Max Cut without SDP

J.A. Soto, Universidad de Chile.

ADGO 2016. Santiago, January 26, 2016

Maximum cut problem

Given a weighted graph G = (V, E, w), with $w \colon E \to \mathbb{R}^+$. Find bipartition (V_-, V_+) of V that maximizes

$$w(E(V_{-} : V_{+})) = \sum_{e=uv: u \in V_{-}, v \in V_{+}} w(e).$$

Maximum cut problem

Given a weighted graph G = (V, E, w), with $w \colon E \to \mathbb{R}^+$. Find bipartition (V_-, V_+) of V that maximizes

$$w(E(V_{-} : V_{+})) = \sum_{e=uv:u\in V_{-}, v\in V_{+}} w(e).$$

Fact: Max-Cut is NP-hard even for unit weights.

A cut (X, Y) is an α -aproximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

A cut (X, Y) is an α -aproximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

Random-cut: Assigning vertices unif. at random.
 0.5 - aproximation.

A cut (X, Y) is an α -aproximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

- Random-cut: Assigning vertices unif. at random.
 0.5 aproximation.
- Local search (move vertices between X and Y according to local rules).

A cut (X, Y) is an α -aproximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

- Random-cut: Assigning vertices unif. at random.
 0.5 aproximation.
- Local search (move vertices between X and Y according to local rules). **0.5** - aproximation.

A cut (X, Y) is an α -approximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

- Random-cut: Assigning vertices unif. at random.
 0.5 aproximation.
- Local search (move vertices between X and Y according to local rules).
 0.5 aproximation.
- Linear Programming approach.

A cut (X, Y) is an α -approximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

- Random-cut: Assigning vertices unif. at random.
 0.5 aproximation.
- Local search (move vertices between X and Y according to local rules). **0.5** - aproximation.
- Linear Programming approach. 0.5 aproximation.

A cut (X, Y) is an α -aproximation if $w(E(X : Y)) \ge \alpha \cdot \max(G)$

- Random-cut: Assigning vertices unif. at random.
 0.5 approximation
 - 0.5 aproximation.
- Local search (move vertices between X and Y according to local rules). **0.5** - aproximation.
- Linear Programming approach. **0.5 aproximation**. Any polynomial-size LP for MaxCUT has integrality gap of 2. [Chan, Lee, Ragavendra, Steurer, FOCS 2013]

Goemans-Williamson

There is a 0.87856 approximation algorithm for Max-Cut based on semidefinite programming (SDP)

Goemans-Williamson

There is a 0.87856 approximation algorithm for Max-Cut based on semidefinite programming (SDP)

- Algorithm is relatively simple (Solve SDP + randomized projection) and can be derandomized.
- Optimal guarantee assuming Unique Games Conjecture.

Goemans-Williamson

There is a 0.87856 approximation algorithm for Max-Cut based on semidefinite programming (SDP)

- Algorithm is relatively simple (Solve SDP + randomized projection) and can be derandomized.
- Optimal guarantee assuming Unique Games Conjecture.
- (Approximate solving) SDP is in P, but in general, it is slow.
- Task: Find fast algorithms for Max-Cut achieving an approximation bigger than 0.5

Spectral Partitioning: Recursion Idea

[Trevisan, STOC 2008], [S, 2015 - new analysis]

Idea: Compute a vector $x \in \mathbb{R}^V$ (an eigenvector of certain matrix) to decide the partition recursively.

