Preliminarie

The core scheme

Learning with noisy feedback

Mario Bravo¹ Panayotis Mertikopoulos²

¹Universidad de Santiago de Chile

²CNRS – Laboratoire d'Informatique de Grenoble

ADGO 2016 - Santiago, January 28, 2016

Backgro 0001	ound and motivation	Preliminaries 00000	The core scheme 000000000	Learning with noisy feedback
CITS	Outline			
	Background and n	notivation		

The basic context:

- Decision-making: agents choose actions, each seeking to optimize some objective.
- Payoffs: rewards are determined by the decisions of all interacting agents.
- Learning: the agents adjust their decisions and the process continues.

The basic context:

- Decision-making: agents choose actions, each seeking to optimize some objective.
 Example: a trader chooses asset proportions in an investment portfolio.
- Payoffs: rewards are determined by the decisions of all interacting agents.
 Example: asset placements determine returns.
- Learning: the agents adjust their decisions and the process continues.
 Example: change asset proportions based on performance.

The basic context:

- Decision-making: agents choose actions, each seeking to optimize some objective.
 Example: a trader chooses asset proportions in an investment portfolio.
- Payoffs: rewards are determined by the decisions of all interacting agents.
 Example: asset placements determine returns.
- Learning: the agents adjust their decisions and the process continues.
 Example: change asset proportions based on performance.

When does the agents' learning process lead to a "reasonable" outcome?

Backgr O⊙O	ound and motivation O		
CITS	Motivation		

- In many applications, decisions taken at very fast time-scales.
- Regulations/physical constraints limit changes in decisions.
- Fast time-scales have adverse effects on quality of feedback.

- In many applications, decisions taken at very fast time-scales. Example: in high-frequency trading (HFT), decision times $\approx 100 \ \mu s$.
- Regulations/physical constraints limit changes in decisions.
 Example: the SEC requires small differences in HFT orders to reduce volatility.
- Fast time-scales have adverse effects on quality of feedback.
 Example: volatility estimates highly inaccurate at the 100 µs time-scale.

 Background and motivation
 Preliminaries
 The core scheme
 Learning with noisy feedback

 00
 0
 0000000000
 0000000000

 The Flash Crash of 2010

A trillion-dollar NYSE crash (and partial rebound) that lasted 35 minutes (14:42-15:07)

Figure 5: Network snapshots of the market behaving normally (top), when ALGO starts selling and HFTs absorb the initial sell pressure a moment before the hot-potato effect starts (bottom left), and when the price reaches its trough (bottom right).

Aggressive selling due to imperfect volatility estimates induced a huge drop in liquidity and precipitated the crash (Vuorenmaa and Wang, 2014)

What this talk is about:

Examine the robustness of a class of continuous-time learning schemes with noisy feedback.

Backgro 0000		Preliminaries	The core scheme 000000000	Learning with noisy feedback
CITS	Outline			
	Preliminaries			

Backgr 000		Preliminaries •0000	
cnrs	Game setup		

Throughout this talk, we focus on *finite games:*

- Finite set of players: $\mathcal{N} = \{1, \dots, N\}$
- Finite set of *actions* per player: $A_k = \{\alpha_{k,1}, \alpha_{k,2}, \dots\}$
- Reward of player k determined by corresponding payoff function $u_k: \prod_k \mathcal{A}_k \to \mathbb{R}$:

$$(\alpha_1,\ldots,\alpha_n)\mapsto u_k(\alpha_1,\ldots,\alpha_N)$$

Backg		Preliminaries •0000	
cnrs	Game setup		

Throughout this talk, we focus on *finite games:*

- Finite set of players: $\mathcal{N} = \{1, \dots, N\}$
- Finite set of *actions* per player: $A_k = \{\alpha_{k,1}, \alpha_{k,2}, \dots\}$
- Reward of player k determined by corresponding payoff function $u_k: \prod_k \mathcal{A}_k \to \mathbb{R}$:

$$(\alpha_1,\ldots,\alpha_n)\mapsto u_k(\alpha_1,\ldots,\alpha_N)$$

• Mixed strategies $x_k \in \mathfrak{X}_k \equiv \Delta(\mathcal{A}_k)$ yield expected payoffs

$$u_k(x_1,\ldots,x_N)=\sum_{\alpha_1}\ldots\sum_{\alpha_N}x_{1,\alpha_1}\cdots x_{N,\alpha_N}u_k(\alpha_1,\ldots,\alpha_N)$$

