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@ Nesterov’s acceleration

@ Dynamic interpretation
e Damped Inertial Gradient System (DIGS)

@ Properties of DIGS trajectories and accelerated algorithms

@ A first-order variant bearing second-order information in
time and space
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Basic (first-order) descent methods

Explicit discretization — gradient method (Cauchy 1847):

X — X
% = —Vo(X) = Xest = Xk — AV(Xk).

Implicit discretization — proximal method (Martinet 1970):

Zk+1 — Zk

)\ = —Vé(Zk11) = Zkp1 T AVO(Zkp1) = 2k
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Pros and cons

Gradient method
-+ Lower computational cost per iteration (explicit formula),
easy implementation

— Convergence depends strongly on the regularity of the
function (typically ¢ € C'-") and on the step sizes

Proximal point algorithm
-+ More stability, convergence certificate for a larger class of
functions (V¢ — 0¢), independent of the step size

— Higher computational cost per iteration (implicit formula),
often requires inexact computation
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Problem
min{®(x) := F(x) + G(x) : x € H},

where F is not smooth but G is.

Forward-Backward Method (xx — X, 41 Xk+1)

Xk4+1 + A@F(xk+1) = Xk+% = Xk — /\VG(XK)

Xk+1 = Prox,r o GradAG(xk)
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Combining smooth and nonsmooth functions

Gradient projection:
Goldstein 1964, Levitin-Polyak 1966, with F = d¢

General setting:
Lions-Mercier 1979, Passty 1979

lterative Shrinkage-Thresholding Algorithm (ISTA):
Daubechies-Defrise-DeMol 2004, Combettes-Wajs 2005, for
“¢1 + ¢2” minimization

O(x) = F(x) + G(x) = plxls + 31Ax — b|]
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with VF L-Lipschitz. Assume ¢ has minimizers, and let (xx) be
obtained by the FB method with A < 1/L. Then
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Convergence of the forward-backward method

Theorem

Let® = F + G, where G is closed and convex, and F is convex
with VF L-Lipschitz. Assume ¢ has minimizers, and let (xx) be
obtained by the FB method with A < 1/L. Then

@ As k — oo, (Xxx) converges* to a minimizer of ®; and

@ ®(xx) —min® = O(k~"): There is C > 0 such that

d(xc) —mind < i
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Convergence ISTA

Let  : RN — R be defined by

1
o(x) = lxls + 51Ax ~ bJP.

Local linear convergence results have been found recently, as
well as theoretical convergence rates.

Theorem (Bolte-Nguyen-P.-Suter 2015)

Let (xx) be obtained by the FB method with step size . Then,
there is an explicit constant d such that

®(x9) — min®

d(xx) —min® < (1 + dr)2k
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Acceleration

The main idea is the following: Instead of doing

Xk—1
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Some remarks

@ Convergence and its rate are sensitive to the choice of yx

@ This simple procedure (Nesterov 1983) can take the
theoretical rate of worst-case convergence for the values
from the typical O(1/k) down to O(1/k?)

@ No convergence proof for the iterates xj
@ Current common practice is
Vi =Xk + (1= 3) (X — Xk—1)

Keynote example in image processing: FISTA
(Beck-Teboulle 2009)
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ISTA & FISTA

General case:
@ FB:values O(k~1), convergent sequence.
@ AFB: values O(k—2).

01 + ¢2 minimization:
@ ISTA: values O(Q¥), convergent sequence (proved).

@ FISTA: values (observed, not proved) O(Q¥), always
strictly faster than ISTA, convergent sequence (observed,
not proved).
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Discretization of DIGS

A finite-difference discretization of
(DIGS) X(t) + %x(t) + OF (x(1)) + VG(x(t)) > 0.

gives

’
2 (X1 =2+ Xp—1) + khg(xk Xk—1)+O0F (Xk11)+V G(¥k) > 0,

where y (specified later) is related to the segment [xx_1, Xk].
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Discretization of DIGS

Rewriting

1
ﬁ(Xk_HfZXkJer_ﬂ khz(Xk Xk—1)+OF (Xk+1)+VG(yk) 2 0,

with A = h?, we obtain

X1 + AOF (Xky1) 2 Xk + (1 - g) (Xk — Xk—1) = AVG(¥k)-

k
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Discretization of DIGS

Rewriting

1

ﬁ(Xk_HfZXkJer_ﬂ khz(Xk Xk—1)+OF (Xk+1)+VG(yk) 2 0,

with A = h?, we obtain
(0%
Xk1 + AOF (Xkq1) 2 Xk + (1 - R) (Xk — Xk=1) — AVG(¥k)-
Thus, if we set y = xx + (1 — %) (Xk — Xk—1), we obtain

Xic+1 + AOF (Xiy1) 2 Yic = AV G(Yi)-
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Discretization of DIGS

Therefore, a finite-difference discretization of
(1) + %x(t) +OF (x(t)) + VG(x(1)) > 0.

naturally yields

{ Yk = Xk+(1_%)(xk_xk—1)

Xk+1 = Prox,r o Grad)\G(yk)

Construction due to Su-Boyd-Candes 2014.
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Basic properties

Theorem (Attouch-Chbani-P.-Redont 2015)
Ifa > 0, then
@ Ilim &(x(t)) =inf(®) e RU{—o0}.

t—+o0
@ Every weak limit point of x(t), as t — oo, minimizes ®.

