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Introduction

The Problem

Optimization has been used for long to solve many relevant problems.

But many times we face uncertainty, or data is not known exactly.

We also face changing conditions through time.

What happens when we use optimization models for decision making and
things change with time?

J. Vera (PUC) Intertemporal Decisions ADGO Workshop, January 2016 2 / 51



Introduction

The Problem

We consider questions related to decision making in different time horizons

One of the most typical examples is production planning decisions in different
stages:

Strategic, Tactical, Operational.

Tactical decisions

Monthly planning decisions (for instance)
Aggregate production data and demand
Aggregate production decisions and processes
Aggregate decisions on resources and raw materials

Operational decisions

Weekly (or daily) decisions for the first month (say)
Detailed use of resources
Detailed production plan
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Introduction

The Planning Process

We say the plans are consistent if feasible operational decisions can be
generated, considering the constraints imposed by the tactical decisions.

But inconsistencies may appear due to:

Different degrees of aggregation
Uncertainty and variations which are not captured in the tactical plan.

The plan: to study factors affecting the consistency of decisions and
procedures to cope with this.
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Introduction

Outline

A general Setting of Intertemporal Decisions

A framework to control inconsistencies

A practical problem: intertemporal decisions in forest management.

A Robus Optimization and a 2-stage stochastic approach for the problem.

Measures of sensitivity and robustness and its connections to the question

Collaborators: Alfonso Lobos (M.Sc. student), Pamela Alvarez (Ph.D.
student, UAB), Ana Batista (Ph.D. student).

J. Vera (PUC) Intertemporal Decisions ADGO Workshop, January 2016 5 / 51



General setting

A General Setting

There is a tactical planning problem in T periods (months)

At period t, production, resources and logistic decisions are made.

Variables: (xt, yt), x: production, y: resources

Data parameters: ωt.

Cost functions: Ct .

The tactical problem:

TP )
min

T∑
t=1

Ct(ωt, xt, yt)

s.t. Gt(ωt, xt, yt) ≤ bt t = 1, ..., T
H(ω, x, y) = 0
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General setting

A General Setting

At the operational level, we see subperiods (weeks within the month, for
instance):

J(t): the set of subperiods in period t.

Operational decisions: (xotk, y
o
tk), k ∈ J(t)

Operational parameters: ω̄tk, k ∈ J(t).

The operational problem is affected by the tactical planning:

OP )

min
∑

k∈J(t)
C̄tk(ω̄tk, x

o
tk, y

o
tk, xt, yt)

s.t. Ḡtk(ω̄tk, x
o
tk, y

o
tk, xt, yt) ≤ b̄tk k ∈ J(t)

H̄t(ω̄t, x
o
tk, y

o
tk, xt, yt) = 0
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General setting

A General Setting

In real situations, tactical parameters might be an aggregate of operational
parameters.

Some tactical parameters, like demand, are only estimates.

So, tactical planning is done.

Some resources, for instance, are fixed by the tactical planning.

The short term arrives and operational planning is done.

Can we guarantee to obtain a reasonable operational plan?

Old question, in fact, consistency in hierarchical planning was studied initially
by Bitran, Hax and Hass[1980] and several others later
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General setting

A General Setting

There is, in some cases, a way to guarantee consistency: There must be a
relation between the operational parameters, ω̄tk, and the tactical ones, ωt.

For example: we produce milk, packaged in three “formats”: one liter
tretapack, 200cc. tetra, one liter bags.

At operational level we decide production of all three products and we
“know” demand for the three.

But at the tactical level, an aggregated planning is done, for total liters of
milk to be processed over a longer horizon.

The tactical planning define aggregated production capacity.

However, use of production capacity depends on the detailed product, so an
inconsistency might be generated between aggregated capacity and actual
detailed capacity requirements.
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General setting

A General Setting

The solution:

The aggregated productivity used as parameter in the tactical planning has to
be computed as a weighted average of the detailed one, and the weights have
to be the relative demand for the three products.

Bitran, Hax and Hass[1980] prove a theorem about this.

It is also related to results on aggregation in Linear Programming by
Zipkin[1980].

Nice result, but it requires exact knowledge of detailed future demand.

How to get that information?
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General setting

A General Setting

A couple of alternatives:

Of course, in practice we could get estimates, but they will have error...
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General setting

A General Setting

Idea: Do the plan incorporating an estimated feedback of the
inconsistencies...

Suppose we were able to “compute” a value

s(ω̄t, xt, yt)

which measures the “response” of the operational problem.