• Strategy profiles: $x = (x_1, \dots, x_N) \in \mathfrak{X} \equiv \prod_k \mathfrak{X}_k$

Backgr 000		Preliminaries •0000	
cnrs	Game setup		

Throughout this talk, we focus on finite games:

- Finite set of players: $\mathcal{N} = \{1, \dots, N\}$
- Finite set of *actions* per player: $A_k = \{\alpha_{k,1}, \alpha_{k,2}, \dots\}$
- Reward of player k determined by corresponding payoff function $u_k: \prod_k \mathcal{A}_k \to \mathbb{R}$:

$$(\alpha_1,\ldots,\alpha_n)\mapsto u_k(\alpha_1,\ldots,\alpha_N)$$

• Mixed strategies $x_k \in \mathfrak{X}_k \equiv \Delta(\mathcal{A}_k)$ yield expected payoffs

$$u_k(x_1,\ldots,x_N)=\sum_{\alpha_1}\ldots\sum_{\alpha_N}x_{1,\alpha_1}\cdots x_{N,\alpha_N}u_k(\alpha_1,\ldots,\alpha_N)$$

- Strategy profiles: $x = (x_1, \dots, x_N) \in \mathfrak{X} \equiv \prod_k \mathfrak{X}_k$
- Payoff vector of player k: $v_k(x) = (v_{k\alpha}(x))_{\alpha \in A_k}$ where

$$v_{k\alpha}(x) = v_k(\alpha; x_{-k})$$

is the payoff to the α -th action of player k in the mixed strategy profile $x \in \mathcal{X}$.

Background and motivation	Preliminaries 0000	
Regret		

How does $x_k(t)$ compare on average to the "best possible" action $\alpha_k \in A_k$?

 $u_k(\alpha; x_{-k}(s)) - u_k(x(s))$

Background and motivation	Preliminaries OOOOO	
Regret		

How does $x_k(t)$ compare on average to the "best possible" action $\alpha_k \in A_k$?

$$\int_0^t u_k(\alpha; x_{-k}(s)) - u_k(x(s)) \, ds$$

Background and motivation	Preliminaries OOOOO	
Regret		

How does $x_k(t)$ compare on average to the "best possible" action $\alpha_k \in \mathcal{A}_k$?

$$\max_{\alpha\in\mathcal{A}_k}\int_0^t u_k(\alpha;x_{-k}(s))-u_k(x(s))\,ds$$

Background and motivation	Preliminaries OOOOO	
Regret		

How does $x_k(t)$ compare on average to the "best possible" action $\alpha_k \in \mathcal{A}_k$?

$$\operatorname{Reg}_{k}(t) = \max_{\alpha \in \mathcal{A}_{k}} \int_{0}^{t} u_{k}(\alpha; x_{-k}(s)) - u_{k}(x(s)) \, ds$$

Background and motivation	Preliminaries OOOOO	
Regret		

How does $x_k(t)$ compare on average to the "best possible" action $\alpha_k \in \mathcal{A}_k$?

$$\operatorname{Reg}_{k}(t) = \max_{\alpha \in A_{k}} \int_{0}^{t} u_{k}(\alpha; x_{-k}(s)) - u_{k}(x(s)) \, ds$$

Definition

x(t) leads to *no regret* if $\text{Reg}_k(t) = o(t)$ for all $k \in \mathbb{N}$, i.e. if every player's average regret is non-positive in the long run.

NB: unilateral definition, no need for a game

Background and motivation	Preliminaries	The core scheme	Learning with noisy feedback
Dominated strateg	zies		

Definition

A (pure) strategy $\alpha \in A_k$ is dominated by $\beta \in A_k$ if

 $v_{k\alpha}(x) < v_{k\beta}(x)$ for all $x \in \mathfrak{X}$.

