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Learning in Games

The basic context:

▸ Decision-making: agents choose actions, each seeking to optimize some objective.

Example: a trader chooses asset proportions in an investment portfolio.

▸ Payoffs: rewards are determined by the decisions of all interacting agents.

Example: asset placements determine returns.

▸ Learning: the agents adjust their decisions and the process continues.

Example: change asset proportions based on performance.

When does the agents’ learning process lead to a “reasonable” outcome?
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Motivation

▸ In many applications, decisions taken at very fast time-scales.

Example: in high-frequency trading (HFT), decision times ≈  µs.

▸ Regulations/physical constraints limit changes in decisions.

Example: the SEC requires small differences in HFT orders to reduce volatility.

▸ Fast time-scales have adverse effects on quality of feedback.

Example: volatility estimates highly inaccurate at the  µs time-scale.
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The Flash Crash of 2010

A trillion-dollar NYSE crash (and partial rebound) that lasted 35 minutes (14:42–15:07)

Aggressive selling due to imperfect volatility estimates induced a huge drop in liquidity and
precipitated the crash (Vuorenmaa and Wang, 2014)
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What this talk is about:
Examine the robustness of a class of continuous-time learning schemes with noisy feedback.
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Game setup

Throughout this talk, we focus on finite games:

▸ Finite set of players: N = {, . . . ,N}

▸ Finite set of actions per player : Ak = {αk , , αk , , . . . }

▸ Reward of player k determined by corresponding payoff function uk ∶∏k Ak → R:

(α , . . . , αn)↦ uk(α , . . . , αN)

▸ Mixed strategies xk ∈ Xk ≡ ∆(Ak) yield expected payoffs

uk(x , . . . , xN) =∑α
. . .∑αN

x,α⋯ xN ,αN uk(α , . . . , αN)

▸ Strategy profiles: x = (x , . . . , xN) ∈ X ≡∏k Xk

▸ Payoff vector of player k: vk(x) = (vkα(x))α∈Ak where

vkα(x) = vk(α; x−k)

is the payoff to the α-th action of player k in the mixed strategy profile x ∈ X.

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Regret

Suppose players follow a trajectory of play x(t) (based on some learning/adjustment rule,
to be discussed later).

How does xk(t) compare on average to the “best possible” action αk ∈ Ak ?

Regk(t) = max
α∈Ak

∫
t



uk(α; x−k(s)) − uk(x(s))

ds

Definition
x(t) leads to no regret if Regk(t) = o(t) for all k ∈ N, i.e. if every player’s average regret is
non-positive in the long run.

NB: unilateral definition, no need for a game
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Dominated strategies

Definition
A (pure) strategy α ∈ Ak is dominated by β ∈ Ak if

vkα(x) < vkβ(x) for all x ∈ X.

More generally, a mixed strategy p ∈ Xk is dominated by q ∈ Xk if

⟨vk(x)∣p − q⟩ <  for all x ∈ X.

Variants: weakly/iteratively dominated defined analogously.
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Nash equilibrium

Definition
A strategy profile x∗ ∈ X is a Nash equilibrium if

uk(x∗k ; x∗−k) ≥ uk(xk ; x∗−k) for all xk ∈ Xk , k ∈ N, (NE)

i.e. when no player has an incentive to deviate from x∗ .

Variants:
▸ Pure: x∗ is a corner of X (the support of x∗ is a singleton)

▸ Strict: (NE) holds as an equality iff xk = x∗k for all k ∈ N; equivalently, x∗ is strict iff x∗

is pure and
uk(α; x∗−k) < uk(x∗) for all α ∉ supp(x∗k )

▸ Restricted: (NE) holds for all xk whose support is contained in that of x∗k
(like Nash equilibrium but players not allowed to deviate to actions not present in x∗)

strict ⊆ pure ⊆ Nash ⊆ restricted

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Some basic questions

▸ Does x(t) lead to no regret?

▸ Are dominated strategies eliminated along x(t)?

▸ What are the possible limit points of x(t)?

▸ Does x(t) converge to Nash equilibrium?

▸ If not, do time averages converge?

▸ ⋯

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Exponential reinforcement learning

A well-known strategy adjustment process is exponential learning:

ẏkα = vkα(x)

xkα(t) =
exp(ykα(t))
∑β exp(ykβ(t))

(XL)

In words:
▸ Score actions based on their cumulative payoffs.

▸ Assign probability weights exponentially proportionally to these scores.

(Exponential reinforcement of highest scoring strategies).

