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Maximum cut problem

Given a weighted graph G = (V, E, w), with w: E — RT.
Find bipartition (V_,V,) of V' that maximizes

w(E(V_ : Vy)) = > w(e).

e=uv:u€V_ veVy

maxcut(G) ;= maxw(E(V- : V}))
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Find bipartition (V_,V,) of V' that maximizes

w(E(V_ : Vy)) = > w(e).

e=uv:u€V_ veVy

maxcut(G) ;= maxw(E(V- : V}))
Fact: Max-Cut is NP-hard even for unit weights.
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Aproximating Max-Cut

A cut (X,Y) is an a-aproximation if
w(E(X :Y)) > o maxcut(G)
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Aproximating Max-Cut

A cut (X,Y) is an a-aproximation if
w(E(X :Y)) > o maxcut(G)

@ Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

@ Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

@ Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,
Ragavendra, Steurer, FOCS 2013]
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Approximating Max-Cut

Goemans-Williamson

There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)
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Approximating Max-Cut

Goemans-Williamson

There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)

o Algorithm is relatively simple (Solve SDP + randomized projection) and
can be derandomized.

@ Optimal guarantee assuming Unique Games Conjecture.
o (Approximate solving) SDP is in P, but in general, it is slow.

@ Task: Find fast algorithms for Max-Cut achieving an approximation
bigger than 0.5
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Spectral Partitioning: Recursion Idea

[Trevisan, STOC 2008], [S, 2015 - new analysis]

Idea: Compute a vector z € RY (an eigenvector of certain
matrix) to decide the partition recursively.
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Spectral Information
For e = {i,j} € E, define M®, D¢ € RV*V with quadratic forms
T Mz = we - (z; — x;)?

I'Dey = We - (5622 4L .’E?)

4w, ifei thb
lfre {11}V oTareg—qive Feisautbys
0 if not.

xTDex _ Qwe
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For e = {i,j} € E, define M®, D¢ € RV*V with quadratic forms
T Mz = we - (z; — x;)?

I'Dey = We - (5622 4L .’E?)

4w, ifei thb
Fre{ 11}V : aTaep= v Teisautbys
0 if not.

xTDex _ Qwe

For M =%, zM¢,D=% D"
1
w(E) = 5 &' Do, Va e {-1,1}"
1
maxcut(G) = max - 2z Mz.
ze{-1,1}V 4
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Important eigenvector

Lemma:

Mz _ _maxcut(G)
2Dz — w(E)

3z € RY, ||z]|oo = 1,
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Important eigenvector

Lemma:

Mz _ _maxcut(G)

Jzr e RV =3I
z €RY, [lzlloo =1, zTDx — w(E)

Proof.

@ 7 : eigenvector for maximum eigenvalue of DY/2M D'/2.

zT Mx
zT Dx *

_ T p1/2 31 pl/2 _ .
o y maximizes L2 MP "W then 1 = D~1/2y maximizes

o Let 7 € {—1,1}F be the indicator of a max cut.
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Important eigenvector

Lemma:

Mz _ _maxcut(G)
2Dz — w(E)

3z € RY, ||z]|oo = 1,

Proof.

@ 7 : eigenvector for maximum eigenvalue of DY/2M D'/2.

zT Mx

T pl/2 ) pl/2
" zT Dx *

@ y maximizes ¥ Y then z = D~'/2y maximizes

o Let 7 € {—1,1}¥ be the indicator of a max cut. Then

eTMz _ z'Mz  4maxcut(G)

> = O
2Dz — zT Dz 2w(E)
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Idea to find a bipartition (V_,V.).

o Find x such that £A02 > gmexett(Q) iy —
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Idea to find a bipartition (V_,V.).

o Find x such that £A02 > gmexett(Q) iy —

If 2; is close to 1, put i € V..

If z; is close to -1, puti € V_.

Else, put 7 in a set of undecided vertices Vj.
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Idea to find a bipartition (V_,V.).

Find & such that 2,402 > gmaxest(@) iz — 1.

If 2; is close to 1, put i € V..

If z; is close to -1, puti € V_.

Else, put 7 in a set of undecided vertices Vj.

Recurse in G[Vp] to find a bipartition (W_, W, ) of V.

Return the best of (V_ UW_,V, UW, ) and (Vo UW,, V, UW_).

How good is this idea?
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Spectral Partitioning: Algorithm A(G)
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Spectral Partitioning: Algorithm A(G)

@ Use z to find a
tripartition of G.

@ Recursively partition Vj
in (W,,W_).

@ Two possible choices
(a) (VoUW Vi, Wy)
(b) (Vo UWiy, Vi, W)

@ Average cut.
Total cut by A(G):
>w(EWVy VD))

+ %w(E(V+ Uv_: W)

+ A(G[Vo))
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Good tripartitions.

Want z € {—1,0,1}"V maximizing

W(EV, : V) + 2w(B(V, UV : V)

2
Bad Bad
Good(z) = w(E(V_ : V3))
Bad(2) = w(E[V_]) + w(E[V4]) v |—Good |y,
)= )t o, /e
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Good tripartitions.