For instance:

s(·) could be cost of not fulfilling operational requirements.
s(·) could be the probability of not fulfilling operational requirements.
s(·) could be a measure of stability of the operational problem: larger s means
a less stable problem.
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General setting

A General Setting

Then, we could state the following problems:

TPR1)

min
T∑

t=1
Ct(ωt, xt, yt)

s.t. Gt(ωt, xt, yt) ≤ bt t = 1, ..., T
H(ω, x, y) = 0
“ min s(ω̄t, xt, yt)

′′

or:

TPR2)
min

T∑
t=1

Ct(ωt, xt, yt) +
T∑

t=1
s(ω̄t, xt, yt)

s.t. Gt(ωt, xt, yt) ≤ bt t = 1, ..., T
H(ω, x, y) = 0

These problems tries to compute tactical decisions in such a way that their
impact on the operational problem is controlled.
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General setting

Looking for Consistency

Consider first the format:

TPR1)

min
T∑

t=1
Ct(ωt, xt, yt)

s.t. Gt(ωt, xt, yt) ≤ bt t = 1, ..., T
H(ω, x, y) = 0
“ min s(ω̄t, xt, yt)

′′

We can consider a modified TP) as a first decision level and then optimize at
the operational independently, and wait for the best.

Our first approach was to modify TP) to make it more “robust” in such a
way to reduce the negative impact at the tactical.

To continue the explanation we introduce the specific test problem we have
been using.
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The sawmill problem

Sawmill Planning Problem

We have been using as case study a problem of decision making in the forest
industry

Logs are sourced from the forests.

The sawmill produces lumber (boards) in different sizes using a variety of
cutting patterns.

Tactical Planning: assign aggregated load to the sawmill and determine
monthly log orders.

Operational planning: used weekly (even daily) for production scheduling.

When the sawmill receives actual shipping of logs, the operational model is
executed.

But what you get is not always what you asked for. . .

We “present” now the (simplified) models, which are based on Weintraub
and Epstein[2002] and others.
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The sawmill problem

Tactical Model: a compact version

Variables:

Xt: hours of labor for month t.
rawct: logs of type c to be ordered for month t.
rct: logs of type c processed in month t.
zmt: inventory of lumber m in the month t.
wct: inventory of the logs c in the month t.

Parameters:

Wt: cost of labor in month t.
φ: productivity of labor.
Crawct: cost of log type c bought in period t.
UX, LX: upper and lower bound on labor.
MEct: upper bound in the amount of logs type c the company can buy in
period t.
hmt: the storage cost of product m in the month t.
hwct: storage cost for log c in the month t.
Ycm: average amount of lumber of type m obtained from a log type c.
dmt: demand for product m the company has in the month t.
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The sawmill problem

Tactical Model: a compact version

The model cover 4 months.

C, set of logs types, M : set of products.

The model seeks to determine raw material and labor need so that cost is
minimized

min
4∑

t=1

( ∑
m∈M

(hmtzmt) +
∑
c∈C

(Crawctrawct + hctwct) +WtXt

)
s.t. LX ≤ Xt ≤ UX ∀t ∈ 1, ..., 4

rawct ≤MEct ∀c ∈ C, t ∈ 1, ..., 4
wct = wc,t−1 + rawct − rct ∀c ∈ C, t = 2, .., 4
zmt = zm,t−1 +

∑
c∈C

Ycmrct − dmt ∀m ∈M, t = 2, ..., 4∑
c∈C

rct ≤ φXt ∀t = 1, ..., 4

zmt ≥ 0, rawmt ≥ 0, wct ≥ 0, Xt ≥ 0
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The sawmill problem

The operational Model: a compact version

Operational variables

r′eci: logs type c processed with cutting pattern e in week i.
ex′i: overtime at week i.
z′mi: inventory of product m in week i.
w′

ci: inventory of logs c in week i.
b′mi: backlog of product m in week i.

Operational parameters for the first four weeks:

αm: percentage of acceptable shortage for product m.
β′
mi: backlog cost for product m in week i.
h′
mi: storage cost of product m in week i.
h′
ci: storage cost for log c in week i.
EWi: overtime cost in week i.
RR′

ci: ctual logs of type c received in week i.
Yecm: yield of lumber m from logs c using cutting pattern e.
dmi: demand for product m in i.
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The sawmill problem

The operational Model: a compact version

The model covers four weeks of the first month.

Here E is the set of detailed cutting patterns.

There can be backlog from one week to the following one.

