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We consider finite games :
there are finitely many “participants", i ∈ I
each of them has finitely many “choices", p ∈ Si.

The basic variable describing the interaction is thus a profile
x = {xi, i∈ I}, where each xi = {xip, p∈Si} is an element of the
simplex Xi = ∆(Si) on Si. Let X = ∏i∈I Xi.

We consider three frameworks with the following types of
participants:
(I) populations of nonatomic players,
(II) atomic splittable players,
(III) atomic non splittable players.



We consider finite games :
there are finitely many “participants", i ∈ I
each of them has finitely many “choices", p ∈ Si.

The basic variable describing the interaction is thus a profile
x = {xi, i∈ I}, where each xi = {xip, p∈Si} is an element of the
simplex Xi = ∆(Si) on Si. Let X = ∏i∈I Xi.

We consider three frameworks with the following types of
participants:
(I) populations of nonatomic players,
(II) atomic splittable players,
(III) atomic non splittable players.



We consider finite games :
there are finitely many “participants", i ∈ I
each of them has finitely many “choices", p ∈ Si.

The basic variable describing the interaction is thus a profile
x = {xi, i∈ I}, where each xi = {xip, p∈Si} is an element of the
simplex Xi = ∆(Si) on Si. Let X = ∏i∈I Xi.

We consider three frameworks with the following types of
participants:
(I) populations of nonatomic players,
(II) atomic splittable players,
(III) atomic non splittable players.



We compare and unify the basic properties, expressed through
variational inequalities, concerning equilibria, potential games
and dissipative games, and we study the associated
evolutionary dynamics.
We further extend the analysis to composite games.



Table of contents

Introduction

Examples

Models and equilibria

Potential and dissipative games

Dynamics

Composite games



Replicator dynamics for one population
S is the set of "types", xp

t is the proportion of type p ∈ S in the
population at time t, A = ((Apq)) is the fitness matrix (p,q ∈ S)

ẋp
t = xp

t [e
pAxt− xtAxt], p ∈ S

Replicator dynamics for two populations (cross matching)

ẋ1p
t = x1p

t [e1pA1x2
t − x1

t A1x2
t ], p ∈ S1

and similarly for x2.
Replicator dynamics for I populations

ẋip
t = xip

t [A
i(eip,x−i

t )−Ai(xi
t,x
−i
t )], p ∈ Si, i ∈ I

natural interpretation: xip
t ,p ∈ Si, is a mixed strategy of player i.

Unilateral replicator dynamics for one participant

ẋip
t = xip

t [U
ip
t −〈xi

t,U
i
t〉], p ∈ Si



Replicator dynamics for one population
S is the set of "types", xp

t is the proportion of type p ∈ S in the
population at time t, A = ((Apq)) is the fitness matrix (p,q ∈ S)

ẋp
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ẋip
t = xip

t [U
ip
t −〈xi

t,U
i
t〉], p ∈ Si



Routing game

o d

path 1

path 2

- Population games : each participant i ∈ I corresponds to a
nonatomic set of agents (with a given mass mi) having all the
same characteristics. xip is the proportion of agents of choosing
path p in population i.

Two kinds of I-player games where each participant i ∈ I stands
for an atomic player (with a given mass mi) :
- Splittable case: xip is the ratio that player i allocates to path p.
(The set of pure moves of player i is Xi.)
- Non splittable case: xip is the probability that player i chooses
path p. (The set of pure moves is Si and xi is a mixed strategy.)
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Framework I: population games

The payoffs are defined by a family of continuous functions
{Fip, i∈ I,p∈Si}, all from X to R, where Fip(x) is the outcome of
a member in population i choosing p, when the environment is
given by x.
An equilibrium is a point x ∈ X satisfying:

xip > 0⇒ Fip(x)≥ Fiq(x), ∀p,q ∈ Si, ∀i ∈ I. (1)

This corresponds to a Wardrop equilibrium.
An equivalent characterization of (1) is through the variational
inequality:

〈Fi(x),xi− yi〉 ≥ 0, ∀yi ∈ Xi,∀i ∈ I, (2)

or alternatively:

〈F(x),x− y〉= ∑
i∈I
〈Fi(x),xi− yi〉 ≥ 0, ∀y ∈ X. (3)

(Smith, Dafermos ...)
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Framework II: atomic splittable
In this case each participant i ∈ I corresponds to an atomic
player with action set Xi. Given functions Fip as introduced
above, his gain is defined by:

Hi(x) = 〈xi,Fi(x)〉= ∑
p∈Si

xipFip(x).

