Interval Selection in the Streaming Model

Sergio Cabello, Pablo Pérez-Lantero

University of Ljubljana (Slovenia), Universidad de Santiago, USACH (Chile)

ADGO 2016

Cabello and Pérez-Lantero (Uni-Lj and USACH)

Interval Selection in the Streaming Model

ADGO 2016 1 / 31

Introduction

Interval Selection in the Streaming Model

Given a stream \mathbb{I} of intervals, compute within **one pass** over \mathbb{I} a **maximum subset** of \mathbb{I} of **independent** intervals (of cardinality $\alpha(\mathbb{I})$).

Data stream model

- widely used (Data Streams: Alg. & App., Muthukrishnan, 2005)
- data arrives sequentially (not necessarily sorted)
- bound in the amount of memory (e.g. polylog)
- only access data of the past stored in the limited memory
- \Rightarrow approximate solutions in many cases

イロト イヨト イヨト

Introduction

Interval Selection in the Streaming Model

Given a stream \mathbb{I} of intervals, compute within one pass over \mathbb{I} a maximum subset of \mathbb{I} of independent intervals (of cardinality $\alpha(\mathbb{I})$).

- \bullet Interval Selection \equiv Maximum Independent Set in Interval Graphs
 - Fundamental optimization problem
 - Greedy algorithm in linear time (once intervals are sorted)
- Interval Selection in Data Stream:
 - 2-approximation in the Data Stream Model with O(α(I)) space: Emek et al (ICALP 2012); Cabello & Pérez-Lantero (2015)
 - No (< 2)-approximation can be obtained in sublinear space: Emek et al (ICALP 2012)
 - Generalizes the distinct elements problem: Given a data stream of numbers, identify how many distinct numbers are in the stream (Kane et al, PODS 2010)

Interval Selection in the Streaming Model

Given a stream \mathbb{I} of intervals, compute within **one pass** over \mathbb{I} a **maximum subset** of \mathbb{I} of **independent** intervals (of cardinality $\alpha(\mathbb{I})$).

We consider the **estimation** of $\alpha(\mathbb{I})$ (assuming that endpoints of intervals are in $[n] = \{1, 2, ..., n\}$)

Cabello and Pérez-Lantero (Uni-Lj and USACH)

Interval Selection in the Streaming Model

Our results

($(2 + \varepsilon)$ -approximation w.h.p.) An algorithm to compute $\hat{\alpha}(\mathbb{I})$ such that:

with **probability** at least 2/3, in $O(\varepsilon^{-5} \log^6 n)$ space.

(3/2+ ε)-approximation w.h.p.) For same-length intervals, a computation of $\hat{\alpha}(\mathbb{I})$:

$$\left(\frac{2}{3} - \varepsilon\right) lpha(\mathbb{I}) \leq \hat{lpha}(\mathbb{I}) \leq lpha(\mathbb{I})$$

with **probability** at least 2/3, in $O(\varepsilon^{-2} \log(1/\varepsilon) + \log n)$ space.

(Lower bounds) The approximation ratios for estimating $\alpha(\mathbb{I})$ are essentially optimal, if we use o(n) bits of space.

イロン イヨン イヨン イヨン 三日

- Maintain a partition of \mathbb{R} into windows
- For each window, all intervals from I contained in it are *pairwise-intertersecting*
- Fact: Since in the optimal solution no 2 intervals can fit within the same window, *taking one interval from each window* gives a 2-approximation

ADGO 2016 7 / 31

Cabello and Pérez-Lantero (Uni-Lj and USACH)

Interval Selection in the Streaming Model

ADGO 2016 7 / 31

Cabello and Pérez-Lantero (Uni-Lj and USACH)

Interval Selection in the Streaming Model

ADGO 2016 7 / 31

Cabello and Pérez-Lantero (Uni-Lj and USACH)

ADGO 2016 7 / 31

- the space is within $O(\alpha(\mathbb{I}))$
- each new interval is processed in $O(\log \alpha(\mathbb{I}))$ time

Our assumptions for the estimation of $\alpha(\mathbb{I})$

- Solution Endpoints of intervals are in $[n] = \{1, 2, ..., n\}$
- **2** A unit of memory can store a value from $[n] = \{1, 2, ..., n\}$