More generally, a mixed strategy $p \in \mathfrak{X}_k$ is dominated by $q \in \mathfrak{X}_k$ if

 $\langle v_k(x)|p-q\rangle < 0$ for all $x \in \mathfrak{X}$.

Variants: weakly/iteratively dominated defined analogously.

Background and motivation	Preliminaries 000●0	
Nash equilibrium		

Definition

A strategy profile $x^* \in \mathcal{X}$ is a Nash equilibrium if

 $u_k(x_k^*; x_{-k}^*) \ge u_k(x_k; x_{-k}^*) \quad \text{for all } x_k \in \mathfrak{X}_k, \, k \in \mathbb{N}, \tag{NE}$

i.e. when no player has an incentive to deviate from x^* .

Variants:

- Pure: x^* is a corner of \mathcal{X} (the support of x^* is a singleton)
- Strict: (NE) holds as an equality iff $x_k = x_k^*$ for all $k \in N$; equivalently, x^* is strict iff x^* is pure and

$$u_k(\alpha; x_{-k}^*) < u_k(x^*)$$
 for all $\alpha \notin \operatorname{supp}(x_k^*)$

Restricted: (NE) holds for all x_k whose support is contained in that of x^{*}_k
 (like Nash equilibrium but players not allowed to deviate to actions not present in x^{*})

 $\mathsf{strict} \subseteq \mathsf{pure} \subseteq \mathsf{Nash} \subseteq \mathsf{restricted}$

	Preliminaries		
0000	00000	000000000	0000000000
CNS , .			
Some basic quest	tions		

- Does x(t) lead to no regret?
- Are dominated strategies eliminated along x(t)?
- What are the possible limit points of x(t)?
- Does x(t) converge to Nash equilibrium?
- If not, do time averages converge?
- <u>ه</u>

Backgro 0000		The core scheme	
CITS	Outline		
	The core scheme		

Background and motivation		The core scheme •000000000	
Exponential rein	forcement learning		

A well-known strategy adjustment process is *exponential learning*:

$$\dot{y}_{k\alpha} = v_{k\alpha}(x)$$
$$x_{k\alpha}(t) = \frac{\exp(y_{k\alpha}(t))}{\sum_{\beta} \exp(y_{k\beta}(t))}$$

(XL)

Background and motivation		The core scheme •000000000	
Exponential reinfo	rcement learning		

A well-known strategy adjustment process is exponential learning:

$$y_{k\alpha}(t) = \int_{0}^{t} v_{k\alpha}(x(s)) ds$$

$$x_{k\alpha}(t) = \frac{\exp(y_{k\alpha}(t))}{\sum_{\beta} \exp(y_{k\beta}(t))}$$
(XL)

In words:

- Score actions based on their cumulative payoffs.
- Assign probability weights exponentially proportionally to these scores.

(Exponential reinforcement of highest scoring strategies).

Background and motivation		The core scheme •000000000	
Exponential reinfo	rcement learning		

A well-known strategy adjustment process is exponential learning:

$$y_{k\alpha}(t) = \int_{0}^{t} v_{k\alpha}(x(s)) ds$$

$$x_{k\alpha}(t) = \frac{\exp(y_{k\alpha}(t))}{\sum_{\beta} \exp(y_{k\beta}(t))}$$
(XL)

In words:

- Score actions based on their cumulative payoffs.
- Assign probability weights exponentially proportionally to these scores.

(Exponential reinforcement of highest scoring strategies).

Continuous-time analogue of EXP3/EWA class of online learning algorithms (Vovk, 1990; Littlestone and Warmuth, 1994; Sorin, 2009;...)

Backgro 0000			The core scheme O●00000000	
cnrs	Linke with evelut	anne anna dhaana		

Links with evolutionary game theory

Trajectories of play under (XL) follow the replicator dynamics (Taylor & Jonker, 1978):

$$\dot{x}_{k\alpha} = x_{k\alpha} \left[v_{k\alpha}(x) - \sum_{\beta} x_{k\beta} v_{k\beta}(x) \right]$$
(RD)

Most widely studied dynamics in evolutionary game theory; known properties include:

- Dominated strategies become extinct under interior solutions of (RD)
- Nash equilibria are stationary under (RD); stationary points of (RD) are restricted equilibria
- Limit points of interior solutions are Nash equilibria
- Strict Nash equilibria are locally stable and attracting
- Convergence to restricted equilibria in potential games.

