 4/3-approximate.

```
[Graham '66 + '69]
```

• There is a PTAS with running time $n^{\widetilde{O}(\frac{1}{\varepsilon^2})}$.

[Hochbaum & Shmoys '87]

Classic Question: Solved!

Modern Question

Reinterpretation: What is the best running time possible for a PTAS?

Known Algorithms	
There is a PTAS with running time (roughly):	
• $n^{\widetilde{O}(\frac{1}{\varepsilon^2})}$	[Hochbaum & Shmoys '87]
• $n^{\widetilde{O}(\frac{1}{\varepsilon})}$	[Leung 97]
• $2^{(\frac{1}{\varepsilon})^{\widetilde{O}(\frac{1}{\varepsilon})}} + n$	[Alon et al. '98 & H. & S. '96]
• $2^{\widetilde{O}(\frac{1}{\varepsilon^2})} + n \log n$	[Jansen '10]

Modern Question

Reinterpretation: What is the best running time possible for a PTAS?

Known Algorithms		
There is a PTAS with running time (roughly):		
• $n^{\widetilde{O}(\frac{1}{\varepsilon^2})}$	[Hochbaum & Shmoys '87]	
• $n^{\widetilde{O}(\frac{1}{\varepsilon})}$	[Leung 97]	
• $2^{(\frac{1}{\varepsilon})^{\widetilde{O}(\frac{1}{\varepsilon})}} + n$	[Alon et al. '98 & H. & S. '96]	
• $2^{\widetilde{O}(\frac{1}{\varepsilon^2})} + n \log n$	[Jansen '10]	
Lower Bounds		
• If $P \neq NP$, no PTAS can have a polynomial dependency on $\frac{1}{\varepsilon}$ [Folkclore]		
• If the <i>Exponential Time Hypothesis</i> holds, there is no PTAS with running time $2^{(\frac{1}{\varepsilon})^{1-\delta}} + n^{O(1)}$. [Chen et al. '13]		

Minimum makespan scheduling admits a PTAS with running time

 $2^{\widetilde{O}(\frac{1}{\varepsilon})}+n^{O(1)}.$

Minimum makespan scheduling admits a PTAS with running time

 $2^{\widetilde{O}(\frac{1}{\varepsilon})}+n^{O(1)}.$

Lower Bound

• If the *Exponential Time Hypothesis* holds, there is no PTAS with running time $2^{(\frac{1}{\epsilon})^{1-\delta}} + n^{O(1)}$. [Chen et al. '13]

General Scheme for designing a PTAS:

- **1** Round instance $\rightsquigarrow (1 + \varepsilon)$ multiplicative loss in objective.
- Show that optimal solution of rounded instances has a "nice" structure.
- Sook for optimal solution with such structure.

General Scheme for designing a PTAS:

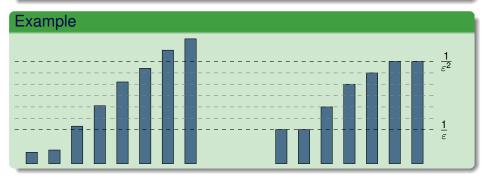
- **1** Round instance $\rightsquigarrow (1 + \varepsilon)$ multiplicative loss in objective.
- Show that optimal solution of rounded instances has a "nice" structure.
- Sook for optimal solution with such structure.

Rounding

Lemma

After rounding (and scaling) $OPT \in \{1, ..., (2/\varepsilon)^2\}$ and the sizes of jobs belong to a set P such that:

• $P \subseteq \{\frac{1}{\varepsilon}, \frac{1}{\varepsilon} + 1, \dots, \frac{1}{\varepsilon^2}\}$ and, • $|P| \leq \widetilde{O}(\frac{1}{\varepsilon}).$



Let *T* be a guessed value for OPT.

Configurations

- Let *T* be a guessed value of *OPT*.
- Each machine gets at most $2/\varepsilon$ jobs.

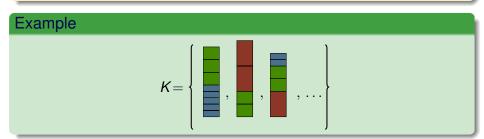
Configurations

- Let *T* be a guessed value of *OPT*.
- Each machine gets at most $2/\varepsilon$ jobs.