Continuous-time analogue of EXP3/EWA class of online learning algorithms (Vovk, 1990;
Littlestone and Warmuth, 1994; Sorin, 2009;…)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Links with evolutionary game theory

Trajectories of play under (XL) follow the replicator dynamics (Taylor & Jonker, 1978):

ẋkα = xkα [vkα(x) −∑β xkβvkβ(x)] (RD)

Most widely studied dynamics in evolutionary game theory; known properties include:
▸ Dominated strategies become extinct under interior solutions of (RD)

▸ Nash equilibria are stationary under (RD); stationary points of (RD) are restricted
equilibria

▸ Limit points of interior solutions are Nash equilibria

▸ Strict Nash equilibria are locally stable and attracting

▸ Convergence to restricted equilibria in potential games.

▸ ⋯
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An alternative characterization of exponential learning

The logit map yα ↦ e yα /∑β e
yβ can be equivalently characterized as

y ↦ argmax
x∈∆

{⟨y∣x⟩ − h(x)}

where h(x) = −∑β xβ log xβ is the (negative) Gibbs entropy.

In words:
Agents play mixed strategies that maximize their expected cumulative payoff minus a penalty.

Interpretation:
The entropic penalty promotes exploration (contrast to greedily playing argmax⟨y∣x⟩)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Reinforcement learning via regularization

A general reinforcement principle:
▸ Score actions by keeping track of their cumulative payoffs over time.

▸ Play an “approximate” best response to the resulting score vector

Formally:
ẏk = vk(x)

xk(t) = Qk(yk(t))
(RL)

where the approximate best response (or choice map) Qk is defined as

Qk(yk) = argmax
xk∈Xk

{⟨yk ∣xk⟩ − hk(xk)}

for some penalty function hk ∶Xk → R

Assumptions for h:
Continuous on X; smooth on interiors of faces; strongly convex:

h(tx + ( − t)x) ≤ th(x) + ( − t)h(x) − 
Kt( − t)∥x − x

′∥ for all t ∈ [, ]

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Examples

Ex. 1. Entropic penalty:
h(x) =∑β xβ log xβ

Induces the logit map

Gα(v) =
exp(vα)
∑β exp(vβ)

Ex. 2. Quadratic penalty:
h(x) = 

∑β x

β

Induces the closest point projection map

Π(v) = argmin
x∈∆

∥v − x∥ = proj∆ v

Important dichotomy: h is steep ; imQ = ∆○ ; h is non-steep ; imQ = ∆
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Examples of dynamics

Ex. 1 The entropic penalty leads to exponential reinforcement learning:

ẏkα = vkα(x)

xkα =
exp(ykα)
∑β exp(ykβ)

(XL)

Trajectories of (XL) satisfy the replicator dynamics

Ex. 2 The quadratic penalty h(x) = 
 ∑β x


β leads to projected reinforcement learning:

ẏk = vk(x)
x = proj

X
y

(PL)

Closely related to the projection dynamics of Friedman (1991):

ẋkα =
⎧⎪⎪⎨⎪⎪⎩

vkα(x) − ∣supp(xk)∣−∑β∈supp(xk) vkβ(x) if α ∈ supp(xk)
 otherwise

(PD)

The x-orbits of (PL) satisfy (PD) on an open dense set of times (M & Sandholm, 2015).

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Example portraits
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Extinction of Dominated Strategies

Recall:
▸ pk is dominated by p′k if ⟨vk(x)∣pk − p′k⟩ <  for all x ∈ X.

▸ A strategy pk ∈ Xk becomes extinct along x(t) if

min{xkα(t) ∶ α ∈ supp(pk)}→  as t →∞

Theorem (M & Sandholm, 2015)
Dominated strategies become extinct under the reinforcement learning dynamics (RL).
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Stability and convergence analysis

Recall:
▸ x∗ is a Nash equilibrium iff uk(x∗) ≥ uk(xk ; x∗−k) for all xk ∈ Xk , k ∈ N.

▸ A Nash equilibrium is strict if the above inequality is strict for all xk ≠ x∗k .

Theorem (M & Sandholm ’15)
Let x(t) = Q(y(t)) be an orbit of (RL).