<u>۰</u>۰۰

Backgri 000			The core scheme	
CITS	An alternative characte	erization of expe	onential learning	
	The logit map $y_{\alpha}\mapsto e^{y_{\alpha}}$	$\sum_{eta} e^{y_{eta}}$ can be e	equivalently characterized as	
		$y \mapsto \underset{x \in \Delta}{\operatorname{argm}}$	$ax\{\langle y x\rangle - h(x)\}$	

where $h(x) = -\sum_{\beta} x_{\beta} \log x_{\beta}$ is the (negative) Gibbs entropy.

In words:

Agents play mixed strategies that maximize their expected cumulative payoff minus a penalty.

Interpretation:

The entropic penalty promotes exploration (contrast to greedily playing $\arg \max(y|x)$)

Background and motivation	The core scheme 000●000000	

Reinforcement learning via regularization

A general reinforcement principle:

- Score actions by keeping track of their cumulative payoffs over time.
- Play an "approximate" best response to the resulting score vector

Background and motivation	The core scheme 000●000000	

Reinforcement learning via regularization

A general reinforcement principle:

- Score actions by keeping track of their cumulative payoffs over time.
- > Play an "approximate" best response to the resulting score vector

Formally:

$$\dot{y}_k = v_k(x)$$

$$x_k(t) = Q_k(y_k(t))$$
(RL)

where the approximate best response (or choice map) Q_k is defined as

$$Q_k(y_k) = \underset{x_k \in \mathcal{X}_k}{\operatorname{arg\,max}} \{ \langle y_k | x_k \rangle - h_k(x_k) \}$$

for some penalty function $h_k: \mathfrak{X}_k \to \mathbb{R}$

Assumptions for *h*:

Continuous on \mathfrak{X} ; smooth on interiors of faces; strongly convex:

$$h(tx + (1-t)x) \le th(x) + (1-t)h(x) - \frac{1}{2}Kt(1-t)||x-x'||^2$$
 for all $t \in [0,1]$

Backgr 000		The core scheme 000000000	
CITS	Examples		

Ex. I. Entropic penalty:

$$h(x) = \sum_{\beta} x_{\beta} \log x_{\beta}$$

Induces the logit map

$$G_{\alpha}(\nu) = \frac{\exp(\nu_{\alpha})}{\sum_{\beta} \exp(\nu_{\beta})}$$

The core scheme 0000000000	
Preliminaries 00000	Preliminares The core scheme 00000 00000 00000

Ex. I. Entropic penalty:

$$h(x) = \sum_{\beta} x_{\beta} \log x_{\beta}$$

Induces the logit map

$$G_{\alpha}(\nu) = \frac{\exp(\nu_{\alpha})}{\sum_{\beta} \exp(\nu_{\beta})}$$

Ex. 2. Quadratic penalty:

$$h(x) = \frac{1}{2} \sum_{\beta} x_{\beta}^2$$

Induces the closest point projection map

$$\Pi(\nu) = \underset{x \in \Delta}{\operatorname{arg\,min}} \|\nu - x\| = \operatorname{proj}_{\Delta} \nu$$

Backgri 000		The core scheme 000000000	
CITS	Examples		

Ex. I. Entropic penalty:

$$h(x) = \sum_{\beta} x_{\beta} \log x_{\beta}$$

Induces the logit map

$$G_{\alpha}(\nu) = \frac{\exp(\nu_{\alpha})}{\sum_{\beta} \exp(\nu_{\beta})}$$

Ex. 2. Quadratic penalty:

$$h(x) = \frac{1}{2} \sum_{\beta} x_{\beta}^2$$

Induces the closest point projection map

$$\Pi(\nu) = \underset{x \in \Delta}{\operatorname{argmin}} \|\nu - x\| = \operatorname{proj}_{\Delta} \nu$$