An equilibrium is as usual a profile x ∈ X satisfying:

Hi(x)≥ Hi(yi,x−i), ∀yi ∈ Xi, ∀i ∈ I. (4)

Suppose that for all p ∈ Si, Fip(·) is of class C 1 on a
neighborhood Ω of X, then any solution of (4) satisfies

〈∇H(x), x− y〉= ∑
i∈I
〈∇iHi(x), xi− yi〉 ≥ 0, ∀ y ∈ X. (5)

where ∇i is the gradient w.r.t. xi. Moreover, if each Hi is
concave with respect to xi, there is equivalence.
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Framework III: atomic non splittable
We consider here an I-player game where the payoff is defined
by a family of functions {Gi, i∈ I} from (the finite set) S = ∏i∈I Si

to R.
We still denote by G the multilinear extension to X where each
Xi = ∆(Si) is considered as the set of mixed actions of player i.
An equilibrium is a profile x ∈ X satisfying:

Gi(xi,x−i)≥ Gi(yi,x−i), ∀yi ∈ Xi, ∀i ∈ I. (6)

Let VGi denote the vector payoff associated to Gi. Explicitly,
VGip : X−i→ R is defined by VGip(x−i) = Gi(p,x−i), for all p ∈ Si.
Hence Gi(x) = 〈xi,VGi(x−i)〉.
An equilibrium is thus a solution of :

〈VG(x),x− y〉= ∑
i∈I
〈VGi(x−i),xi− yi〉 ≥ 0, ∀y ∈ X. (7)
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Equilibrium and variational inequality

Note that F, ∇H and VG play similar roles in the three
frameworks.
We call them evaluation functions and denote them by Φ with
for each (i,p), Φip : X −→ R.
The corresponding game is Γ(Φ).

Definition
NE(Φ) is the set of x ∈ X satisfying:

〈Φ(x),x− y〉 ≥ 0, ∀y ∈ X. (8)

NE(Φ) = equilibria of Γ(Φ).



Let C ⊂ Rd be a closed convex set and Ψ a map from C to Rd.
Consider the variational inequality:

〈Ψ(x),x− y〉 ≥ 0, ∀y ∈ C. (9)

Four equivalent representations are given by:

Ψ(x) ∈ NC(x), (10)

where NC(x) is the normal cône to C at x;

Ψ(x) ∈ [TC(x)]⊥, (11)

where TC(x) is the tangent cône to C at x and [TC(x)]⊥ its polar;

ΠTC(x)Ψ(x) = 0, (12)

where Π is the projection operator on a closed convex subset;
and

ΠC[x+Ψ(x)] = x. (13)



Let C ⊂ Rd be a closed convex set and Ψ a map from C to Rd.
Consider the variational inequality:

〈Ψ(x),x− y〉 ≥ 0, ∀y ∈ C. (9)

Four equivalent representations are given by:

Ψ(x) ∈ NC(x), (10)

where NC(x) is the normal cône to C at x;

Ψ(x) ∈ [TC(x)]⊥, (11)

where TC(x) is the tangent cône to C at x and [TC(x)]⊥ its polar;

ΠTC(x)Ψ(x) = 0, (12)

where Π is the projection operator on a closed convex subset;
and

ΠC[x+Ψ(x)] = x. (13)



Let C ⊂ Rd be a closed convex set and Ψ a map from C to Rd.
Consider the variational inequality:

〈Ψ(x),x− y〉 ≥ 0, ∀y ∈ C. (9)

Four equivalent representations are given by:

Ψ(x) ∈ NC(x), (10)

where NC(x) is the normal cône to C at x;

Ψ(x) ∈ [TC(x)]⊥, (11)

where TC(x) is the tangent cône to C at x and [TC(x)]⊥ its polar;

ΠTC(x)Ψ(x) = 0, (12)

where Π is the projection operator on a closed convex subset;
and

ΠC[x+Ψ(x)] = x. (13)



Let C ⊂ Rd be a closed convex set and Ψ a map from C to Rd.
Consider the variational inequality:

〈Ψ(x),x− y〉 ≥ 0, ∀y ∈ C. (9)

Four equivalent representations are given by:

Ψ(x) ∈ NC(x), (10)

where NC(x) is the normal cône to C at x;

Ψ(x) ∈ [TC(x)]⊥, (11)

where TC(x) is the tangent cône to C at x and [TC(x)]⊥ its polar;