Configurations

A *configuration* is a one-machine schedule with total size $\leq T$. Obs: If K is the set of all configurations, then

$$|\mathcal{K}| \leq \left(\frac{2}{\varepsilon}\right)^{|\mathcal{P}|} = 2^{\widetilde{O}(\frac{1}{\varepsilon})}.$$

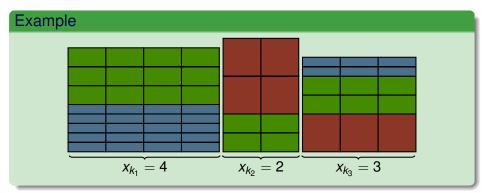


Compact description of a schedule

Multiple machines

We consider vector $(x_k)_{k \in K} \in \{0, ..., m\}^{|K|}$, where

 x_k : number of machines following configuration $k \in K$.



Observation

The vector $(x_k)_{k \in K}$ belongs to the system

$$egin{array}{lll} \displaystyle\sum_{k\in \mathcal{K}} x_k &= m \ \displaystyle\sum_{k\in \mathcal{K}} k_p x_k &= n_p & ext{ for all } p\in P \ & x &\in \mathbb{Z}_{\geq 0}^K \end{array}$$

Observation

The vector $(x_k)_{k \in K}$ belongs to the system

$$\sum_{\substack{k \in K \\ k \in K}} x_k = m$$

$$\sum_{\substack{k \in K \\ k \neq x_k}} x_k = n_p \quad \text{for all } p \in P$$

$$x \in \mathbb{Z}_{>0}^K$$

of constraints: $\widetilde{O}(\frac{1}{\varepsilon})$ # variables: $2^{\widetilde{O}(\frac{1}{\varepsilon})}$ Direct method [Alon et al. '98]

Use the following result:

Theorem (Kannan '87)

An integer program with d variables can be solved in time $2^{O(d)}s$ (where s is the length of the input).

In our case $d = |K| = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$ and thus the running time is at least

$$d^d = 2^{2^{\widetilde{O}(\frac{1}{\varepsilon})}}$$

Direct method [Alon et al. '98]

Use the following result:

Theorem (Kannan '87)

An integer program with d variables can be solved in time $2^{O(d)}s$ (where s is the length of the input).

In our case $d = |K| = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$ and thus the running time is at least

 $d^d = 2^{2^{\widetilde{O}(\frac{1}{\varepsilon})}} \leftarrow \text{doubly exponential!}$

Direct method [Alon et al. '98]

Use the following result:

Theorem (Kannan '87)

An integer program with d variables can be solved in time $2^{O(d)}s$ (where s is the length of the input).

In our case $d = |K| = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$ and thus the running time is at least

 $d^d = 2^{2^{\widetilde{O}(\frac{1}{\varepsilon})}} \leftarrow \text{doubly exponential!}$

If we only could decrease the number of variables...

Solving the IP: Second Approach

Guess the support [Jansen '10]

Theorem (Eisenbrand & Shmonin 2006)

A problem $\{c^t x : Ax = b, x \in \mathbb{Z}_{\geq 0}\}$ where A has h rows, admits an optimal solution x^* with

 $|supp(x^*)| \leq O(h\log(h+s)).$

For our case:

- $h = |P| + 1 \approx \frac{1}{\varepsilon} \log(\frac{1}{\varepsilon})$, and
- $\operatorname{supp}(x^*) \leq \widetilde{O}(\frac{1}{\varepsilon})$

Solving the IP: Second Approach

Guess the support [Jansen '10]

Theorem (Eisenbrand & Shmonin 2006)

A problem $\{c^t x : Ax = b, x \in \mathbb{Z}_{\geq 0}\}$ where A has h rows, admits an optimal solution x^* with

 $|supp(x^*)| \leq O(h\log(h+s)).$

For our case:

•
$$h = |P| + 1 \approx \frac{1}{\varepsilon} \log(\frac{1}{\varepsilon})$$
, and

• $\operatorname{supp}(x^*) \leq O(\frac{1}{\varepsilon})$

ldea:

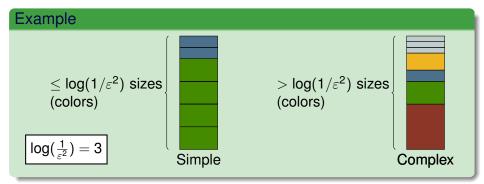
- Try each possible support *S*: there are $\binom{|K|}{\widetilde{O}(\frac{1}{\varepsilon})} = 2^{\widetilde{O}(\frac{1}{\varepsilon^2})}$ many possibilities.
- For each possibility solve the IP restricted to those variables with Kannan's algorithm.
- 3 Total running time: $2^{\tilde{O}(\frac{1}{\varepsilon^2})}$.