Important dichotomy: *h* is steep \rightsquigarrow im $Q = \Delta^{\circ}$; *h* is non-steep \rightsquigarrow im $Q = \Delta$

Backgr 000			The core scheme 0000000000	
cnrs	Examples of dynam	nics		

Ex. | The entropic penalty leads to exponential reinforcement learning:

$$\dot{y}_{k\alpha} = v_{k\alpha}(x)$$

$$x_{k\alpha} = \frac{\exp(y_{k\alpha})}{\sum_{\beta} \exp(y_{k\beta})}$$
(XL)

Trajectories of (XL) satisfy the replicator dynamics

Background and motivation			The core scheme 000000000		
cnrs	Examples of dynamics				
	Ex. I The entropic pena	lty leads to expo	nential reinforcement learning:		

$$\dot{y}_{k\alpha} = v_{k\alpha}(x)$$

$$x_{k\alpha} = \frac{\exp(y_{k\alpha})}{\sum_{\beta} \exp(y_{k\beta})}$$
(XL)

Trajectories of (XL) satisfy the replicator dynamics

Ex. 2 The quadratic penalty $h(x) = \frac{1}{2} \sum_{\beta} x_{\beta}^2$ leads to projected reinforcement learning:

$$\dot{y}_k = v_k(x)$$

 $x = \operatorname{proj}_{\mathcal{X}} y$
(PL)

Closely related to the projection dynamics of Friedman (1991):

$$\dot{x}_{k\alpha} = \begin{cases} v_{k\alpha}(x) - |\operatorname{supp}(x_k)|^{-1} \sum_{\beta \in \operatorname{supp}(x_k)} v_{k\beta}(x) & \text{if } \alpha \in \operatorname{supp}(x_k) \\ 0 & \text{otherwise} \end{cases}$$
(PD)

The x-orbits of (PL) satisfy (PD) on an open dense set of times (M & Sandholm, 2015).

Backgr 000			The core scheme 0000000●00	
cnrs	Extinction of Don	ninated Strategies		

Recall:

- p_k is dominated by p'_k if $\langle v_k(x) | p_k p'_k \rangle < 0$ for all $x \in \mathfrak{X}$.
- A strategy $p_k \in \mathfrak{X}_k$ becomes extinct along x(t) if

 $\min\{x_{k\alpha}(t):\alpha\in\operatorname{supp}(p_k)\}\to 0\quad\text{as }t\to\infty$

- p_k is dominated by p'_k if $\langle v_k(x) | p_k p'_k \rangle < 0$ for all $x \in \mathfrak{X}$.
- A strategy $p_k \in \mathfrak{X}_k$ becomes extinct along x(t) if

 $\min\{x_{k\alpha}(t):\alpha\in\operatorname{supp}(p_k)\}\to 0\quad\text{as }t\to\infty$

Backgro 0000			The core scheme 0000000€00	
cnrs	Extinction of Dor	ninated Strategies		
	Recall:			

- p_k is dominated by p'_k if $\langle v_k(x) | p_k p'_k \rangle < 0$ for all $x \in \mathcal{X}$.
- A strategy $p_k \in \mathfrak{X}_k$ becomes extinct along x(t) if

 $\min\{x_{k\alpha}(t):\alpha\in\operatorname{supp}(p_k)\}\to 0\quad\text{as }t\to\infty$

- p_k is dominated by p'_k if $\langle v_k(x) | p_k p'_k \rangle < 0$ for all $x \in \mathcal{X}$.
- A strategy $p_k \in \mathfrak{X}_k$ becomes extinct along x(t) if

 $\min\{x_{k\alpha}(t):\alpha\in\operatorname{supp}(p_k)\}\to 0\quad\text{as }t\to\infty$

Theorem (M & Sandholm, 2015)

Dominated strategies become extinct under the reinforcement learning dynamics (RL).