ΠTC(x)Ψ(x) = 0, (12)

where Π is the projection operator on a closed convex subset;
and

ΠC[x+Ψ(x)] = x. (13)



Let C ⊂ Rd be a closed convex set and Ψ a map from C to Rd.
Consider the variational inequality:

〈Ψ(x),x− y〉 ≥ 0, ∀y ∈ C. (9)

Four equivalent representations are given by:

Ψ(x) ∈ NC(x), (10)

where NC(x) is the normal cône to C at x;

Ψ(x) ∈ [TC(x)]⊥, (11)

where TC(x) is the tangent cône to C at x and [TC(x)]⊥ its polar;

ΠTC(x)Ψ(x) = 0, (12)

where Π is the projection operator on a closed convex subset;
and

ΠC[x+Ψ(x)] = x. (13)



Table of contents

Introduction

Examples

Models and equilibria

Potential and dissipative games

Dynamics

Composite games



Potential games

Definition
A real function W, of class C 1 on a neighborhood Ω of X, is a
potential for Φ if for each i ∈ I, there exists a strictly positive
function µ i(x) defined on X such that〈

∇
iW(x)−µ

i(x)Φi(x),yi〉= 0, ∀x ∈ X,∀yi ∈ Xi
0, ∀i ∈ I, (14)

where Xi
0 = {y ∈ R|Si|, ∑p∈Si yp = 0} is the tangent space to Xi.

The game Γ(Φ) is then called a potential game and one says
that Φ derives from W.
Monderer and Shapley, Sandholm

Theorem
Let Γ(Φ) be a game with potential W.
1. Every local maximum of W is an equilibrium of Γ(Φ).
2. If W is concave on X, then any equilibrium of Γ(Φ) is a global
maximum of W on X.
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Dissipative games
Definition
The game Γ(Φ) is dissipative if Φ satisfies:

〈Φ(x)−Φ(y),x− y〉 ≤ 0, ∀ (x,y) ∈ X×X.

In the framework of population games, Hofbauer and Sandholm
studied this class under the name “stable games”.

Let SNE(Φ) be the set of x ∈ X satisfying:

〈Φ(y),x− y〉 ≥ 0, ∀y ∈ X.

Proposition
If Γ(Φ) is dissipative

SNE(Φ) = NE(Φ).

in particular NE(Φ) is convex.
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Definitions
The general form of a dynamics describing the evolution of the
strategic interaction in game Γ(Φ) is

ẋt = BΦ(xt), x ∈ X,

where for each i ∈ I, Bi
Φ
(x) ∈ Xi

0 and X is invariant.

Replicator dynamics (RD) (Taylor and Jonker )

ẋip
t = xip

t [Φ
ip
t (xt)−Φ

i
(xt)], p ∈ Si, i ∈ I,

where
Φ

i
(x) = 〈xi,Φi(x)〉= ∑

p∈Si

xip
Φ

ip(x)

Brown-von-Neumann-Nash dynamics (BNN) (Brown and von
Neumann, Smith, Hofbauer)

ẋip
t = Φ̂

ip(xt)− xip
t ∑

q∈Si

Φ̂
iq(xt), p ∈ Si, i ∈ I,

where Φ̂iq = [Φiq(x)−Φ
i
(x)]+ is the “excess evaluation” of q.
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Φ
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Smith dynamics (Smith)
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where [Φip(x)−Φiq(x)]+ corresponds to pairwise comparison.
Local/direct projection dynamics (LP) (Dupuis and Nagurney,
Lahkar and Sandholm)

ẋi
t = ΠTXi (xi

t)
[Φi(xt)], i ∈ I,

where we recall that TXi(xi) denotes the tangent cône to Xi at xi.
Global/target projection dynamics (GP) (Friesz, Bernstein,
Mehta, Tobin and Ganjalizadeh, Tsakas and Voorneveld)

ẋi
t = ΠXi [xi

t +Φ
i(xt)]− xi

t, i ∈ I.

Best reply dynamics (BR) (Gilboa and Matsui)

ẋi
t ∈ BRi(xt)− xi

t, i ∈ I,

where

BRi(x) = {yi ∈ Xi, 〈yi− zi,Φi(x)〉 ≥ 0,∀zi ∈ Xi}.
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ẋi
t = ΠTXi (xi

t)
[Φi(xt)], i ∈ I,

where we recall that TXi(xi) denotes the tangent cône to Xi at xi.
Global/target projection dynamics (GP) (Friesz, Bernstein,
Mehta, Tobin and Ganjalizadeh, Tsakas and Voorneveld)

ẋi
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General properties

We define here properties expressed in terms of Φ.