- Suppose we have a stream I of numbers in $[n] = \{1, 2, ..., n\}$
- Ø Maintaining the minimum over the stream is easy
- **③** To maintain a (uniform) random element *s* over the stream, we would like to have a (uniform & computable) random permutation $h : [n] \rightarrow [n]$:
 - s =first element of \mathbb{I} .
 - for each new $a \in \mathbb{I}$: if h(a) < h(s) then s = a.
- The sampled element is chosen the first time it is seen
- Solution Problem: there is no compact way to encode a uniform-random permutation
- Solution: construct *h* using **hash** functions and **sacrifice** uniformity

イロト イヨト イヨト

A family of permutations $\mathcal{H} = \{h : [n] \rightarrow [n]\}$ is ε -min-wise independent if

$$\forall X \subseteq [n], y \in X: \quad \frac{1-\varepsilon}{|X|} \leq \Pr_{h \in \mathcal{H}} [h(y) = \min h(X)] \leq \frac{1+\varepsilon}{|X|}$$

For $X \subseteq [n]$, choosing $h \in \mathcal{H}$ uniform at random:

arg min{ $h(x) \mid x \in X$ } is a **near-uniform** random element of X

Computable family of ε -min-wise independent permutations

For every $\varepsilon \in (0, 1/2)$ and n > 0, there exists a family $\mathcal{H}(n, \varepsilon) = \{h : [n] \to [n]\}$ of ε -min-wise independent permutations such that:

- a random-uniform element of H(n, ε) can be chosen in O(log(1/ε)) time (constructive);
- for h∈ H(n, ε) and x, y ∈ [n], we can decide with O(log(1/ε)) arithmetic operations whether h(x) < h(y) (computable)

Proof:

Construct K-wise independent hash functions $[c \cdot n/\varepsilon] \rightarrow [c \cdot n/\varepsilon]$ for $K = \Theta(\log(1/\varepsilon))$ and some constant c.

(Indyk, 2001).

How to generate a **near-uniform** random element of $X \subseteq [n] = \{1, 2, ..., n\}$?

- $\bullet \quad \text{Let } \mathcal{H} = \mathcal{H}(n,\varepsilon)$
- 2 Choose $h \in \mathcal{H}$ uniformly at random
- return $s = \arg\min\{h(x) \mid x \in X\}$

[Datar and Muthukrishnan (ESA 2002)]

 $\forall y \in Y \subseteq X \subseteq [n]$: (near-uniform behavior)

$$\frac{(1-\varepsilon)|Y|}{|X|} \leq \Pr[s \in Y] \leq \frac{(1+\varepsilon)|Y|}{|X|}.$$
$$\frac{1-4\varepsilon}{|Y|} \leq \Pr[y = s \mid s \in Y] \leq \frac{1+4\varepsilon}{|Y|}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to generate a **near-uniform** random element of $X \subseteq [n] = \{1, 2, ..., n\}$?

- $\bullet \quad \text{Let } \mathcal{H} = \mathcal{H}(n,\varepsilon)$
- 2 Choose $h \in \mathcal{H}$ uniformly at random
- return $s = \arg\min\{h(x) \mid x \in X\}$

[Datar and Muthukrishnan (ESA 2002)]

 $\forall y \in Y \subseteq X \subseteq [n]$: (near-uniform behavior)

$$\frac{(1-\varepsilon)|Y|}{|X|} \leq \Pr[s \in Y] \leq \frac{(1+\varepsilon)|Y|}{|X|}.$$
$$\frac{1-4\varepsilon}{|Y|} \leq \Pr[y = s \mid s \in Y] \leq \frac{1+4\varepsilon}{|Y|}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to maintain a **near-uniform** random interval of the **stream** $\mathbb{I} = I_1, I_2, I_3, \ldots$?

• Fix an easy-to-compute mapping $b : \mathbb{I} \to [n^2]$, e.g.

$$b([x,y]) = n(x-1) + y$$

2 Let $\mathcal{H} = \mathcal{H}(n^2,\varepsilon)$

- Solution one on the field on the constant on
 - $s = \text{first interval of } \mathbb{I}$.
 - ▶ for each new interval $a \in \mathbb{I}$: if $h \circ b(a) < h \circ b(s)$ then s = a.