Spectral Information

For $e = \{i, j\} \in E$, define $M^e, D^e \in \mathbb{R}^{V \times V}$ with quadratic forms $x^T M^e x = w_e \cdot (x_i - x_j)^2$ $x^T D^e x = w_e \cdot (x_i^2 + x_j^2)$

If
$$x \in \{-1,1\}^V$$
: $x^T M^e x = \begin{cases} 4w_e & \text{if } e \text{ is cut by } x \\ 0 & \text{if not.} \end{cases}$
 $x^T D^e x = 2w_e$

Spectral Information

For $e = \{i, j\} \in E$, define $M^e, D^e \in \mathbb{R}^{V \times V}$ with quadratic forms $x^T M^e x = w_e \cdot (x_i - x_j)^2$ $x^T D^e x = w_e \cdot (x_i^2 + x_j^2)$

If
$$x \in \{-1,1\}^V$$
: $x^T M^e x = \begin{cases} 4w_e & \text{if } e \text{ is cut by } x \\ 0 & \text{if not.} \end{cases}$
 $x^T D^e x = 2w_e$

For
$$M = \sum_{e \in E} M^e$$
, $D = \sum_{e \in E} D^e$
 $w(E) = \frac{1}{2} x^T D x$, $\forall x \in \{-1, 1\}^V$
 $\max(G) = \max_{x \in \{-1, 1\}^V} \frac{1}{4} x^T M x$.

Important eigenvector

Lemma:

$$\exists x \in \mathbb{R}^V, \|x\|_{\infty} = 1, \quad \frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$$

Important eigenvector

Lemma:

$$\exists x \in \mathbb{R}^V, \|x\|_{\infty} = 1, \quad \frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$$

Proof.

- y: eigenvector for maximum eigenvalue of $D^{1/2}MD^{1/2}$.
- y maximizes $\frac{y^T D^{1/2} M D^{1/2} y}{y^T y}$ then $x = D^{-1/2} y$ maximizes $\frac{x^T M x}{x^T D x}$.
- Let $\bar{x} \in \{-1, 1\}^E$ be the indicator of a max cut.

Important eigenvector

Lemma:

$$\exists x \in \mathbb{R}^V, \|x\|_{\infty} = 1, \quad \frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$$

Proof.

• y: eigenvector for maximum eigenvalue of $D^{1/2}MD^{1/2}$. • y maximizes $\frac{y^TD^{1/2}MD^{1/2}y}{y^Ty}$ then $x = D^{-1/2}y$ maximizes $\frac{x^TMx}{x^TDx}$. • Let $\bar{x} \in \{-1, 1\}^E$ be the indicator of a max cut. Then $\frac{x^TMx}{x^TDx} \ge \frac{\bar{x}^TM\bar{x}}{\bar{x}^TD\bar{x}} = \frac{4\text{maxcut}(G)}{2w(E)}$. \Box Idea to find a bipartition (V_-, V_+) .

• Find x such that
$$\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$$
, $||x||_{\infty} = 1$.

Idea to find a bipartition (V_-, V_+) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max((G))}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.

Idea to find a bipartition (V_{-}, V_{+}) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max(G)}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.
- If x_i is close to -1, put $i \in V_-$.

Idea to find a bipartition (V_{-}, V_{+}) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max((G))}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.
- If x_i is close to -1, put $i \in V_-$.
- Else, put i in a set of undecided vertices V_0 .

Idea to find a bipartition (V_-, V_+) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max((G)}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.
- If x_i is close to -1, put $i \in V_-$.
- Else, put i in a set of undecided vertices V_0 .
- Recurse in $G[V_0]$ to find a bipartition (W_-, W_+) of V_0 .

Idea to find a bipartition (V_{-}, V_{+}) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max((G)}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.
- If x_i is close to -1, put $i \in V_-$.
- Else, put i in a set of undecided vertices V_0 .
- Recurse in $G[V_0]$ to find a bipartition (W_-, W_+) of V_0 .
- Return the best of $(V_- \cup W_-, V_+ \cup W_+)$ and $(V_- \cup W_+, V_+ \cup W_-)$.

Idea to find a bipartition (V_-, V_+) .

- Find x such that $\frac{x^TMx}{x^TDx} \geq 2\frac{\max((G)}{w(E)}$, $\|x\|_{\infty} = 1.$
- If x_i is close to 1, put $i \in V_+$.
- If x_i is close to -1, put $i \in V_-$.
- Else, put i in a set of undecided vertices V_0 .
- Recurse in $G[V_0]$ to find a bipartition (W_-, W_+) of V_0 .
- Return the best of $(V_- \cup W_-, V_+ \cup W_+)$ and $(V_- \cup W_+, V_+ \cup W_-)$.