Want z € {—1,0,1}"V maximizing

Good(z) + $Cross(2)

Inc(2)
Bad Bad
Good(z) = w(E(V_ : V})) oo
Bad(z) = w(E[V_]) + w(E[V4]) V_ e Vi
Cross(z) = w(E(V_ UV, : V)
Ine(z) = w(E) — w(E[Vy)) Cross\ /Cross
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Getting z from z using dependent rounding

Have z with ||z].c =1 and  Choose ¢ uniformly in [0, 1].

zT M= >9 maxcut(G)

wihe =Tl —11 _a\/% \'/% 11

zi=—1 2 =0 zi=1

need z € {~1,0,1}" with

Good(z)+%Cross(Z)
C Ine(s)

Cross\ / Cross
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T Dz = w(E) 1 —I\/E \I/E 1
I zi=—1 I 2 =10 I zi=1 I

need z € {~1,0,1}" with
Good(z)#—%Cross(z) Lemma: FOI’ a” /8 e [O, 1]

Inc(z)

G(i,§) + BC(i,5) > B(1 — B)(w; — 5)°

v | _Good [ Assume |z;| < |x;].

o z;z; >0: G(i,j) =0, C(i,j) = 22 — 3.

Cross\ /Cross 1) 7.7 1 7.7 7 7

Get B(3 —a7) > B(1 - B) (i — a;)%.
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Good(z)#—%Cross(z) Lemma: FOI’ a” /8 e [O, 1]
Inc(z)
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v | _Good [ Assume |z;| < |x;].
o z;z; >0: G(i,j) =0, C(i,j) = 22 — 3.
Cross\ /Cross 1) 7.7 1 7.7 7 7
Get B(2} — 27) = (1 = B)(zi — z;)*.
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Getting z from z using dependent rounding

Have z with ||z].c =1 and  Choose ¢ uniformly in [0, 1].

zT M= >9 maxcut(G)

@T Dz = w(E> _1| _I\/E \I/E |1
I zi=—1 I 2 =10 I zi=1 I
need z € {~1,0,1}" with
Good(z)#—%Cross(z) Lemma: FOI’ a” /8 e [O, 1]
Inc(z)
Bad Bad G(3,5) + BCG, §) = B(L — B)(z; — z4)?
Good Assume |z;| < |x;].
Cross\ /Cross ° .’Ei.’L’j > 0: G(Zh?) = 0' C(l,]) = ‘/E? - .’Ez2
Get f(a3 —x7) > B(1 — B)(z; — x;)°.
G(i,5) = Pr({i, 5} good) o z;x; <0: G(4,j5) = x2, C(i,7) = xf —z2.
B(i,7) = Pr({i, j} bad) Get fz? +(1—B)a? > B(1—f)(z; — ;).

C(i,7) = Pr({i, j} crossing)
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How good is 27

Suppose ||7]/s = 1 and ﬁ?%f;” > 2maxc(‘;)(G) 2(1—¢), withe <1/2

and z is chosen (at random) as before.

E[Good(z)] + SE[Cross(z)] = Z wi(G(4,7) + BC(1, 7))

ijelR
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How good is 27

Suppose [|z]|o = 1 and Mz > zma;c;g)@) 2(1 —¢), with £ < 1/2

and z is chosen (at random) as before.

E[Good(z)] + BE[Cross(2)] = Z w;; (G(4,7) + BC(i, )
ijeER
> Z B(1 — Bwij(z; — x;)? = B(1 - B)aT Mz
ijeE

>2(1 —¢)B(1 — BT Dx
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How good is 27

Suppose [|z]|o = 1 and Mz > Qmaxi“tfa) =2(1—¢), withe < 1/2

and z is chosen (at random) as before.

E[Good(:)] + BE[Cross(:)] = 3 wyy(G(i.d) + 5CG.5)
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How good is 27

Suppose [|z]|o = 1 and Mz > 2‘“‘""“;“)@ =2(1—¢), withe < 1/2

and z is chosen (at random) as before.

E[Good(z)] + SE[Cross(z)] = Z w;; (G(i,7) + BC (3, )
ijEE
> Z B(1 — Bywij(z; — 4)? =B(1 - B)zT Mz
ijEE
>2(1—¢)B(1 - B)z" Dx =2(1—e)B(1—B) > wij(a} + a3
iyeER

=2(1 —¢)B(1 — B)E[2Inc(z) — Cross(z)].
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How good is 27

T maxcu .
Suppose [|z[o =1 and ZAL2 > 2 w(Et)(G) =2(1—¢), withe <1/2

and z is chosen (at random) as before.

E[Good(z)] 4+ BE[Cross(z)] > 2(1 —€)8(1 — B)E[2Inc(z) — Cross(z)].
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How good is 27

Suppose ||z]|oc =1 and i;]\gj > Zma;‘zlg§G) =2(1—¢), withe <1/2

and z is chosen (at random) as before.