Streaming algorithm (general idea)

- Find independent canonical segments in the window [1, n] = [1, n+1)
- Compute a 2-approximation within each **canonical** segment *S*:

in
$$\mathcal{O}ig(lpha(\textit{I} \in \mathbb{I} \mid \textit{I} \subset \textit{S})ig)$$
 space

• Guarantee that each canonical segment S contains enough disjoint intervals from \mathbb{I} , but not too many to save space

Estimate

- the number of independent canonical segments
- the average of the 2-approximations of the segments

3

・ロット (日) ・ (日) ・ (日)

- Canonical segments \mathbb{S} form a segment tree on [i, i + 1), $i \in [n]$
- $\pi(S)$ is the parent of segment $S \in \mathbb{S}$

•
$$\alpha[S] = \alpha(\{I \in \mathbb{I} \mid I \subset S\})$$
 (i.e. $\beta(S)$ in the paper)

• $\hat{\alpha}[S]$ is a 2-approximation of $\alpha[S]$ (i.e. $\hat{\beta}(S)$ in the paper)

- $\hat{\alpha}[S]$ to know if S has enough, and not too many, disjoint intervals is not "Ok"
- It may happen that $\hat{\alpha}[\pi(S)] < \hat{\alpha}[S]$, for some $S \in \mathbb{S}$ (counterintuitive!)
- We define a less-accurate but path-monotone and easy-to-compute estimator $\gamma(S)$:

•
$$\gamma(S) \leq \gamma(\pi(S))$$
 (path-monotone)

• $\alpha[S] \leq \gamma(S) \leq \alpha[S] \cdot \lceil \log n \rceil \quad (O(\log n) \text{-approximation})$

イロト イヨト イヨト

 $\gamma(S)$ is the (containment) number of canonical sub-intervals of S containing an $I \in \mathbb{I}$:

- $\gamma(S) \leq \gamma(\pi(S))$ (path-monotone)
- $\alpha[S] \leq \gamma(S) \leq \alpha[S] \cdot \lceil \log n \rceil$ ($O(\log n)$ -approximation)

 $S \in \mathbb{S}$ is *relevant* if

(i) $1 \le \gamma(S) < 2\varepsilon^{-1} \lceil \log n \rceil^2$ (not too many disjoint intervals in S) (ii) $\gamma(\pi(S)) \ge 2\varepsilon^{-1} \lceil \log n \rceil^2$ (enough disjoint intervals in S)

• $\mathbb{S}_{rel} \subset \mathbb{S}$ is the set of **relevant** segments, $N_{rel} = |\mathbb{S}_{rel}|$

• the **relevant** segments S_{rel} are **independent** (by definition)

イロト イヨト イヨト

- the number of relevant segments
- the average of the 2-approximations of the relevant segments

 $S \in \mathbb{S}$ is *active* if its *parent* $\pi(S)$ contains some $I \in \mathbb{I}$ (or S = [1, n + 1))

 N_{act} = number of **active** segments

 $\sigma_{\mathbb{S}}(I) =$ stream of segments that I activates

Maintaining a near-uniform random active segment S_j in the new stream

$$\sigma = \sigma_{\mathbb{S}}(l_1), \sigma_{\mathbb{S}}(l_2), \sigma_{\mathbb{S}}(l_3), \sigma_{\mathbb{S}}(l_4), \dots \qquad O(\log n) \text{-times longer}$$

• Choose $h_j \in \mathcal{H}(n^2, \varepsilon)$ uniform at random and maintain the active segment

$$\mathcal{S}_{j} \;=\; rgminig\{h_{j}(b(\mathcal{S}))\mid \mathcal{S}\in\sigmaig\}$$

• If S_j changes: $\gamma(S_j) \leftarrow 1$ if $I \subset S_j$ (0 i.c.c.), $\gamma(\pi(S_j)) \leftarrow 1 + \gamma(S_j) + \gamma(S'_j)$, the part of σ following S_j has the information to compute $\gamma(\pi(S_j))$, $\gamma(S_j)$, and $\tilde{\alpha}[S_j]$

By computing each of γ(π(S_j)) and γ(S_j) up to 2ε⁻¹ [log n]², we can decide at the end of I whether the final S_j is relevant, in O(ε⁻¹ log² n) space!

< ロ > < 同 > < 回 > < 回 >

Streaming algorithm (idea)

Given $I = I_1, I_2, I_3, I_4, \ldots$, within **one pass** over the **new** $O(\log n)$ -times-longer stream

$$\sigma = \sigma_{\mathbb{S}}(I_1), \sigma_{\mathbb{S}}(I_2), \sigma_{\mathbb{S}}(I_3), \sigma_{\mathbb{S}}(I_4), \ldots$$

- Compute an estimator \hat{N}_{act} of N_{act}
- **2** Compute an estimator \hat{N}_{rel} of N_{rel} (estimate N_{rel}/N_{act} , multiply by \hat{N}_{act})
- **3** Compute an estimator $\hat{\rho}$ of

$$\rho \; = \; \left(\sum_{S \in \mathbb{S}_{rel}} \hat{\alpha}[S] \right) / N_{rel}$$