How good is this idea?

• Use x to find a tripartition of G.

- Use x to find a tripartition of G.
- Recursively partition V_0 in (W_+, W_-) .

- Use x to find a tripartition of G.
- Recursively partition V₀ in (W₊, W₋).
- Two possible choices

(a)
$$(V_{-} \cup W_{-}, V_{+}, W_{+})$$

(b)
$$(V_{-} \cup W_{+}, V_{+}, W_{-})$$

- Use x to find a tripartition of G.
- Recursively partition V₀ in (W₊, W₋).
- Two possible choices
 - (a) $(V_{-} \cup W_{-}, V_{+}, W_{+})$
 - (b) $(V_{-} \cup W_{+}, V_{+}, W_{-})$
- Average cut.

- Use x to find a tripartition of G.
- Recursively partition V₀ in (W₊, W₋).
- Two possible choices
 - (a) $(V_{-} \cup W_{-}, V_{+}, W_{+})$
 - (b) $(V_{-} \cup W_{+}, V_{+}, W_{-})$

• Average cut.

Total cut by $\mathcal{A}(G)$: $\geq w(E(V_+ : V_-))$ $+ \frac{1}{2}w(E(V_+ \cup V_- : V_0))$ $+ \mathcal{A}(G[V_0])$

Good tripartitions.

Want $z \in \{-1, 0, 1\}^V$ maximizing

$$w(E(V_{+}:V_{-})) + \frac{1}{2}w(E(V_{+}\cup V_{-}:V_{0}))$$

$$Good(z) = w(E(V_{-}:V_{+}))$$

$$Bad(z) = w(E[V_{-}]) + w(E[V_{+}])$$

$$Cross(z) = w(E(V_{-} \cup V_{+}:V_{0}))$$

$$Inc(z) = w(E) - w(E[V_{0}]).$$

Good tripartitions.

Want $z \in \{-1, 0, 1\}^V$ maximizing

$$\frac{\text{Good}(z) + \frac{1}{2}\text{Cross}(z)}{\text{Inc}(z)}$$

$$Good(z) = w(E(V_{-}:V_{+}))$$

$$Bad(z) = w(E[V_{-}]) + w(E[V_{+}])$$

$$Cross(z) = w(E(V_{-} \cup V_{+}:V_{0}))$$

$$Inc(z) = w(E) - w(E[V_{0}]).$$

Have x with $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$ need $z \in \{-1, 0, 1\}^V$ with $\operatorname{Good}(z) + \frac{1}{2}\operatorname{Cross}(z)$ Inc(z)Good V_{-} V_+ Cross Cross V_0

Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1}$$

11 of 19

Have x with $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$ need $z \in \{-1, 0, 1\}^V$ with $\operatorname{Good}(z) + \frac{1}{2}\operatorname{Cross}(z)$ Inc(z)Bad Good V_{-} V_+ Cross Cross V_0 $G(i, j) = \Pr(\{i, j\} \text{ good})$ $B(i, j) = \Pr(\{i, j\} \text{ bad})$ $C(i, j) = \Pr(\{i, j\} \text{ crossing})$

Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Have x with
$$||x||_{\infty} = 1$$
 and

$$\frac{x^T Mx}{x^T Dx} \ge 2 \frac{\max \operatorname{cut}(G)}{w(E)}$$
need $z \in \{-1, 0, 1\}^V$ with

$$\frac{\operatorname{Good}(z) + \frac{1}{2} \operatorname{Cross}(z)}{\operatorname{Inc}(z)}$$
Bad
Bad
Bad
Constraints
$$\underbrace{V_{-} \quad \operatorname{Good} \quad V_{+}}_{Cross}$$

$$\underbrace{V_{0}}_{Cross}$$

$$G(i, j) = \operatorname{Pr}(\{i, j\} \text{ good})$$

$$B(i, j) = \operatorname{Pr}(\{i, j\} \text{ bad})$$

$$C(i, j) = \operatorname{Pr}(\{i, j\} \text{ crossing})$$

Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Assume $|x_i| \leq |x_j|$.