The dynamics BΦ satisfies:

i) positive correlation (PC)(Sandholm) if:

〈Bi
Φ(x),Φ

i(x)〉> 0, ∀i ∈ I,∀x ∈ X s.t. Bi
Φ(x) 6= 0.

This corresponds to MAD (myopic adjustment dynamics,
Swinkels)

ii) Nash stationarity if:
for x ∈ X, BΦ(x) = 0 if and only if x ∈ NE(Φ).
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Proposition
All previous dynamics (RD), (BNN), (Smith), (LP), (GP) and
(BR) satisfy (PC).

Proposition
(BNN), (Smith), (LP), (GP) and (BR) satisfy Nash stationarity
on X.
(RD) satisfy Nash stationarity on intX.



Proposition
All previous dynamics (RD), (BNN), (Smith), (LP), (GP) and
(BR) satisfy (PC).

Proposition
(BNN), (Smith), (LP), (GP) and (BR) satisfy Nash stationarity
on X.
(RD) satisfy Nash stationarity on intX.



Potential games

Proposition
Consider a potential game Γ(Φ) with potential function W. If the
dynamics ẋ = BΦ(x) satisfies (PC), then W is a strict Lyapunov
function for BΦ. Besides, all ω-limit points are rest points of
BΦ.

d
dt

W(xt) = ∑
i
〈∇iW(xt), ẋi

t〉= ∑
i

hi(xt)〈Φi(xt), ẋi
t〉> 0
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It follows that, with the appropriate definitions, the convergence
results established for several dynamics and potential games in
framework I can be extended. Explicitly:

Proposition
Consider a potential game Γ(Φ) with potential function W.
If the dynamics is (RD), (BNN), (Smith), (LP), (GP) or (BR), W
is a strict Lyapunov function for BΦ.
In addition, except for (RD), all ω-limit points are equilibria of
Γ(Φ).



Similar results hold for dissipative games with ad hoc Lyapunov
functions.

Proposition
Consider a dissipative game Γ(Φ).
(1) RD: Let x∗ ∈ NE(Φ). Define:

H(x) = ∑
i∈I

∑
p∈supp(xi∗)

xi∗
p ln

xi∗
p

xi
p
.

Then H is a local Lyapunov function.
If Γ(Φ) is strictly dissipative, then H is a local strict Lyapunov
function.
(2) BNN: Assume Φ C 1 on a neighborhood Ω of X. Define:

H(x) =
1
2 ∑

i∈I
∑

p∈Si

Φ̂
i
p(x)

2.

Then H is a strict Lyapunov function which is minimal on NE(Φ).
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(3) Smith: Assume Φ C 1 on a neighborhood Ω of X. Define :

H(x) = ∑
i∈I

∑
p,q∈Si

xi
p
{
[Φi

q(x)−Φ
i
p(x)]

+
}2
.

Then H is a strict Lyapunov function which is minimal on NE(Φ).

(4) LP: Let x∗ ∈ NE(Φ). Define:

H(x) =
1
2
‖x− x∗‖2.

Then H is a Lyapunov function.
If Γ(Φ) is strictly dissipative, then H is a strict Lyapunov
function.



(5) GP: Assume Φ C 1 on a neighborhood Ω of X. Define :

H(x) = sup
y∈X
〈y− x,Φ(x)〉− 1

2
‖y− x‖2.

Then H is a Lyapunov function.
If Γ(Φ) is strongly dissipative, then H is a strict Lyapunov
function.

(6) BR: Assume Φ C 1 on a neighborhood Ω of X. Define:

H(x) = sup
y∈X
〈y− x,Φ(x)〉.

Then H is a strict Lyapunov function which is minimal on NE(Φ).
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Congestion games and composite games

