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Maximum cut problem

Given a weighted graph G = (V,E,w), with w : E → R+.
Find bipartition (V−, V+) of V that maximizes

w(E(V− : V+)) =
∑

e=uv:u∈V−,v∈V+

w(e).

V− V+

maxcut(G) := maxw(E(V− : V+))

Fact: Max-Cut is NP-hard even for unit weights.
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Aproximating Max-Cut

A cut (X,Y ) is an α-aproximation if
w(E(X : Y )) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]
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Approximating Max-Cut

Goemans-Williamson
There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)

Algorithm is relatively simple (Solve SDP + randomized projection) and
can be derandomized.

Optimal guarantee assuming Unique Games Conjecture.

(Approximate solving) SDP is in P, but in general, it is slow.

Task: Find fast algorithms for Max-Cut achieving an approximation
bigger than 0.5
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Spectral Partitioning: Recursion Idea

[Trevisan, STOC 2008], [S, 2015 - new analysis]

Idea: Compute a vector x ∈ RV (an eigenvector of certain
matrix) to decide the partition recursively.

5 of 19



Spectral Information

For e = {i, j} ∈ E, define Me, De ∈ RV×V with quadratic forms

xTMex = we · (xi − xj)2

xTDex = we · (x2i + x2j )

If x ∈ {−1, 1}V : xTMex =

{
4we if e is cut by x

0 if not.

xTDex = 2we

For M =
∑

e∈E M
e, D =

∑
e∈E D

e

w(E) =
1

2
xTDx, ∀x ∈ {−1, 1}V

maxcut(G) = max
x∈{−1,1}V

1

4
xTMx.
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Important eigenvector

Lemma:

∃x ∈ RV , ‖x‖∞ = 1,
xTMx

xTDx
≥ 2

maxcut(G)

w(E)
.

Proof.

y : eigenvector for maximum eigenvalue of D1/2MD1/2.

y maximizes yTD1/2MD1/2y
yT y

then x = D−1/2y maximizes xTMx
xTDx

.

Let x̄ ∈ {−1, 1}E be the indicator of a max cut. Then

xTMx

xTDx
≥ x̄TMx̄

x̄TDx̄
=

4maxcut(G)

2w(E)
.
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Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?
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Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])
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Good tripartitions.

Want z ∈ {−1, 0, 1}V maximizing

w(E(V+ : V−)) +
1

2
w(E(V+ ∪ V− : V0))

Good(z) = w(E(V− : V+))

Bad(z) = w(E[V−]) + w(E[V+])

Cross(z) = w(E(V− ∪ V+ : V0))

Inc(z) = w(E)− w(E[V0]).

V− V+

V0

Good

Cross Cross

Bad Bad
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Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i ) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.
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xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i ) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.
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How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))
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∑
ij∈E

wij(x
2
i + x2j )

= 2(1− ε)β(1− β)E[2Inc(z)− Cross(z)].
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How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] ≥ 2(1− ε)β(1− β)E[2Inc(z)− Cross(z)].

Using this and

E[Good(z)] + E[Cross(z)] ≤ E[Inc(z)],

we can optimize β to maximize

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
.
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Theorem

Let ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2.

Can find z ∈ {−1, 0, 1}V \ {0}V with ρ(z) =
Good(z)+ 1

2Cross(z)

Inc(z) satisfying

ρ(z) ≥ f(ε) :=


−1+

√
4ε2−8ε+5

2(1−ε) , if ε ≥ ε0
1

1+2
√
ε(1−ε)

, if ε ≤ ε0

where ε0 ≈ 0.22815 is the unique value that makes both expressions equal.
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Deterministic rounding

In reality, optimizing β yields a random vector z such that

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
≥ f(ε).

But recall how z was constructed: We chose t uniformly in [0, 1], and
checked xi.

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Only relevant values for t: {x2i : i ∈ V }. Compute the n different
possibilities for z and choose the one that maximizes

ρ(z) =
Good(z) + 1

2Cross(z)

Inc(z)
.
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Complete algorithm

Given weighted graph G(V,E,w).
Algorithm A(G) does the following.

Compute x, ‖x‖∞ = 1 maximizing xTMx
xTDx

.

Use deterministic rounding to get z ∈ {−1, 0, 1}V \ {0}V by Theorem.

If ρ(z) < 1/2, return 0.5-approximation (V−, V+).

Else, let (V−, V0, V+) be the tripartition induced by z.

If V0 = ∅ return (V−, V+).
Else compute (W−,W+) = A(G[V0]) and return the best of
(V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

What is the guarantee?
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Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).
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Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

w(V− : V+)

w(E)
≥

T∑
t=0

max (1/2, f(ε/r)) · (δt − δt+1)

≥
T∑
i=0

∫ δt

δt+1

max (1/2, f(ε/r)) dr.
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Aproximation Guarantee

Corollary:

Let 0 ≤ ε ≤ 1/2 be such that maxcut(G) ≥ (1− ε)w(E). The algorithm
returns a cut with approximation guarantee equal to

F (ε) :=
1

(1− ε)

∫ 1

0

max (1/2, f(ε/r)) dr.

In particular, the guarantee is at least 0.614247
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Extensions

We get same guarantees for the following variant:

Maximum colored cut problem

Given a weighted graph G = (V,E = R ∪B,w), with w : E → R+.
Find bipartition (V−, V+) of V that maximizes

w(R(V− : V+))︸ ︷︷ ︸
red cut

+w(B[V−]) + w(B[V+])︸ ︷︷ ︸
blue uncut

.

V− V+
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Thanks!
Questions?
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