@ Eijther ® has minimizers and all trajectories are bounded,
or it does not and all trajectories diverge to +oo in norm.

@ [/f® is bounded from below, then t “T IIx(t)]| = 0.
— 400
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Rate of convergence

Theorem (Su-Boyd-Candes 2014)
Ifa > 3 and ® has minimizers, then every solution satisfies

O(x(1)) ~ min(e) < 2.

where C depends on « and the initial data.
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Rate of convergence

The exponent 2 is sharp. More precisely, we have the following:

Theorem (ACPR)

For each p > 2, there is ® such that ® has minimizers and
every solution satisfies

d(x(t)) — min(®) = tgp
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Rate of convergence

If  is strongly convex, convergence is arbitrarily fast, as «
grows.

Theorem (ACPR)

Let & be strongly convex and let x* be its unique minimizer.
Every solution satisfies

D
and  [[x(t) = x| < =,
3

®(x(t)) — min(®) <

ETM‘
O

where C and D depend on «, the strong convexity parameter
and the initial data.
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Convergence of the solutions

Theorem (ACPR, May)
If a« > 3 and ® has minimizers, then
@ x(t) converges weakly, as t — +oo, to @ minimizer of ®.
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If a« > 3 and ® has minimizers, then
@ x(t) converges weakly, as t — +oo, to @ minimizer of ®.

@ Convergence is strong if either  is uniformly convex,
int(Argmin(®)) # 0, or & is even.

° [x(t) = o(t™).
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Convergence of the solutions

Theorem (ACPR, May)
If a« > 3 and ® has minimizers, then
@ x(t) converges weakly, as t — +oo, to @ minimizer of ®.

@ Convergence is strong if either  is uniformly convex,
int(Argmin(®)) # 0, or & is even.

o [Ix(t)l = o(t™T).
@ d(x(t)) — min(®) = o(t~2).
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PROPERTIES OF ACCELERATED
ALGORITHMS
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Back to accelerated algorithms

Recall that

Xkp1 = Proxyro Gradyg(yk)

{ Yk = Xk+<1—%)(xk—xk,1)

Theorem (ACPR)

Ifa > 0, then
@ Ilim o(xx) =inf(®); and
K—+o00

@ every weak limit point of Xk, as k — +o0o, minimizes ®.
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Back to accelerated algorithms

Theorem (ACPR)
If o > 3 and ® has minimizers, then

®(xx) — min® = O(k2)

and
Xk — Xk_1]| = O(k™7).
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Back to accelerated algorithms

Theorem (ACPR,AP)
If a > 3 and ® has minimizers, then:
@ Xy converges weakly, as k — +oo, to a minimizer of ®.
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Back to accelerated algorithms

Theorem (ACPR,AP)
If a > 3 and ® has minimizers, then:
@ Xy converges weakly, as k — +oo, to a minimizer of ®.

@ Strong convergence holds if & is even, uniformly convex,
or if Argmin(®) has nonempty interior.

® [|x¢ — X_1]| = o(k™T).

@ O(xx) —min® = o(k~2).
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A simple example

We consider the function ®(xy, X2) = 3(x2 + 1000x2). We show
the behavior of a solution to

(1) + %)’((t) +VO(x(1) =0

on the interval [1,20] with a = 3.1 .
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Trajectory
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CAN WE DO BETTER?
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Idea: Newton / Levenberg-Marquardt

Pros:
@ |s fast.
@ Compensates the effect of ill-conditioning.

Cons:

@ Requires higher regularity (to compute and invert the
Hessian).

@ |s costly to implement.
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NDIGS

(NDIGS)  X(t) + %)’((t) + BVED(x(1))X(1) + VO(x(1)) = 0.

Seems much more complicated, but

Proposition (APR 2015)

System (NDIGS) is equivalent to

x(t)+ BVO(x(1) - (3 - %) x(0)
i - (3-9+%)x+

_l’_
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Nonsmooth functions

Using variable Z = (x, y), this is

Z(t) + VG(Z(1)) + D(t, Z(t)) > 0,

where G(Z) = f®(x) and D is a regular linear perturbation.
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Nonsmooth functions

Using variable Z = (x, y), this is

Z(t) + VG(Z(t)) + D(t, Z(t)) > 0,
where G(Z) = f®(x) and D is a regular linear perturbation.
So, we can consider

(NDIGS') Z(t) + 9G(Z(t)) + D(t, Z(t)) = 0,

for nondifferentiable ¢.
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Let ® be closed and convex, and let 5 > 0.

@ All the conclusions obtained for the solutions of (DIGS) are
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Convergence results

Theorem (APR)
Let ® be closed and convex, and let 5 > 0.
@ All the conclusions obtained for the solutions of (DIGS) are
also true for the solutions of (NDIGS’).
@ But also limi_, ||[VO(x(t))|| = 0.

@ IV is locally Lipschitz-continuous, then
lim; o ||X(2)]] = O.
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A simple example

We consider the function ®(xy, X2) = 3(x2 + 1000x2). We show
the behavior of a solution to

x(t) + %X(T) + BVEO(x(1)X(1) + VO(x(t)) = 0

on the interval [1,20] with o = 3.1 and 5 = 1.
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Algorithmic implementation

Several discretizations are possible, giving different iterative
algorithms.

Conjecture (Work in progress)

An appropriate discretization defines an algorithm with the

same convergence properties as the continuous-time system
(NDIGS).