• return $\hat{\alpha} = \hat{N}_{rel} \cdot \hat{\rho}$

Show that

$$\left(rac{1}{2}-arepsilon
ight)\,\,lpha\left(\mathbb{I}
ight)\,\,\le\,\,\hatlpha\,\,\,\le\,\,lpha(\mathbb{I})$$

with probability at least 2/3

(1 of 3) Estimating N_{act} in $\sigma = \sigma_{\mathbb{S}}(I_1), \sigma_{\mathbb{S}}(I_2), \sigma_{\mathbb{S}}(I_3), \dots$

- **(**) **Goal**: Estimate the number N_{act} of **distinct elements** in σ
- **(a)** Compute \hat{N}_{act} using $O(\varepsilon^{-2} + \log |S|) = O(\varepsilon^{-2} + \log n)$ space, which satisfies:

$$\Pr\left[(1-\varepsilon)\mathsf{N}_{\mathsf{act}} \leq \hat{\mathsf{N}}_{\mathsf{act}} \leq (1+\varepsilon) \cdot \mathsf{N}_{\mathsf{act}}\right] \geq \frac{11}{12}$$

(Kane et al, PODS 2010)

(2 of 3) Estimating N_{rel} in $\sigma = \sigma_{\mathbb{S}}(I_1), \sigma_{\mathbb{S}}(I_2), \sigma_{\mathbb{S}}(I_3), \dots$

Sample $k = \Theta(\varepsilon^{-3} \log^2 n)$ active segments and count how many are relevant:

- Maintain near-uniform random active segments $S_1, S_2, \ldots, S_k \in \sigma$
- Count $X = |\{j \mid S_j \text{ is relevant}\}|$ for the final S_1, S_2, \ldots, S_k
- Estimate N_{rel}/N_{act} with X/k

• return
$$\hat{N}_{rel} = \hat{N}_{act} \cdot \left(\frac{X}{k}\right)$$

Analysis:

•
$$p = \Pr[S_j \text{ is relevant}] \in \left[\frac{(1-\varepsilon)N_{rel}}{N_{act}}, \frac{(1+\varepsilon)N_{rel}}{N_{act}}\right], \ p \ge 12/(k\varepsilon^2)$$

- X is the sum of k i.i.d. random $\{0,1\}$ -variables: $\mathbb{E}[X] = kp$
- $\Pr[|X/k p| \ge \varepsilon p] \le 1/12$ (Chebyshev's inequality)

•
$$[|X/k - p| \le \varepsilon p]$$
 AND $[|\hat{N}_{act} - N_{act}| \le \varepsilon N_{act}] \Longrightarrow [|\hat{N}_{rel} - N_{rel}| \le \varepsilon N_{rel}]$
 $\Pr[(1 - \varepsilon)N_{rel} \le \hat{N}_{rel} \le (1 + \varepsilon) \cdot N_{rel}] \ge 10/12$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(3 of 3) Estimating $\rho = \left(\sum_{S \in \mathbb{S}_{rel}} \hat{\alpha}[S]\right) / N_{rel}$ in $\sigma = \sigma_{\mathbb{S}}(I_1), \sigma_{\mathbb{S}}(I_2), \sigma_{\mathbb{S}}(I_3), \dots$

$$\textbf{ 9 Set } k = \Theta(\varepsilon^{-3}\log^2 n) \text{ and } k_0 = k \cdot \Theta(\varepsilon^{-1}\log^2 n) = \Theta(\varepsilon^{-4}\log^4 n) > k$$

② Maintain k_0 near-uniform random **active** segments $S_1, S_2, \ldots, S_{k_0} \in \sigma$: $\gamma(S_j), \gamma(\pi(S_j))$, and $\hat{\alpha}[S_j]$ for each $j \in [1..k_0]$ in $O(\varepsilon^{-1} \log^2 n)$ space

So For $X = |\{j \mid S_j \text{ is relevant}\}|$ and $p = \Pr[S_j \text{ is relevant}]$:

$$\mathbb{E}[X] = k_0 p, \; \; \mathsf{Pr}\Big[|X - k_0 p| \ge k_0 p/2\Big] \le rac{1}{12}, \; \; \mathsf{and} \; \; (1/2)k_0 p \ge k_0 p/2\Big]$$

• $X \ge k$ with probability at least 11/12

(a) S_1, S_2, \ldots, S_k are the **first** k **relevant** segments of $S_1, S_2, \ldots, S_{k_0}$ (w.l.o.g.)

