
Max Cut without SDP

J.A. Soto, Universidad de Chile.

ADGO 2016. Santiago, January 26, 2016

1 of 19

Maximum cut problem

Given a weighted graph G = (V,E,w), with w : E → R+.
Find bipartition (V−, V+) of V that maximizes

w(E(V− : V+)) =
∑

e=uv:u∈V−,v∈V+

w(e).

V− V+

maxcut(G) := maxw(E(V− : V+))

Fact: Max-Cut is NP-hard even for unit weights.

2 of 19

Maximum cut problem

Given a weighted graph G = (V,E,w), with w : E → R+.
Find bipartition (V−, V+) of V that maximizes

w(E(V− : V+)) =
∑

e=uv:u∈V−,v∈V+

w(e).

V− V+

maxcut(G) := maxw(E(V− : V+))

Fact: Max-Cut is NP-hard even for unit weights.

2 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).

0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach.

0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.

Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Aproximating Max-Cut

A cut (X,Y) is an α-aproximation if
w(E(X : Y)) ≥ α ·maxcut(G)

Random-cut: Assigning vertices unif. at random.
0.5 - aproximation.

Local search (move vertices between X and Y according to local rules).
0.5 - aproximation.

Linear Programming approach. 0.5 - aproximation.
Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee,

Ragavendra, Steurer, FOCS 2013]

3 of 19

Approximating Max-Cut

Goemans-Williamson
There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)

Algorithm is relatively simple (Solve SDP + randomized projection) and
can be derandomized.

Optimal guarantee assuming Unique Games Conjecture.

(Approximate solving) SDP is in P, but in general, it is slow.

Task: Find fast algorithms for Max-Cut achieving an approximation
bigger than 0.5

4 of 19

Approximating Max-Cut

Goemans-Williamson
There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)

Algorithm is relatively simple (Solve SDP + randomized projection) and
can be derandomized.

Optimal guarantee assuming Unique Games Conjecture.

(Approximate solving) SDP is in P, but in general, it is slow.

Task: Find fast algorithms for Max-Cut achieving an approximation
bigger than 0.5

4 of 19

Approximating Max-Cut

Goemans-Williamson
There is a 0.87856 approximation algorithm for Max-Cut
based on semidefinite programming (SDP)

Algorithm is relatively simple (Solve SDP + randomized projection) and
can be derandomized.

Optimal guarantee assuming Unique Games Conjecture.

(Approximate solving) SDP is in P, but in general, it is slow.

Task: Find fast algorithms for Max-Cut achieving an approximation
bigger than 0.5

4 of 19

Spectral Partitioning: Recursion Idea

[Trevisan, STOC 2008], [S, 2015 - new analysis]

Idea: Compute a vector x ∈ RV (an eigenvector of certain
matrix) to decide the partition recursively.

5 of 19

Spectral Information

For e = {i, j} ∈ E, define Me, De ∈ RV×V with quadratic forms

xTMex = we · (xi − xj)2

xTDex = we · (x2i + x2j)

If x ∈ {−1, 1}V : xTMex =

{
4we if e is cut by x

0 if not.

xTDex = 2we

For M =
∑

e∈E M
e, D =

∑
e∈E D

e

w(E) =
1

2
xTDx, ∀x ∈ {−1, 1}V

maxcut(G) = max
x∈{−1,1}V

1

4
xTMx.

6 of 19

Spectral Information

For e = {i, j} ∈ E, define Me, De ∈ RV×V with quadratic forms

xTMex = we · (xi − xj)2

xTDex = we · (x2i + x2j)

If x ∈ {−1, 1}V : xTMex =

{
4we if e is cut by x

0 if not.

xTDex = 2we

For M =
∑

e∈E M
e, D =

∑
e∈E D

e

w(E) =
1

2
xTDx, ∀x ∈ {−1, 1}V

maxcut(G) = max
x∈{−1,1}V

1

4
xTMx.

6 of 19

Important eigenvector

Lemma:

∃x ∈ RV , ‖x‖∞ = 1,
xTMx

xTDx
≥ 2

maxcut(G)

w(E)
.

Proof.

y : eigenvector for maximum eigenvalue of D1/2MD1/2.

y maximizes yTD1/2MD1/2y
yT y

then x = D−1/2y maximizes xTMx
xTDx

.

Let x̄ ∈ {−1, 1}E be the indicator of a max cut. Then

xTMx

xTDx
≥ x̄TMx̄

x̄TDx̄
=

4maxcut(G)

2w(E)
.

7 of 19

Important eigenvector

Lemma:

∃x ∈ RV , ‖x‖∞ = 1,
xTMx

xTDx
≥ 2

maxcut(G)

w(E)
.

Proof.

y : eigenvector for maximum eigenvalue of D1/2MD1/2.

y maximizes yTD1/2MD1/2y
yT y

then x = D−1/2y maximizes xTMx
xTDx

.

Let x̄ ∈ {−1, 1}E be the indicator of a max cut.

Then

xTMx

xTDx
≥ x̄TMx̄

x̄TDx̄
=

4maxcut(G)

2w(E)
.