Solving the IP: Third Approach

Understanding the Optimum

Definition

A configuration k is *complex* if contains more than $log(1/\epsilon^2)$ different sizes; o.w. is *simple*.

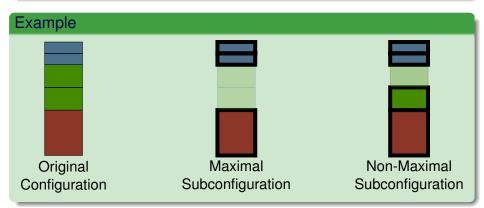


Solving the IP: Third Approach

Understanding the Optimum

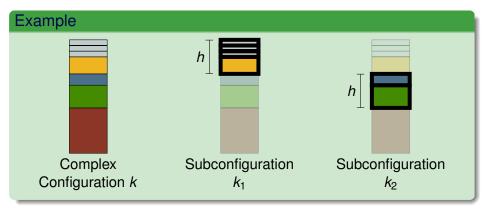
Definition (Informal)

A "subconfiguration" of a configuration k is called *maximal* if it contains all possible jobs of each taken size.



Lemma

Every complex conf. $k \in K$ contains two maximal subconfigurations k_1, k_2 s.t. the total size of k_1 and k_2 coincide.



Lemma

Every complex conf. $k \in K$ contains two maximal subconfigurations k_1, k_2 s.t. the total "size" of k_1 and k_2 coincide.

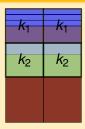
- Let $C > \log \frac{1}{\epsilon^2}$ be the number of sizes (colors) in *k*.
- Number of maximal subconfigurations $2^C \ge \frac{1}{\epsilon^2}$.
- The total size of each configuration belongs to $\{1, 2, \dots, \frac{1}{c^2}\}$.
- ⇒ there must be two maximal subconfigurations of same total size.

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.

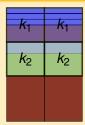
Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.

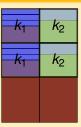


Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.

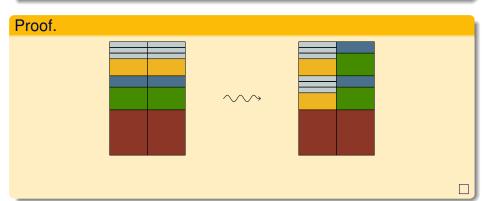


$$\sim \sim \sim$$



Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.



Solving the IP: Third Approach

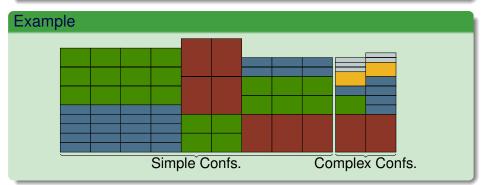
Understanding the Optimum

Theorem (Thin Solutions)

If the IP is not empty, then there is a solution x^* such that:

- At most $\widetilde{O}(\frac{1}{\varepsilon})$ machines get complex configurations
- Each complex configuration is used at most once

• $|supp(x^*)| \leq \widetilde{O}(\frac{1}{\varepsilon}).$



Part 1:

- Guess jobs assigned to complex configurations, and number of complex machines.
- Solve that subinstance optimally (with a Dynamic Program).

Part 1:

- Guess jobs assigned to complex configurations, and number of complex machines.
- Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.

- Guess the (simple!) configurations that *x* uses: there are $\binom{2^{\log^2(\frac{1}{\varepsilon})}}{\tilde{O}(\frac{1}{\varepsilon})} = 2^{\tilde{O}(\frac{1}{\varepsilon})}$ many possibilities.
- For each possibility solve the IP restricted to those variables with Kannan's algorithm.

Part 1:

- Guess jobs assigned to complex configurations, and number of complex machines.
- Solve that subinstance optimally (with a Dynamic Program).

Part 2: Remaining instance.

- Guess the (simple!) configurations that *x* uses: there are $\binom{2^{\log^2(\frac{1}{\varepsilon})}}{\tilde{O}(\frac{1}{\varepsilon})} = 2^{\tilde{O}(\frac{1}{\varepsilon})}$ many possibilities.
- For each possibility solve the IP restricted to those variables with Kannan's algorithm.

Total running time: $2^{\widetilde{O}(\frac{1}{\varepsilon})}$

- The minimum makespan problem can be solved in time $2^{\widetilde{O}(\frac{1}{\varepsilon})} + \text{poly}(n)$.
- The result is best possible up to logarithmic factors in the exponent (assuming ETH).
- Possibility to apply the same idea to other problems: in particular for the related machines makespan scheduling.