The model seeks to determine detailed operations, given resources and raw
material assigned for the first month in the tactical model.

min
4∑

i=1

(
EW ′iex

′
i +

∑
m∈M

β′mibmi

)
s.t. w′ci = w′c,i−1 +RR′ci −

∑
e∈Ec

(r′eci) ∀c ∈ C, i ∈ 1, ..., 4

z′mi = z′m,0 +
∑
c∈C

∑
e∈Ec

Yecmr
′
eci + b′mi − b′m,i−1 − dmi ∀m ∈M, ∀i∑

c∈C

∑
e∈Ec

r′eci ≤ φX1

4 ∀i

b′mi ≤ αmdmi ∀m ∈M, i ∈ 1, .., 4
ex′i ≥ 0, bmt ≥ 0.
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Consistency

The Consistency Problem

The ideal situation:

Log supply estimated at tactical level is received equally distributed in the
four weeks, and demand happens in the same way.

But in reality, there can be many changes and variations.

The represented situation:

Those proportional weekly quantities are randomly perturbed:

RR′ci =
(rawc1

4

)
+ ξ , ∀c ∈ C, i ∈ 1, ..., 4,

where ξ is a random perturbation.
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Robust approach

A Robust Optimization Approach

The first idea was to use Robust Optimization.

The aggregated yield coefficient Ycm can be used to represent all the “noise”
from the aggregation and variation at the operational.

Hence, robust decisions are made at the tactical level and transferred to the
operational first month.

The performance in the operational model is evaluated using Monte-Carlo
simulation.

What are robust solutions?
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Robust approach

Robust solutions

Consider the following Linear Optimization problem

min cTx
s.t. Ax ≤ b

x ≥ 0 ,

α1, . . . , αm are the rows of A.

A robust solution is ones which is “inmunized” to changes in problem data
(within a range).

Typically we assume A = Ā+ U , U ∈ D(Γ), where D(Γ) is an “uncertainty
set” parametrized in Γ.

Γ is the degree of uncertainty (or noise) allowed.

We look for a solution feasible for all cases of A, that is, a robust solution.
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Robust approach

Robust solutions

Graphically:
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Robust approach

The idea of a robust solution

The robust problem is:

min
x
{cTx : (Ā+ U)x ≤ b, x ≥ 0, para todo U ∈ D(Γ)} .

Typically, we assume variability independently by constraint and define sets
Di(Γ) for each constraint.

The robust problem is:

min cTx
s.t. ᾱT

i x+ βi(x,Γ) ≤ bi i = 1, . . . ,m
x ≥ 0 ,

where, for each i = 1, . . . ,m,

βi(x,Γ) = max xTui
s.t. ui ∈ Di(Γ) .

are the “protection functions” of the constraints.
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Robust approach

Different approaches:

To handle the problem, we need to specify the sets Di(Γ), specify the
protection functions and obtain the robust counterpart.

Interval uncertainty : The coefficient aij ∈ [āij − sij , āij + sij ], where,
sij = Γ× āij .

The larger Γ, more variability.

The robust counterpart, in this case, takes the worst case scenario,

This could be too conservative...

There are other ways to vary the coefficients avoiding the worst case.

Initial developments: Ben-Tal and Nemirovski[1998-2002], ellipsoidal
uncertainty:

n∑
j=1

(
aij − āij
sij

)2

≤ Γ
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Robust approach

Different Approaches: The “Uncertainty Budget”

Bertsimas and Sim[2004] propose a format in which
aij ∈ [āij − sij , āij + sij ], with the added condition that

n∑
j=1

1

sij
|aij − āij | ≤ Γ

If Γ es large (= n) there is no restriction on the simultaneous variation and
we are in the worst case.

For intermediate values of Γ there is an “uncertainty budget” to distribute
among all coefficients as the simultaneous variation is bounded.

With these definitions we can build the robust counterpart, which is a linear
program.

And, if there are integer variables, the robust counterpart is a mixed integer
problem.
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aij ∈ [āij − sij , āij + sij ], with the added condition that

n∑
j=1

1

sij
|aij − āij | ≤ Γ
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Robust approach

Results: Base case

Simulation of 1,000 scenarios with different value of perturbation ξ.

ξ is sampled from a uniform distribution, with mean rawc1/4 and perturbed
in a certain %.

We registered when the operational problem unmet demand and when it was
completely infeasible (due to processing capacity).
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Robust approach

Results: Base case

We now use Bertsimas and Sim robust optimization formulation for the
tactical problem.