7 of 19

Important eigenvector

Lemma:

∃x ∈ RV , ‖x‖∞ = 1,
xTMx

xTDx
≥ 2

maxcut(G)

w(E)
.

Proof.

y : eigenvector for maximum eigenvalue of D1/2MD1/2.

y maximizes yTD1/2MD1/2y
yT y

then x = D−1/2y maximizes xTMx
xTDx

.

Let x̄ ∈ {−1, 1}E be the indicator of a max cut. Then

xTMx

xTDx
≥ x̄TMx̄

x̄TDx̄
=

4maxcut(G)

2w(E)
.

7 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Idea to find a bipartition (V−, V+).

Find x such that xTMx
xTDx

≥ 2maxcut(G)
w(E) , ‖x‖∞ = 1.

If xi is close to 1, put i ∈ V+.

If xi is close to -1, put i ∈ V−.

Else, put i in a set of undecided vertices V0.

Recurse in G[V0] to find a bipartition (W−,W+) of V0.

Return the best of (V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

How good is this idea?

8 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Spectral Partitioning: Algorithm A(G)

G

V−

V+

V0

W−

W+

a

b

a

b

a, ba, b

0.5

0.5

0.5

0.5

11

Use x to find a
tripartition of G.

Recursively partition V0
in (W+,W−).

Two possible choices

(a) (V− ∪W−, V+,W+)
(b) (V− ∪W+, V+,W−)

Average cut.

Total cut by A(G):
≥ w(E(V+ : V−))

+
1

2
w(E(V+ ∪ V− : V0))

+A(G[V0])

9 of 19

Good tripartitions.

Want z ∈ {−1, 0, 1}V maximizing

w(E(V+ : V−)) +
1

2
w(E(V+ ∪ V− : V0))

Good(z) = w(E(V− : V+))

Bad(z) = w(E[V−]) + w(E[V+])

Cross(z) = w(E(V− ∪ V+ : V0))

Inc(z) = w(E)− w(E[V0]).

V− V+

V0

Good

Cross Cross

Bad Bad

10 of 19

Good tripartitions.

Want z ∈ {−1, 0, 1}V maximizing

Good(z) + 1
2Cross(z)

Inc(z)

Good(z) = w(E(V− : V+))

Bad(z) = w(E[V−]) + w(E[V+])

Cross(z) = w(E(V− ∪ V+ : V0))

Inc(z) = w(E)− w(E[V0]).

V− V+

V0

Good

Cross Cross

Bad Bad

10 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.

xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

Getting z from x using dependent rounding

Have x with ‖x‖∞ = 1 and

xTMx
xTDx

≥ 2maxcut(G)
w(E)

need z ∈ {−1, 0, 1}V with

Good(z)+ 1
2
Cross(z)

Inc(z)

V− V+

V0

Good

Cross Cross

Bad Bad

G(i, j) = Pr({i, j} good)
B(i, j) = Pr({i, j} bad)
C(i, j) = Pr({i, j} crossing)

Choose t uniformly in [0, 1].

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Lemma: For all β ∈ [0, 1]

G(i, j) + βC(i, j) ≥ β(1− β)(xi − xj)2

Assume |xi| ≤ |xj |.
xixj > 0: G(i, j) = 0, C(i, j) = x2j − x2i .

Get β(x2j − x2i) ≥ β(1− β)(xi − xj)2.

xixj < 0: G(i, j) = x2i , C(i, j) = x2j − x2i .

Get βx2j + (1−β)x2i ≥ β(1−β)(xi−xj)2.

11 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

≥
∑
ij∈E

β(1− β)wij(xi − xj)2

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

≥
∑
ij∈E

β(1− β)wij(xi − xj)2 = β(1− β)xTMx

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

≥
∑
ij∈E

β(1− β)wij(xi − xj)2 = β(1− β)xTMx

≥ 2(1− ε)β(1− β)xTDx

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

≥
∑
ij∈E

β(1− β)wij(xi − xj)2 = β(1− β)xTMx

≥ 2(1− ε)β(1− β)xTDx = 2(1− ε)β(1− β)
∑
ij∈E

wij(x
2
i + x2j)

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] =
∑
ij∈E

wij(G(i, j) + βC(i, j))

≥
∑
ij∈E

β(1− β)wij(xi − xj)2 = β(1− β)xTMx

≥ 2(1− ε)β(1− β)xTDx = 2(1− ε)β(1− β)
∑
ij∈E

wij(x
2
i + x2j)

= 2(1− ε)β(1− β)E[2Inc(z)− Cross(z)].

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] ≥ 2(1− ε)β(1− β)E[2Inc(z)− Cross(z)].

12 of 19

How good is z?

Suppose ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2

and z is chosen (at random) as before.

E[Good(z)] + βE[Cross(z)] ≥ 2(1− ε)β(1− β)E[2Inc(z)− Cross(z)].

Using this and

E[Good(z)] + E[Cross(z)] ≤ E[Inc(z)],

we can optimize β to maximize

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
.