Have x with
$$||x||_{\infty} = 1$$
 and

$$\frac{x^T Mx}{x^T Dx} \ge 2 \frac{\max(G)}{w(E)}$$
need $z \in \{-1, 0, 1\}^V$ with

$$\frac{Good(z) + \frac{1}{2}Cross(z)}{Inc(z)}$$
Bad Bad Bad Bad Cross Vi
Cross Vi
 $G(i, j) = Pr(\{i, j\} \text{ good})$
 $B(i, j) = Pr(\{i, j\} \text{ bad})$
 $C(i, j) = Pr(\{i, j\} \text{ crossing})$

Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Assume $|x_i| \leq |x_j|$.

•
$$x_i x_j > 0$$
: $G(i,j) = 0$, $C(i,j) = x_j^2 - x_i^2$.

Have x with $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$ need $z \in \{-1, 0, 1\}^V$ with $\operatorname{Good}(z) + \frac{1}{2}\operatorname{Cross}(z)$ $\operatorname{Inc}(z)$ Bad *V*______Good____*V*_+ Cross Cross V_0 $G(i, j) = \Pr(\{i, j\} \text{ good})$ $B(i, j) = \Pr(\{i, j\} \text{ bad})$ $C(i, j) = \Pr(\{i, j\} \text{ crossing})$ Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Assume $|x_i| \leq |x_j|$.

• $x_i x_j > 0$: G(i, j) = 0, $C(i, j) = x_j^2 - x_i^2$. Get $\beta(x_j^2 - x_i^2) \ge \beta(1 - \beta)(x_i - x_j)^2$.

Have x with $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$ need $z \in \{-1, 0, 1\}^V$ with $\operatorname{Good}(z) + \frac{1}{2}\operatorname{Cross}(z)$ $\operatorname{Inc}(z)$ Bad *V*______Good____*V*_+ Cross Cross V_0 $G(i, j) = \Pr(\{i, j\} \text{ good})$ $B(i, j) = \Pr(\{i, j\} \text{ bad})$ $C(i, j) = \Pr(\{i, j\} \text{ crossing})$ Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Assume $|x_i| \leq |x_j|$.

• $x_i x_j > 0$: G(i, j) = 0, $C(i, j) = x_j^2 - x_i^2$. Get $\beta(x_j^2 - x_i^2) \ge \beta(1 - \beta)(x_i - x_j)^2$.

•
$$x_i x_j < 0$$
: $G(i,j) = x_i^2$, $C(i,j) = x_j^2 - x_i^2$.

Have x with $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)}$ need $z \in \{-1, 0, 1\}^V$ with $Good(z) + \frac{1}{2}Cross(z)$ $\operatorname{Inc}(z)$ Bad *V*______Good____*V*_+ Cross V_0 $G(i, j) = \Pr(\{i, j\} \text{ good})$ $B(i, j) = \Pr(\{i, j\} \text{ bad})$ $C(i, j) = \Pr(\{i, j\} \text{ crossing})$ Choose t uniformly in [0, 1].

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Lemma: For all $\beta \in [0, 1]$

$$G(i,j) + \beta C(i,j) \ge \beta (1-\beta)(x_i - x_j)^2$$

Assume $|x_i| \leq |x_j|$.

- $x_i x_j > 0$: G(i, j) = 0, $C(i, j) = x_j^2 x_i^2$. Get $\beta(x_j^2 - x_i^2) \ge \beta(1 - \beta)(x_i - x_j)^2$.
- $x_i x_j < 0$: $G(i, j) = x_i^2$, $C(i, j) = x_j^2 x_i^2$. Get $\beta x_j^2 + (1 - \beta) x_i^2 \ge \beta (1 - \beta) (x_i - x_j)^2$.