I. If x(t)→ x∗ , then x∗ is a Nash equilibrium.

II. x∗ is stable and attracting iff it is a strict Nash equilibrium.

III. x(t) converges to Nash equilibrium in potential games.

Special case: EGT “folk theorem” for the replicator dynamics
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Convergence to Equilibrium
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The model

Noisy payoff observations lead to the stochastically perturbed learning model

dYk = vk(X) dt + dZk

Xk = Qk(ηkYk)
(SRL)

where:
▸ the noise process Zk is an Itô martingale (think Brownian motion) with covariance

dZkα ⋅ dZℓβ = Σαβ dt

(noise possibly state-dependent and/or correlated across players and strategies)

▸ ηk ≡ ηk(t) is a (possibly variable) learning parameter , introduced for flexibility

▸ the rest, as before

Assumptions for the noise (Z) and the learning parameter (η)

▸ supt∥Σ(t)∥ <∞

▸ η(t) smooth, nonincreasing, and η(t) = ω(t) (i.e. limt→∞ tη(t) =∞)
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Evolution of mixed strategies

How do mixed strategies evolve under (SRL)?

Proposition
Suppose that the penalty function of player k is of the form hk(xk) = ∑α θk(xkα) and Zk is
a Wiener process. Then, X(t) locally follows the stochastic differential equation

dXkα =
ηk

θ′′kα
[vkα −Θ′′k∑β vkβ/θ

′′
kβ] dt

+ ηk

θ′′kα
[σkα dWkα −Θ′′k∑β σkβ/θ

′′
kβ dWkβ]

+ η̇k

ηk


θ′′kα
[θ′kα −Θ′′k∑β θ

′
kβ/θ′′kβ] dt

− 



θ′′kα
[θ′′′kαU 

kα −Θ′′k∑β θ
′′′
kβ/θ′′kβ U 

kβ] dt,

where:

a) Θ′′k = (∑β /θ′′kβ)
−

,

b) U 
kα = (

ηk

θ′′kα
)


[σ 
kα ( −Θ′′k /θ′′kα)

 +∑β≠α (Θ
′′
k /θ′′kβ)

 σ 
kβ].

AWFUL!

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble



Sunday, October 7, 2012

Background and motivation Preliminaries The core scheme Learning with noisy feedback

Evolution of mixed strategies

How do mixed strategies evolve under (SRL)?

Proposition
Suppose that the penalty function of player k is of the form hk(xk) = ∑α θk(xkα) and Zk is
a Wiener process. Then, X(t) locally follows the stochastic differential equation

dXkα =
ηk

θ′′kα
[vkα −Θ′′k∑β vkβ/θ

′′
kβ] dt

+ ηk

θ′′kα
[σkα dWkα −Θ′′k∑β σkβ/θ

′′
kβ dWkβ]

+ η̇k

ηk


θ′′kα
[θ′kα −Θ′′k∑β θ

′
kβ/θ′′kβ] dt

− 



θ′′kα
[θ′′′kαU 

kα −Θ′′k∑β θ
′′′
kβ/θ′′kβ U 

kβ] dt,

where:

a) Θ′′k = (∑β /θ′′kβ)
−

,

b) U 
kα = (

ηk

θ′′kα
)


[σ 
kα ( −Θ′′k /θ′′kα)

 +∑β≠α (Θ
′′
k /θ′′kβ)

 σ 
kβ].

AWFUL!

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble



Sunday, October 7, 2012

Background and motivation Preliminaries The core scheme Learning with noisy feedback

Examples

The entropic penalty h(x) = ∑α xα log xα yields the stochastic replicator dynamics

dXkα = ηkXkα [vkα −∑
k
β Xkβ vkβ] dt (drift)

+ ηkXkα [σkα dWkα −∑
k
β σkβXkβ dWkβ] (noise)

+ η̇k

ηk
Xkα [log Xkα −∑

k
β Xkβ log Xkβ] dt (due to η̇)

+ 

Xkα [σ 

kα( − Xkα) −∑
k
β σ


kβXkβ ( − Xkβ)] dt. (Itô)
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Examples

The quadratic penalty h(x) = 
 ∑α x


α yields the stochastic projection dynamics

dXkα = [vkα − ∣supp(Xk)∣−∑β∈supp(Xk)
vkβ] dt (drift)

+ [σkα dWkα − ∣supp(Xk)∣−∑β∈supp(Xk)
σkβ dWkβ] (noise)

+ η̇k

ηk
[Xkα − ∣supp(Xk)∣−] dt. (due to η̇)

NB: There is no Itô correction, but X(t) follows this SDE only locally
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Examples
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Evolution of play under (SRL) with logit and projection choice maps (σ = )
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Consistency and regret

(XL) leads to no regret (Sorin, 2009); in fact, so does (RL) (Kwon & M, 2014). Is this still true in
the presence of noise?