We show the case with a variation of 30% in the log supply.

We assume that the forest perturb with the same pattern as in the
corresponding base case.

Here are the results for some values of Γ, the uncertainty budget in the B&S
formulation, for interval widths of 15%
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Robust approach

Conclusions so far...

A robust tactical plan increases the chances of getting feasible production at
the operational level, with an increase in cost.

From extensive simulations we could infer the right value for Γ for an
acceptable feasibility level.

However, the approach still handles both problems separated.
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A 2-Stage approach

A 2-Stage Stochastic Approach

Let fT (X, z, raw,w) be the original tactical objective function

We consider the problem:

min fT (X, z, raw,w) + E(Q((raw,X), ξ))
s.t.

G(X, z, raw,w) = g

where the function G represents all the tactical constraints.

Q((raw,X), ξ) is the optimal value of the second stage, as a function of the
first stage decisions (raw,X) and a random perturbation ξ.

Hence, the problem seeks to optimize tactical decisions in such a way that
the cost generated to the second stage is also taken into account.
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A 2-Stage approach

The second stage problem

The second stage problem is the one we stated before.

The random element enters in the perturbation of the disaggregated raw
material supply.

Q((raw,X), ξ) = min fO(ex′, b)
s.t.

H1(ex′, b) +H2(raw,X, ex′, b) = h(ξ),

where the functions H1 and H2 represent all the operational constraints, with
H2 depending on the first stage variables.

h(ξ) represents the right-hand side as a function of the random perturbation.
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A 2-Stage approach

A Rolling Horizon Framework

We wanted to test the models in a rolling horizon framework

We considered 48 months and the planning horizon moves sequentially.

We defined certain scenarios of timber demand:

The results we present later are for this demand pattern.
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A 2-Stage approach

Alternative models for the 2 stages

We considered different combinations of the tactical and operational models,
which represent different views of the hierarchical decisions.

MODEL First Stage Second Stage

FMA Tactical, aggregated yield Operational month 1
FMD Tactical, disaggregated yield Operational month 1
SMA Simple tactical Operational month 1

tactical inventory
ag. yield month 2-4

SMD Simple tactical Operational month 1
tactical inventory

disag. yield

The disaggregated models represent a situation in which more detailed
information is used on the planning.

The second model represents the situation in which the second stage
considers inventory decisions as variables that adjust to uncertainty over the
whole horizon.
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Solution and tests

Solving the Problems

We have a 2-stage Stochastic Linear Problem which we can solve in different
ways.

We used a simplified version of a real industrial problem: only a few products
and cutting patterns.

We solved the problems using an SAA (Stochastic Average Approximation)
approach with 96 scenarios.

The computations were performed in a Dell cluster with Intel E5-2470
processors with a total of 168 cores.

The programming was developed in Python, using Gurobi for optimization.
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Solution and tests

Rolling horizon test

We begin at step (month) k = 1.

At the k-th rolling step:

1. We solve each one of the four model alternatives on the window [k, k + 3].

2. Let X1 and raw1 the capacity assignment and log purchase planning for
month 1 of the window.

3. We generate an scenario of logs supply for the four weeks of the first month.

4. We solve the operational problem for that scenario and record total
operational costs and solutions.

5. k ← k + 1.

We make the operational always feasible: if there are not enough logs, we
assume we purchase them on spot, with the corresponding extra cost (50%
higher than the original).
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month 1 of the window.

3. We generate an scenario of logs supply for the four weeks of the first month.

4. We solve the operational problem for that scenario and record total
operational costs and solutions.

5. k ← k + 1.

We make the operational always feasible: if there are not enough logs, we
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Solution and tests

Some results for demand scenario I

Total Operational cost for the first month k for all the horizon (in
monetary units)

SMD performs better and FMA performs worst, possibly indicating that the
simultaneous consideration of more information, and a full horizon in the
second stage is beneficial.
(Note: uncertainty only affects the first month).
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Solution and tests

Results

How much of the cost is anticipated by each model?

This is a way of assessing consistency.

To have a feasible operational plan, sometimes we have to buy extra logs on
the spot.

We computed the extra cost incurred at the operational planning and
compared it with the planned operational cost.

SMD SMA FMD FMA
% cost increase w/r to plan 18 40 15 19

We see that the disaggregated model can anticipate better.

The second model, with the inventory in the second stage, seems to perform
well only under disaggregated information.

The basic 2 stages planning model (FMA) performs well anyway.
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The other measures

Consistency with the other measures “s”

Recall we proposed to “compute” a value s(ω̄t, xt, yt) which measures the
“response” of the operational problem.