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1-\varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\text{Good}(z)] + \beta \mathbb{E}[\text{Cross}(z)] \qquad = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1-\varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\text{Good}(z)] + \beta \mathbb{E}[\text{Cross}(z)] = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$
$$\geq \sum_{ij \in E} \beta (1-\beta) w_{ij} (x_i - x_j)^2$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1-\varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\text{Good}(z)] + \beta \mathbb{E}[\text{Cross}(z)] = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$
$$\geq \sum_{ij \in E} \beta (1-\beta) w_{ij} (x_i - x_j)^2 = \beta (1-\beta) x^T M x$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1 - \varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\text{Good}(z)] + \beta \mathbb{E}[\text{Cross}(z)] = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$

$$\geq \sum_{ij \in E} \beta (1-\beta) w_{ij} (x_i - x_j)^2 = \beta (1-\beta) x^T M x$$

$$\geq 2(1-\varepsilon)\beta (1-\beta) x^T D x$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1 - \varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\text{Good}(z)] + \beta \mathbb{E}[\text{Cross}(z)] = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$

$$\geq \sum_{ij \in E} \beta (1-\beta) w_{ij} (x_i - x_j)^2 = \beta (1-\beta) x^T M x$$

$$\geq 2(1-\varepsilon)\beta (1-\beta) x^T D x = 2(1-\varepsilon)\beta (1-\beta) \sum_{ij \in E} w_{ij} (x_i^2 + x_j^2)$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1 - \varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

$$\mathbb{E}[\operatorname{Good}(z)] + \beta \mathbb{E}[\operatorname{Cross}(z)] = \sum_{ij \in E} w_{ij}(G(i,j) + \beta C(i,j))$$

$$\geq \sum_{ij \in E} \beta (1-\beta) w_{ij} (x_i - x_j)^2 = \beta (1-\beta) x^T M x$$

$$\geq 2(1-\varepsilon)\beta (1-\beta) x^T D x = 2(1-\varepsilon)\beta (1-\beta) \sum_{ij \in E} w_{ij} (x_i^2 + x_j^2)$$

$$= 2(1-\varepsilon)\beta (1-\beta) \mathbb{E}[2\operatorname{Inc}(z) - \operatorname{Cross}(z)].$$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1 - \varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

 $\mathbb{E}[\operatorname{Good}(z)] + \beta \mathbb{E}[\operatorname{Cross}(z)] \ge 2(1-\varepsilon)\beta(1-\beta)\mathbb{E}[\operatorname{2Inc}(z) - \operatorname{Cross}(z)].$

Suppose $||x||_{\infty} = 1$ and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1 - \varepsilon)$, with $\varepsilon \le 1/2$ and z is chosen (at random) as before.

 $\mathbb{E}[\operatorname{Good}(z)] + \beta \mathbb{E}[\operatorname{Cross}(z)] \ge 2(1-\varepsilon)\beta(1-\beta)\mathbb{E}[2\operatorname{Inc}(z) - \operatorname{Cross}(z)].$

Using this and

 $\mathbb{E}[\operatorname{Good}(z)] + \mathbb{E}[\operatorname{Cross}(z)] \le \mathbb{E}[\operatorname{Inc}(z)],$

we can optimize β to maximize

$$\frac{\mathbb{E}[\operatorname{Good}(z)] + \frac{1}{2}\mathbb{E}[\operatorname{Cross}(z)]}{\mathbb{E}[\operatorname{Inc}(z)]}.$$

Theorem

Let
$$||x||_{\infty} = 1$$
 and $\frac{x^T M x}{x^T D x} \ge 2 \frac{\max(G)}{w(E)} = 2(1-\varepsilon)$, with $\varepsilon \le 1/2$.
Can find $z \in \{-1, 0, 1\}^V \setminus \{0\}^V$ with $\rho(z) = \frac{\operatorname{Good}(z) + \frac{1}{2}\operatorname{Cross}(z)}{\operatorname{Inc}(z)}$ satisfying

$$\rho(z) \ge f(\varepsilon) := \begin{cases} \frac{-1+\sqrt{-\varepsilon}-\varepsilon\varepsilon+5}{2(1-\varepsilon)}, & \text{if } \varepsilon \ge \varepsilon_0\\ \frac{1}{1+2\sqrt{\varepsilon(1-\varepsilon)}}, & \text{if } \varepsilon \le \varepsilon_0 \end{cases}$$

where $\varepsilon_0 \approx 0.22815$ is the unique value that makes both expressions equal.

