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Scheduling identical machines

I A set M of identical machines,
I a set J of jobs,
I a processing time pj for each j ∈ J.

Goal: to find an assignment from jobs to machines in order to
minimize the maximum load.

Cmax



I The problem is strongly NP-hard.
I There exists a PTAS, that is, for each ε > 0 there exists an

algorithm returning a schedule of cost at most (1 + ε) · opt.

Is it possible to obtain a polytime (1 + ε)-approximation
algorithm based on known LP/SDP relaxations?



0-1 formulation

xij indicates whether j goes to machine i .∑
i∈M

xij = 1 for each j ∈ J,

xij ∈ {0,1} for each j ∈ J, i ∈ M,

Minimize: Cmax = max
i∈M

∑
j∈J

pjxij︸ ︷︷ ︸
load of machine i

Cmax



Assignment LP

∑
i∈M

xij = 1 for each j ,∑
j∈J

xijpj ≤ T for each i ,

xij = 0 if pj > T ,
xij ≥ 0 for each i ∈ M, j ∈ J.

Bad news: for each ε > 0 there exists an instance Iε such that

opt(Iε)

min{T : LP(T , Iε) 6= ∅}
≥ 2− ε.

[Lenstra, Shmoys & Tardos]



An LP based on configurations

Configurations: ways of scheduling a single machine.
np : number of jobs with procesing time equal to p .
m(p,C) : multiplicity of p in the multiset C.

C =

{
C :

∑
p

p ·m(p,C) ≤ T

}

Configuration LP:∑
C∈C

yiC = 1 for every i ∈ M,∑
i∈M

∑
C∈C

m(p,C)yiC = np for every p ∈ {pj : j ∈ J},

yiC ≥ 0 for every i ∈ M,C ∈ C.



Theorem
For each n ∈ N there exists an instance with n jobs and O(n)
machines such that the configuration LP has an integrality gap
of at least 1 + 1/1023.
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The Petersen Graph

Key fact: It admits a frac-
tional 1-factorization, but
not an integral one, i.e.,
there is no 0-1 vector α st∑
M∈PM(G):

e∈M

αM = 1, for all e ∈ E(G).



Theorem
For each n ∈ N there exists an instance with n jobs and O(n)
machines such that the configuration LP has an integrality gap
of at least 1 + 1/1023.

0

1

23

4
5

6

78

9

The Petersen Graph

Key fact: It admits a frac-
tional 1-factorization, but
not an integral one, i.e.,
there is no 0-1 vector α st∑
M∈PM(G):

e∈M

αM = 1, for all e ∈ E(G).



Perfect Matchings (PM) of Petersen: M1, . . . ,M6

Each edge appears in exactly two of the six matchings!
αM = 1/2 for each perfect matching M.



Instance Ik
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I Let k be odd.
I For each edge {u, v}, we

have k copies of a job
with processing time
2u + 2v . That is a total of
15k jobs.

I There are 3k machines.



First step: CLP is feasible for T = 1023

For each perfect matching M` in Petersen, construct a
configuration C` having one copy of a job je for each e ∈ M`.

load(C`) =
∑
j∈[9]

2j = 1023, for all ` ∈ {1,2, . . . ,6}.

machine i

The k copies for each size
are scheduled,

3k · 2 · 1/6 = k .

Fractional solution:

yiC`
= 1/6,

for each
i ∈ {1, · · · ,3k} and
` ∈ {1, · · · ,6}.



First step: CLP is feasible for T = 1023

For each perfect matching M` in Petersen, construct a
configuration C` having one copy of a job je for each e ∈ M`.

load(C`) =
∑
j∈[9]

2j = 1023, for all ` ∈ {1,2, . . . ,6}.

machine i

The k copies for each size
are scheduled,

3k · 2 · 1/6 = k .

Fractional solution:

yiC`
= 1/6,

for each
i ∈ {1, · · · ,3k} and
` ∈ {1, · · · ,6}.



First step: CLP is feasible for T = 1023

For each perfect matching M` in Petersen, construct a
configuration C` having one copy of a job je for each e ∈ M`.

load(C`) =
∑
j∈[9]

2j = 1023, for all ` ∈ {1,2, . . . ,6}.

machine i

The k copies for each size
are scheduled,

3k · 2 · 1/6 = k .

Fractional solution:

yiC`
= 1/6,

for each
i ∈ {1, · · · ,3k} and
` ∈ {1, · · · ,6}.



First step: CLP is feasible for T = 1023

For each perfect matching M` in Petersen, construct a
configuration C` having one copy of a job je for each e ∈ M`.

load(C`) =
∑
j∈[9]

2j = 1023, for all ` ∈ {1,2, . . . ,6}.

machine i

The k copies for each size
are scheduled,

3k · 2 · 1/6 = k .