We have illustrated s as a cost measure.

What about?:

s(·) as the probability of not fulfilling operational requirements.
s(·) as a measure of stability of the operational problem: larger s means a less
stable problem.

Stability is important as a more stable operational problem will remain
feasible even of some data (from the tactical) change.
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The other measures

Measures of Problem Stability

The question is whether there exist such a function s.

The answer is “yes”...

There are two kind of such measures:

Condition measures
Geometric measures

We consider the following Linear Problem as an illustration:

P )
z∗ = max cTx

s.t. Ax ≤ b ,
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The other measures

Condition and Ill-posedness Measures

Suppose the data is d = (A, b).

Let Fd := {x ∈ Rn : Ax ≤ b} 6= ∅
‖d‖ := max{‖A‖, ‖b‖}

I = {d = (A, b) : Fd = ∅}
“distance to infeasibility” is ρ(d) = min {‖∆d‖ : d+ ∆d ∈ I}

Condition number is C(d) =
‖d‖
ρ(d)

The notion was studied, for Optimization, by Renegar[1995] and further
results by V[1996], Freund and Vera[1999,2003], Ordoñez and Freund[2003],
and several others.

The condition number explains, among others, sensitivity properties of the
problem.
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The other measures

Conditioning and Problem Sensitivity

For the optimization problem:

P )
z∗ = max cTx

s.t. Ax ≤ b ,

If we perturb (A, b) to (A+ ∆A, b+ ∆b) and z′ is the new optimal value,
then

|z′ − z∗| ≤ C(d)2‖(∆A,∆b)‖
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The other measures

Sensitivity of solutions: The impact of geometry

These are two polyhedrons and objective functions:

problem 1 can be much more sensible (less robust) than problem 2 (for the
current objective function)

Intuition: geometric shape has something to say about sensitivity.

Can we describe the way in which the optimal value of the problem changes
with changes in the data, using geometric measures?
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The other measures

Geometric measures of problems

A basic way of assessing the geometry of a set is to see how far it extends
and how “thin” it is.

Let x0 be a reference point.

R is such that F ⊂ B(x0, R).

r is such that B(x̄, r) ⊂ F , for some x̄.

The number R/r is an “aspect ratio” of the set S.
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The other measures

Changes in the objective function

We can use those numbers to estimate the change in the objective function,
as shown in V[2014].

Theorem

Let ∆d = (∆A,∆b, 0) be a perturbation of the problem instance. Let z(d) and
z(d+ ∆d) be the corresponding optimal values. Then,

|z(d)− z(d+ ∆d)| ≤ 2‖c‖
(
R

r

)(
1

γ(A)

)
× (‖∆b‖+ ‖∆A‖(R+ ‖x0‖))

where γ(A) is a number depending on the matrix A.
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The other measures

The question: introducing those measures in the 2-stage
problem

Either C(d) or R/r could be used in connection to the function s we
postulated before, but the dependence on the data has to be made explicit.

Recall the conceptual problem:

TPR2)
min

T∑
t=1

Ct(ωt, xt, yt) +
T∑

t=1
s(ω̄t, xt, yt)

s.t. Gt(ωt, xt, yt) ≤ bt t = 1, ..., T
H(ω, x, y) = 0

The structure of this problem will be complicated, but it could be possible to
construct bounds that limit the variation of s in terms of the tactical
decisions.

So far, this is an open problem, at least for me...
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The other measures

The other question

And what if s is the probability of feasibility for the operational problem?

Recall: making the tactical more robust increased the cases of feasible
operational problems.

Recall the conceptual problem:

TPR2)
min

T∑
t=1

Ct(ωt, xt, yt) +
T∑

t=1
Prob(infeasible second stage)

s.t. Gt(ωt, xt, yt) ≤ bt , t = 1, ..., T
H(ω, x, y) = 0

So far, this is also an open problem.
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Final Comments

Final Coments

We have been exploring consistency issues in the use of Optimization models
in an intertemporal setting.

Robust Optimization and the classical 2-stage stochastic approach have been
promising on helping to achieve consistency.

We plan to work on the general formulation considering direct consideration
of stability measures.

Our current “test bed” is a production planning problem in the forest
industry.

We are beginning to work in a second problem related to planning capacity in
an hospital, where there are many sources un uncertainty.

J. Vera (PUC) Intertemporal Decisions ADGO Workshop, January 2016 50 / 51



Final Comments

THANKS!!
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