13 of 19

Deterministic rounding

In reality, optimizing β yields a random vector \boldsymbol{z} such that

$$\frac{\mathbb{E}[\text{Good}(z)] + \frac{1}{2}\mathbb{E}[\text{Cross}(z)]}{\mathbb{E}[\text{Inc}(z)]} \ge f(\varepsilon).$$

But recall how z was constructed: We chose t uniformly in [0,1], and checked x_i .

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} 1$$

Deterministic rounding

In reality, optimizing β yields a random vector \boldsymbol{z} such that

$$\frac{\mathbb{E}[\text{Good}(z)] + \frac{1}{2}\mathbb{E}[\text{Cross}(z)]}{\mathbb{E}[\text{Inc}(z)]} \ge f(\varepsilon).$$

But recall how z was constructed: We chose t uniformly in [0,1], and checked x_i .

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{-1}_{z_i = 0}$$

Only relevant values for $t: \{x_i^2 : i \in V\}$.

Deterministic rounding

In reality, optimizing β yields a random vector \boldsymbol{z} such that

$$\frac{\mathbb{E}[\text{Good}(z)] + \frac{1}{2}\mathbb{E}[\text{Cross}(z)]}{\mathbb{E}[\text{Inc}(z)]} \ge f(\varepsilon).$$

But recall how z was constructed: We chose t uniformly in [0,1], and checked x_i .

$$-1 \underbrace{-\sqrt{t}}_{z_i = -1} \underbrace{\sqrt{t}}_{z_i = 0} \underbrace{\sqrt{t}}_{z_i = 1} \underbrace{\sqrt{t}}_{z_i = 1}$$

Only relevant values for $t: \{x_i^2 : i \in V\}$. Compute the n different possibilities for z and choose the one that maximizes

$$\rho(z) = \frac{\text{Good}(z) + \frac{1}{2}\text{Cross}(z)}{\text{Inc}(z)}.$$

Complete algorithm

Given weighted graph G(V, E, w). Algorithm $\mathcal{A}(G)$ does the following.

- Compute x, $||x||_{\infty} = 1$ maximizing $\frac{x^T M x}{x^T D x}$.
- Use deterministic rounding to get $z \in \{-1, 0, 1\}^V \setminus \{0\}^V$ by Theorem.
- If $\rho(z) < 1/2$, return 0.5-approximation (V_-, V_+) .
- Else, let (V_-, V_0, V_+) be the tripartition induced by z.
 - If $V_0 = \emptyset$ return (V_-, V_+) .
 - Else compute $(W_-, W_+) = \mathcal{A}(G[V_0])$ and return the best of $(V_- \cup W_-, V_+ \cup W_+)$ and $(V_- \cup W_+, V_+ \cup W_-)$.

Complete algorithm

Given weighted graph G(V, E, w). Algorithm $\mathcal{A}(G)$ does the following.

- Compute x, $||x||_{\infty} = 1$ maximizing $\frac{x^T M x}{x^T D x}$.
- Use deterministic rounding to get $z \in \{-1, 0, 1\}^V \setminus \{0\}^V$ by Theorem.
- If $\rho(z) < 1/2$, return 0.5-approximation (V_-, V_+) .
- Else, let (V_-, V_0, V_+) be the tripartition induced by z.
 - If $V_0 = \emptyset$ return (V_-, V_+) .
 - Else compute $(W_-, W_+) = \mathcal{A}(G[V_0])$ and return the best of $(V_- \cup W_-, V_+ \cup W_+)$ and $(V_- \cup W_+, V_+ \cup W_-)$.

What is the guarantee?