In a network congestion game, or routing game, the underlying
network is a finite directed graph G = (V,A), where V is the set
of nodes, A the set of links.
l = (la)a∈A denotes a family of cost functions from R to R+: if the
aggregate weight on arc a is m, the cost per unit (of weight) is
la(m).
The set I of participants is finite. A participant i is characterized
by his weight mi and an origin/destination pair (oi,di) ∈ V×V
such that the constraint is to send a quantity mi from oi to di.
The set of choices of participant i ∈ I is Si: a family of directed
acyclic paths linking oi to di. Let P = ∪i∈ISi.
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In each of the three frameworks considered, a configuration x
induces a (random) flow f on the arcs. This defines the cost on
each arc then for each path and finally the payoff of each
participant.
Congestion games are thus natural settings where each kind of
participants appears.
Moreover one can even consider a game where participants of
different natures coexist: some of them being of type I, II or III.
This leads to the notion of composite game.
Composite congestion games with participants of type I and II
have been studied by Harker; Boulogne, Altman, Pourtallier
and Kameda; Yang and Zhang; Cominetti, Correa and
Stier-Moses, etc... under the name "mixed equilibria".
In addition, congestion games are a natural example of
aggregative games (Selten) where the payoff of a participant i
depends only on xi ∈ Xi and on some fixed dimensional function
α i({xj}j∈I).
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Composite games

We have seen that the properties of equilibrium and dynamics
in the three frameworks all depend on the evaluation function Φ

and the variational inequalities associated to it. One can define
a more general class of games called composite games, which
exhibit different types of players.
Explicitly consider a finite set I1 of populations composed of
nonatomic players, a finite set I2 of atomic splittable players and
a finite set I3 of atomic non splittable players. Let I = I1∪ I2∪ I3.
All the analysis of the previous sections extend to these
configurations where x = {xi}i∈I1∪I2∪I3 and Φip(x) depends upon
the type of participant i:
- expression of equilibria trough variational inequalities,
- definition of potential games and dissipative games,
- specification of evolutionary dynamics and convergence
properties.
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One example of a composite potential game
Consider a composite congestion game, with three types of
participants i ∈ I = I1∪ I2∪ I3, of mass mi each, taking place in a
network composed of two nodes o and d connected by a finite
set A of parallel arcs.

Figure: Example of a composite potential game

O D

l1(·)

l2(·)

lA−1(·)

lA(·)

Denote by s = (sk)k∈I3 ∈ S3 = AI3 a pure strategy profile of
participants in I3 and let z = ((xi)i∈I1 ,(x

j)j∈I2 ,(s
k)k∈I3). Let f (z) be

the aggregate flow induced by the pure-strategy profile z.
Namely: fa(z) = ∑i∈I1

mixi
a +∑j∈I2

mjxj
a +∑k∈I3

mkI{sk=a}.
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Theorem
Assume that for all a ∈ A, the per-unit cost function is affine, i.e.
la(u) = bau+da, with ba > 0 and da ≥ 0. Then a composite
congestion game on this network is a potential game.
A potential function defined on X is given by:

W(x) =− ∑
s∈S3

(
∏
k∈I3

xk
sk

){1
2 ∑

a∈A
ba
[
(fa(z)2 + ∑

j∈I2

(mjxj
a)

2

+ ∑
k∈I3

(mk)2I{sk=a}
]
+ ∑

a∈A
dafa(z)

}
,

with µ i(x)≡ mi for all i ∈ I = I1∪ I2∪ I3 and all x ∈ X.
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Related topics

Asymptotic analysis for aggregative games (Haurie and
Marcotte)
Replace one participant (atomic) i of size mi by n participants
with same characteristics and weight mi/n. Accumulation points
of a sequence of equilibria as n goes to ∞ are equilibria in the
game where participant i is a population.
Composite players
A composite (atomic) player of weight mi is described by a
splittable component of weight mi,0 and non splittable
components of weight mi,l, thus represented by a vector
mi = (mi,0,mi,1, . . . ,mi,ni

), where ni ∈ IN∗, mi,0 ≥ 0, mi,l > 0 and
mi,0 +∑

ni

l=1 mi,l = mi.
Player i may allocate proportions of the splittable component to
different choices and also allocate different non splittable
components to different choices. However, a non splittable
component cannot be divided.
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Delegation games
In the splittable case (or more generally for a composite player)
a player i can delegate his mass among several players and get
as payoff the sum of the payoff of the delegates (Sorin and
Wan).
- conditions to have simple best reply strategies
- dynamical stability
Reinforcement and learning
Starting from a discrete time random adjustment process, tools
from stochastic approximation may allow to to work with a
continuous time deterministic dynamics
However the state variable may change:
in fictitious play xn+1 ∈ BR(x̄n) leads to żt ∈ BR(zt)− zt but now
the variable zi still in the simplex Xi corresponds to the time
average behavior of participant i.
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Structure of the set of equilibria
Fix an evaluation Φ, then on Φ+Rn the set of equilibria is
homeomorphic to a graph,where ni = #Si and n = ∑i ni.
Index of Nash vector fields
Index of a component of fixed points independent of the Nash
vector field.
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