Fractional solution:

yiC`
= 1/6,

for each
i ∈ {1, · · · ,3k} and
` ∈ {1, · · · ,6}.



Second step: optimal makespan is at least 1024

Total load of the 15 job types =
1023 · 6

2
= 3 · 1023,

Total load in Ik = 3k · 1023.

Any integral solution of makespan equal to 1023 induces a
1-factorization of the Petersen multigraph (k copies of each
edge) ... contradiction! (k odd is used here)

opt(Ik )

min{T : clp(T , Ik ) 6= ∅}
≥ 1024

1023
.

How to strengthen? ... let’s try to Lift & Project.



LP/SDP hierarchies

I Systematic way for strengthening relaxation P ⊆ [0,1]n.
I Determines a sequence of relaxations satisfying

P ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pn = conv(P ∩ {0,1}n).

I It is possible to optimize over Pt in time nO(t).

Sherali & Adams ’90 (SA) LP
Lovász & Schrijver ’91 (LS/LS+) LP/SDP

Sum-of-Squares ’00 (Parrillo, Lasserre) SDP



Some related results

Lower bounds: Min-sum tardy jobs: unbounded gap after
O(
√

n) rounds of SoS. (Kurpisz, Leppänen, Mastrolilli, 2015)
Upper bounds:

I 1st round of LS+ yields a (3/2− c)-apx for minimizing the
weighted sum of completion times in unrelated machines.
(Bansal, Srinivasan, Svensson, 2015)

I For a fixed number of machines, the r = (log n)Θ(log log n)

round of SA gives a (1 + ε)-apx for scheduling parallel
machines under precedence constraints and unit size jobs
to minimize makespan. (Levey, Rothvoss, 2015)



Sherali & Adams hierarchy

Let y be a 0-1 solution. If H,L ⊆ M × C,∑
C∈C

yiC

∏
q∈H

yq
∏
q∈L

(1− yq) =
∏
q∈H

yq
∏
q∈L

(1− yq),

∑
i

∑
C∈C

m(p,C)yiC

∏
q∈H

yq
∏
q∈L

(1− yq) = np
∏
q∈H

yq
∏
q∈L

(1− yq),

are valid. They can be linearized using Inclusion-Exclusion,∏
q∈H

yq ∼ yH .



Sherali & Adams hierarchy

At level r there is one variable for each subset H ∈ M × C with
cardinality at most r + 1.

SAr : ∑
C∈C

yH∪{(i,C)} = yH for every i , |H| ≤ r ,∑
i

∑
C∈C

m(p,C)yH∪{(i,C)} = npyH for every p, |H| ≤ r ,

y ≥ 0,
y∅ = 1.



Theorem
After applying r = Ω(n) rounds of the SA hierarchy to the
configuration LP, the obtained relaxation has an integrality gap
of at least 1 + 1/1023.

Proof idea. Consider r = 1 and H = {(1,C1)}.

np =
∑
i 6=1

∑
C∈C

m(p,C)
y{(1,C1),(i,C)}

y{(1,C1)}
+

∑
C∈C

m(p,C)
y{(1,C1),(1,C)}

y{(1,C1)}
.
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Lemma: If C 6= C1 then y{(1,C1),(1,C)} = 0.



Theorem
After applying r = Ω(n) rounds of the SA hierarchy to the
configuration LP, the obtained relaxation has an integrality gap
of at least 1 + 1/1023.

Proof idea. Consider r = 1 and H = {(1,C1)}.

Define zH
(i,C) =

y{(1,C1),(i,C)}
y{(1,C1)}

. Then zH
{(1,C1)} = 1 and

∑
i 6=1

∑
C∈C

m(p,C)zH
{(i,C)} = np −m(p,C1).

That is, after scheduling i in configuration C1, the vector zH is a
fractional solution for the reduced instance. For example,

y{(1,C1),(2,C2)} =
1
6
· 1

6
and y{(1,C1),(2,C1)} =

1
6
· k/2− 1

3k − 1
.



SDP relaxations

The same holds for the SDP hierarchy LS+.

Theorem
After applying r = Ω(n) rounds of the LS+ hierarchy to the
configuration LP the obtained relaxation has an integrality gap
of at least 1 + 1/1023.



Conclusions/Open problems

I SA and LS+ fail to to schedule identical machines within a
factor of 1 + ε.

I What about unrelated machines? machine-dependent
processing times pij . Best apx factor is 2.



Gracias!