If $maxcut(G) \ge (1-\varepsilon)w(E)$, the algorithm returns a cut (V_-,V_+) with

$$\frac{w(V_-:V_+)}{w(E)} \ge \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

If $\operatorname{maxcut}(G) \ge (1 - \varepsilon)w(E)$, the algorithm returns a cut (V_-, V_+) with

$$\frac{w(V_-:V_+)}{w(E)} \ge \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

Let $G = G_0, \ldots, G_T$ be the graphs on each recursive call. $G_t = (V_t, E_t), \, \delta_t = w(E_t)/w(E) < 1.$

• Note that $\max(G_t) \ge (1 - \varepsilon/\delta_t)w(E_t)$.

If $maxcut(G) \ge (1 - \varepsilon)w(E)$, the algorithm returns a cut (V_-, V_+) with

$$\frac{w(V_-:V_+)}{w(E)} \ge \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

Let $G = G_0, \ldots, G_T$ be the graphs on each recursive call. $G_t = (V_t, E_t), \ \delta_t = w(E_t)/w(E) < 1.$

• Note that $\max(G_t) \ge (1 - \varepsilon/\delta_t)w(E_t)$.

 $w(E_t) - w(\max(G_t)) = \operatorname{Bad}(\bar{x}_t) \le \operatorname{Bad}(\bar{x}) = w(E) - w(\max(G))$ $= w(E)\varepsilon = w(E_t)\varepsilon/\delta_t$

If $maxcut(G) \ge (1 - \varepsilon)w(E)$, the algorithm returns a cut (V_-, V_+) with

$$\frac{w(V_-:V_+)}{w(E)} \ge \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

Let $G = G_0, \ldots, G_T$ be the graphs on each recursive call. $G_t = (V_t, E_t), \ \delta_t = w(E_t)/w(E) < 1.$

• Note that $\max(G_t) \ge (1 - \varepsilon/\delta_t)w(E_t)$.

• Weight cut in $E_t \setminus E_{t+1}$ is at least $\max(1/2, f(\varepsilon/r)) \cdot w(E_t \setminus E_{t+1})$.

If $maxcut(G) \ge (1 - \varepsilon)w(E)$, the algorithm returns a cut (V_-, V_+) with

$$\frac{w(V_-:V_+)}{w(E)} \ge \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

Let $G = G_0, \ldots, G_T$ be the graphs on each recursive call. $G_t = (V_t, E_t), \ \delta_t = w(E_t)/w(E) < 1.$

• Note that $\max(G_t) \ge (1 - \varepsilon/\delta_t)w(E_t)$.

• Weight cut in $E_t \setminus E_{t+1}$ is at least $\max(1/2, f(\varepsilon/r)) \cdot w(E_t \setminus E_{t+1})$.

$$\frac{w(V_{-}:V_{+})}{w(E)} \ge \sum_{t=0}^{T} \max\left(1/2, f(\varepsilon/r)\right) \cdot (\delta_{t} - \delta_{t+1})$$
$$\ge \sum_{i=0}^{T} \int_{\delta_{t+1}}^{\delta_{t}} \max\left(1/2, f(\varepsilon/r)\right) dr.$$

Aproximation Guarantee

Corollary:

Let $0 \le \varepsilon \le 1/2$ be such that $maxcut(G) \ge (1 - \varepsilon)w(E)$. The algorithm returns a cut with approximation guarantee equal to

$$F(\varepsilon) := \frac{1}{(1-\varepsilon)} \int_0^1 \max\left(1/2, f(\varepsilon/r)\right) dr.$$

In particular, the guarantee is at least $0.614247\,$

17 of 19

Extensions

We get same guarantees for the following variant:

Maximum colored cut problem

Given a weighted graph $G = (V, E = \mathbb{R} \cup B, w)$, with $w \colon E \to \mathbb{R}^+$. Find bipartition (V_-, V_+) of V that maximizes

$$\underbrace{w(R(V_{-} : V_{+}))}_{\text{red cut}} + \underbrace{w(B[V_{-}]) + w(B[V_{+}])}_{\text{blue uncut}}$$

Thanks! Questions?