E[Good(z)] 4+ BE[Cross(z)] > 2(1 — €)8(1 — B)E[2Inc(z) — Cross(z)].
Using this and
E[Good(z)] + E[Cross(z)] < E[Inc(z)],
we can optimize 3 to maximize

E[Good(z)] + lE[Cross(z)].
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Theorem

Let ||z]|oo = 1 and E Mz > omaxewtl(Q) _ 9(1 _ o) yith e < 1/2.

= w(E)
Can find z € {—1,0,1}V \ {0}V with p(z) = %@?mﬁ(z) satisfying

—1+\/2(416_28—)86+5’ ife > e
p(z) = f(e) = 1
1424/e(1—¢)’

where €y =~ 0.22815 is the unique value that makes both expressions equal.

ife < o

1.0 1.0
09 09
08} 08l
orf 07l

06 06

0.5 0.5

L L L L 1 L L L L 1
0.0 0.1 02 03 04 05 0.0 0.1 0.2 03 0.4 0.5
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Deterministic rounding

In reality, optimizing 3 yields a random vector z such that

E[Good(2)] + 3E[Cross(z)]

E[fmo(2)] = f(e).

But recall how z was constructed: We chose ¢ uniformly in [0, 1], and
checked z;.
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Deterministic rounding

In reality, optimizing 3 yields a random vector z such that

E[Good(2)] + 3E[Cross(z)]

> .
E[Inc(2)] = f(e)
But recall how z was constructed: We chose ¢ uniformly in [0, 1], and
checked z;.
—1 _H\/% ﬁ 1
zi=-—1 zi=0 zi=1

Only relevant values for ¢: {z2:i € V'}. Compute the n different
possibilities for z and choose the one that maximizes

~ Good(z) + 1Cross(z)

N Inc(z) '

p(z)
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Complete algorithm

Given weighted graph G(V, E, w).
Algorithm A(G) does the following.
zT Ma
zT Dz *
o Use deterministic rounding to get z € {—1,0,1}V \ {0}V by Theorem.
o If p(z) < 1/2, return 0.5-approximation (V_, V).
o Else, let (V_,Vp, V) be the tripartition induced by z.

o If Vo =0 return (V_,V4).

o Else compute (W_, W, ) = A(G[Vy]) and return the best of

(V, @] ‘/Vf,V'Jr @] W+) and (V, U W+, V+ U W,)

o Compute z, ||z]lcoc = 1 maximizing
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o Else, let (V_,Vp, V) be the tripartition induced by z.

o If Vo =0 return (V_,V4).

o Else compute (W_, W, ) = A(G[Vy]) and return the best of

(V, @] ‘/Vf,V'Jr @] W+) and (V, U W+, V+ U W,)

What is the guarantee?

o Compute z, ||z]lcoc = 1 maximizing
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Theorem (S.)
If maxcut(G) > (1 — e)w(E), the algorithm returns a cut (V_, V) with

M / max (1/2, f(¢/r)) dr
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M / max (1/2, f(¢/r)) dr

Let G = Gy, ..., G be the graphs on each recursive call.
Gy = (W,Et), Oy = ’U](Et)/U)(E) < 1.
o Note that maxcut(Gy) > (1 —e/0,)w(E}).

w(Et) — w(maxcut(Gy)) = Bad(Z:) < Bad(z) = w(E) — w(maxcut(G))
=w(E)e = w(E)e/d:
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Theorem (S.)
If maxcut(G) > (1 — e)w(E), the algorithm returns a cut (V_, V) with

M / max (1/2, f(¢/r)) dr

Let G = Gy, ..., G be the graphs on each recursive call.

Gy = (W,Et), Oy = ’U](Et)/U)(E) < 1.
o Note that maxcut(Gy) > (1 —e/0,)w(E}).

o Weight cut in Ey \ Eyy; is at least max (1/2, f(e/7)) - w(Ey \ Et1).

w(V_ V. £l
ﬁ > Zmax(l/Z,f(g/r» (6 — 6141)

T 8¢
> Z/M max (1/2, f(e/r)) dr
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Aproximation Guarantee

Corollary:

Let 0 < e < 1/2 be such that maxcut(G) > (1 — e)w(E). The algorithm
returns a cut with approximation guarantee equal to

1
F(e) := ﬁ/o max (1/2, f(g/r)) dr.

In particular, the guarantee is at least 0.614247

1.0 4
09} b
\K /
0.7F 1
L n n n n A

1 0.2 0.3 04 0.5

0.6

0.0 0.
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Extensions

We get same guarantees for the following variant:

Maximum colored cut problem

Given a weighted graph G = (V, E = RU B,w), with w: E — R™.
Find bipartition (V_, V) of V that maximizes

w(R(V- : Vi) +w(BIV_]) + w(BIV4]).
red cut blue uncut

18 of 19




Thanks!
Questions?
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