• Compute $\hat{\rho} = \left(\sum_{j=1}^{k} \hat{\alpha}[S_j]\right) / k$, and using $1 \le \hat{\alpha}[S_j] \le \gamma(S_j) < 2\varepsilon^{-1} \lceil \log n \rceil^2$ and $Y_1 = \hat{\alpha}[S_1], Y_2 = \hat{\alpha}[S_2], \dots, Y_k = \hat{\alpha}[S_k]$ are i.i.d. random variables:

$$\mathbb{E}[Y_j] \in \left[(1-4\varepsilon)
ho, (1+4\varepsilon)
ho
ight]$$
 and $\Pr[|\hat{
ho} - \mathbb{E}[Y_j]| \ge \varepsilon
ho] \le rac{1}{12}$

• Pr
$$\left[(1-\varepsilon)
ho \ \leq \ \hat{
ho} \ \leq \ (1+\varepsilon)
ho
ight] \geq 10/12$$

イロン イ団 とく ヨン イヨン

Putting things together ...

With probability at least

$$1 - \frac{2}{12} - \frac{2}{12} = \frac{2}{3}$$

we have the events

$$\left[|N_{\textit{rel}} - \hat{N}_{\textit{rel}}| \leq \varepsilon \cdot N_{\textit{rel}} \right] \quad \text{and} \quad \left[|\rho - \hat{\rho}| \leq \varepsilon \rho \right]$$

then, for $\hat{\alpha} = \hat{N}_{rel} \cdot \hat{\rho}$

$$\Pr\left[\left(\frac{1}{2}-\varepsilon\right)\cdotlpha(\mathbb{I}) \leq \hat{lpha} \leq lpha(\mathbb{I})
ight] \geq \frac{2}{3}.$$

Lower bounds

Consider the estimation of $\alpha(\mathbb{I})$ for same-length intervals, c > 0

There is no algorithm that uses o(n) bits of memory and computes an estimate $\hat{\alpha}$:

$$\Pr\left[\left(\frac{2}{3}+c\right)\alpha(\mathbb{I}) \leq \hat{\alpha} \leq \alpha(\mathbb{I})\right] \geq \frac{2}{3}$$

Reduction from the **one-way communication** of INDEX(S, i): (Jayram et al, 2008)

- Alice knows a set $S \subseteq [n]$ and sends a message encoding S to Bob
- Bob knows $i \in [n]$ and should determine from the message of Alice whether $i \in S$
- Fact: Alice's message must have $\Omega(n)$ bits in the worst case in order to Bob's answer is correct with probability > 1/2, say $\ge 2/3$.

イロト イヨト イヨト

Reducing an instance of INDEX(S, i)

- Use intervals with endpoints in [5n] for simplicity, and set L = n + 2
- Define the streams of intervals

$$\sigma_1(S) = [L+j, 2L+j]$$
 for $j \in S, \ \sigma_2(i) = (i, L+i), (2L+i, 3L+i)$

- $\mathbb{I} = \sigma_1(S)\sigma_2(i)$, where $\alpha(\mathbb{I}) \in \{2,3\}$ and $\alpha(\mathbb{I}) = 3$ iff INDEX(S, i) = 1
- Algorithm to estimate α(I):
 - Alice simulates the algorithm on $\sigma_1(S)$ and sends to Bob a message that encodes the state of the memory at the end.
 - ▶ Bob continues the simulation on the last two items of $\sigma_2(i)$: return 1 if $\hat{\alpha} > 2$, and 0 if $\hat{\alpha} \le 2$.
- $\Pr\left[\left(2/3+c\right)\alpha(\mathbb{I}) \le \hat{\alpha} \le \alpha(\mathbb{I})\right] \ge 2/3 \Rightarrow \Pr\left[\mathsf{Bob}'\mathsf{answer} \text{ is correct}\right] \ge 2/3$
- Alice's message (i.e. space of the algorithm) cannot be o(n) bits

- We used the **cash register** model (intervals appear only). It is open to consider the **turnstile** model in which intervals can both appear and disappear.
- Approximate Maximum Independent Sets (MIS) of streaming ranges in the plane: rectangles and squares.
- Estimate the cardinalities of such MIS.

The end

Thanks :)

▲□▶ ▲圖▶ ▲国▶ ▲国▶