Yes, provided that the learning parameter η(t) tends to zero.

Theorem (Bravo & M, 2015)
If a player runs (SRL) with η(t) such that limt→∞ η(t) = , then

Reg(t) ≤ Ω
η(t)

+ σ 
max
∣A∣
K ∫

t


η(s) ds +O(σmax

√
t log log t) (a.s.),

where Ω and K are constants related to the player’s penalty function.

Corollary
If η(t) ∼ t−γ , optimal regret bound obtained for γ = / and is of order O(

√
t log log t);

subleading term is σmax

√
Ω∣A∣
K t.
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Proof

Sketch of proof.

▸ Introduce the (primal-dual) Fenchel coupling

F(x , y) = h(x) + h∗(y) − ⟨y∣x⟩

▸ Fix some test strategy p ∈ X and consider the rate-adjusted coupling

H(t) = 
η(t)

F(p, η(t)Y(t))

▸ Use Itô’s lemma to calculate dH(t)

▸ Bound each of the resulting terms (iterated logarithm for the noise, strong convexity
for the Itô correction, etc.)

▸ Maximize over all p ∈ X to obtain bound on the regret.
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Extinction of dominated strategies

Are dominated strategies eliminated under (SRL)?

Yes, with no vanishing parameter assumptions on η(t)

Theorem (Bravo & M, 2015)
If pk ∈ Xk is dominated (even iteratively), then it becomes extinct along X(t) almost surely.

Extinction rate of a pure dominated strategy α ∈ Ak :
▸ If ηk is constant, hk(xk) = ∑β θ(xkβ) and τδ = inf{t >  ∶ Xkα(t) < δ}, then

E[τδ] ≤
Ck − θ′k(δ)

ηkmk
for some Ck > , mk > 

▸ If θk is non-steep, dominated strategies become extinct in finite time (a.s.)
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Stability and convergence properties

What is the dynamics’ long-term behavior in regards to Nash equilibria?

Theorem
Let x∗ ∈ X. Then:

▸ If a trajectory X(t) converges to x∗ with positive probability, x∗ is a Nash equilibrium.

▸ If x∗ is a strict Nash equilibrium, it is stochastically stable and attracting: for all ε >  and
for every neighborhood U of x∗ , there exists a neighborhood U ⊆ U of x∗ such that

P(X(t) ∈ U for all t ≥  and limt→∞ X(t) = x∗) ≥  − ε.

NB: no vanishing parameter assumptions on η(t)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble



Sunday, October 7, 2012

Background and motivation Preliminaries The core scheme Learning with noisy feedback

Stability and convergence properties

What is the dynamics’ long-term behavior in regards to Nash equilibria?

Theorem
Let x∗ ∈ X. Then:

▸ If a trajectory X(t) converges to x∗ with positive probability, x∗ is a Nash equilibrium.

▸ If x∗ is a strict Nash equilibrium, it is stochastically stable and attracting: for all ε >  and
for every neighborhood U of x∗ , there exists a neighborhood U ⊆ U of x∗ such that

P(X(t) ∈ U for all t ≥  and limt→∞ X(t) = x∗) ≥  − ε.

NB: no vanishing parameter assumptions on η(t)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble



Sunday, October 7, 2012

Background and motivation Preliminaries The core scheme Learning with noisy feedback

Long-term time averages

In zero-sum games, the dynamics do not converge to a Nash equilibrium, but their
time-averages do (Hofbauer et al., 2009; M & Sandholm, 2015). Is this still true for (SRL)?

Yes, provided that the learning parameter η(t) tends to zero.

Theorem (Bravo & M, 2015)
Let G be a zero-sum 2-player game with an interior equilibrium. If both players run (SRL) with
vanishing learning parameters (ηk(t)→ ), the time averages X̄(t) = t− ∫ t

 X(s) ds
converge to the Nash set of G.

(Corollary of more general result linking time averages of (SRL) to the best-response
dynamics)
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Time averages
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(a) A sample trajectory and its time average.
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(b) Distribution of time averages at time T .
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Concluding remarks

▸ Dichotomy between “converging to a face” (undom. strategies, strict equilibria) and
“average” results (regret, time-averages, …): constant η better for the former,
vanishing η better for the latter

▸ Itô’s formula introduces second-order terms: same control trade-offs as in discrete
time

▸ Some results extend to more general games (e.g. continuous action sets); others
trickier

▸ Possible to handle more intense noise processes (semimartingale noise, fractional
Brownian motion), but results different

▸ Other directions???
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