12 of 19

Theorem

Let ‖x‖∞ = 1 and xTMx
xTDx

≥ 2maxcut(G)
w(E) = 2(1− ε), with ε ≤ 1/2.

Can find z ∈ {−1, 0, 1}V \ {0}V with ρ(z) =
Good(z)+ 1

2Cross(z)

Inc(z) satisfying

ρ(z) ≥ f(ε) :=


−1+

√
4ε2−8ε+5

2(1−ε) , if ε ≥ ε0
1

1+2
√
ε(1−ε)

, if ε ≤ ε0

where ε0 ≈ 0.22815 is the unique value that makes both expressions equal.

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

13 of 19

Deterministic rounding

In reality, optimizing β yields a random vector z such that

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
≥ f(ε).

But recall how z was constructed: We chose t uniformly in [0, 1], and
checked xi.

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Only relevant values for t: {x2i : i ∈ V }. Compute the n different
possibilities for z and choose the one that maximizes

ρ(z) =
Good(z) + 1

2Cross(z)

Inc(z)
.

14 of 19

Deterministic rounding

In reality, optimizing β yields a random vector z such that

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
≥ f(ε).

But recall how z was constructed: We chose t uniformly in [0, 1], and
checked xi.

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Only relevant values for t: {x2i : i ∈ V }.

Compute the n different
possibilities for z and choose the one that maximizes

ρ(z) =
Good(z) + 1

2Cross(z)

Inc(z)
.

14 of 19

Deterministic rounding

In reality, optimizing β yields a random vector z such that

E[Good(z)] + 1
2E[Cross(z)]

E[Inc(z)]
≥ f(ε).

But recall how z was constructed: We chose t uniformly in [0, 1], and
checked xi.

−1 1

√
t−

√
t

zi = −1 zi = 0 zi = 1

Only relevant values for t: {x2i : i ∈ V }. Compute the n different
possibilities for z and choose the one that maximizes

ρ(z) =
Good(z) + 1

2Cross(z)

Inc(z)
.

14 of 19

Complete algorithm

Given weighted graph G(V,E,w).
Algorithm A(G) does the following.

Compute x, ‖x‖∞ = 1 maximizing xTMx
xTDx

.

Use deterministic rounding to get z ∈ {−1, 0, 1}V \ {0}V by Theorem.

If ρ(z) < 1/2, return 0.5-approximation (V−, V+).

Else, let (V−, V0, V+) be the tripartition induced by z.

If V0 = ∅ return (V−, V+).
Else compute (W−,W+) = A(G[V0]) and return the best of
(V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

What is the guarantee?

15 of 19

Complete algorithm

Given weighted graph G(V,E,w).
Algorithm A(G) does the following.

Compute x, ‖x‖∞ = 1 maximizing xTMx
xTDx

.

Use deterministic rounding to get z ∈ {−1, 0, 1}V \ {0}V by Theorem.

If ρ(z) < 1/2, return 0.5-approximation (V−, V+).

Else, let (V−, V0, V+) be the tripartition induced by z.

If V0 = ∅ return (V−, V+).
Else compute (W−,W+) = A(G[V0]) and return the best of
(V− ∪W−, V+ ∪W+) and (V− ∪W+, V+ ∪W−).

What is the guarantee?

15 of 19

Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

16 of 19

Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

16 of 19

Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

w(Et)− w(maxcut(Gt)) = Bad(x̄t) ≤ Bad(x̄) = w(E)− w(maxcut(G))

= w(E)ε = w(Et)ε/δt

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

16 of 19

Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

16 of 19

Theorem (S.)

If maxcut(G) ≥ (1− ε)w(E), the algorithm returns a cut (V−, V+) with

w(V− : V+)

w(E)
≥

∫ 1

0

max (1/2, f(ε/r)) dr.

Let G = G0, . . . , GT be the graphs on each recursive call.
Gt = (Vt, Et), δt = w(Et)/w(E) < 1.

Note that maxcut(Gt) ≥ (1− ε/δt)w(Et).

Weight cut in Et \ Et+1 is at least max (1/2, f(ε/r)) · w(Et \ Et+1).

w(V− : V+)

w(E)
≥

T∑
t=0

max (1/2, f(ε/r)) · (δt − δt+1)

≥
T∑
i=0

∫ δt

δt+1

max (1/2, f(ε/r)) dr.

16 of 19

Aproximation Guarantee

Corollary:

Let 0 ≤ ε ≤ 1/2 be such that maxcut(G) ≥ (1− ε)w(E). The algorithm
returns a cut with approximation guarantee equal to

F (ε) :=
1

(1− ε)

∫ 1

0

max (1/2, f(ε/r)) dr.

In particular, the guarantee is at least 0.614247

0.0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1.0

17 of 19

Extensions

We get same guarantees for the following variant:

Maximum colored cut problem

Given a weighted graph G = (V,E = R ∪B,w), with w : E → R+.
Find bipartition (V−, V+) of V that maximizes

w(R(V− : V+))︸ ︷︷ ︸
red cut

+w(B[V−]) + w(B[V+])︸ ︷︷ ︸
blue uncut

.

V− V+

18 of 19

Thanks!
Questions?

19 of 19