Backg OOC			The core scheme 00000000€0	
cnrs	Stability and con	vergence analysis		

Recall:

- x^* is a Nash equilibrium iff $u_k(x^*) \ge u_k(x_k; x_{-k}^*)$ for all $x_k \in \mathcal{X}_k$, $k \in \mathcal{N}$.
- A Nash equilibrium is strict if the above inequality is strict for all $x_k \neq x_k^*$.

Background and motivation			The core scheme 00000000€0	
cnrs	Stability and conve	ergence analysis		

Recall:

- x^* is a Nash equilibrium iff $u_k(x^*) \ge u_k(x_k; x_{-k}^*)$ for all $x_k \in \mathfrak{X}_k, k \in \mathfrak{N}$.
- A Nash equilibrium is strict if the above inequality is strict for all $x_k \neq x_k^*$.

Theorem (M & Sandholm '15)

Let x(t) = Q(y(t)) be an orbit of (RL).

- I. If $x(t) \rightarrow x^*$, then x^* is a Nash equilibrium.
- II. x^* is stable and attracting iff it is a strict Nash equilibrium.
- III. x(t) converges to Nash equilibrium in potential games.

Special case: EGT "folk theorem" for the replicator dynamics

P. Mertikopoulos

Backgro 0000			Learning with noisy feedback
CITS	Outline		
	Learning with nois	y feedback	

Backgr 000			Learning with noisy feedback
cnrs	The model		

Noisy payoff observations lead to the stochastically perturbed learning model

$$dY_k = v_k(X) dt + dZ_k$$

$$X_k = Q_k(\eta_k Y_k)$$
(SRL)

where:

• the noise process Z_k is an Itô martingale (think Brownian motion) with covariance

$$dZ_{k\alpha} \cdot dZ_{\ell\beta} = \Sigma_{\alpha\beta} dt$$

(noise possibly state-dependent and/or correlated across players and strategies)

- $\eta_k \equiv \eta_k(t)$ is a (possibly variable) *learning parameter*, introduced for flexibility
- the rest, as before

Assumptions for the noise (Z) and the learning parameter (η)

- $\sup_t \|\Sigma(t)\| < \infty$
- $\eta(t)$ smooth, nonincreasing, and $\eta(t) = \omega(t)$ (i.e. $\lim_{t\to\infty} t\eta(t) = \infty$)

cnrs		00000	000000000	0000000000
0000	and motivation	ooooo	000000000	

How do mixed strategies evolve under (SRL)?

Proposition

Suppose that the penalty function of player k is of the form $h_k(x_k) = \sum_{\alpha} \theta_k(x_{k\alpha})$ and Z_k is a Wiener process. Then, X(t) locally follows the stochastic differential equation

$$\begin{split} dX_{k\alpha} &= \frac{\eta_k}{\theta_{k\alpha}''} \left[v_{k\alpha} - \Theta_k'' \sum_{\beta} v_{k\beta} / \theta_{k\beta}'' \right] dt \\ &+ \frac{\eta_k}{\theta_{k\alpha}''} \left[\sigma_{k\alpha} \, dW_{k\alpha} - \Theta_k'' \sum_{\beta} \sigma_{k\beta} / \theta_{k\beta}'' \, dW_{k\beta} \right] \\ &+ \frac{\eta_k}{\eta_k} \frac{1}{\theta_{k\alpha}''} \left[\theta_{k\alpha}' - \Theta_k'' \sum_{\beta} \theta_{k\beta}' / \theta_{k\beta}'' \right] dt \\ &- \frac{1}{2} \frac{1}{\theta_{k\alpha}''} \left[\theta_{k\alpha}'' U_{k\alpha}^2 - \Theta_k'' \sum_{\beta} \theta_{k\beta}' / \theta_{k\beta}'' U_{k\beta}^2 \right] dt, \end{split}$$

where:

a)
$$\Theta_{k}^{\prime\prime} = \left(\sum_{\beta} 1/\theta_{k\beta}^{\prime\prime}\right)^{-1},$$

b)
$$U_{k\alpha}^{2} = \left(\frac{\eta_{k}}{\theta_{k\alpha}^{\prime\prime}}\right)^{2} \left[\sigma_{k\alpha}^{2} \left(1 - \Theta_{k}^{\prime\prime}/\theta_{k\alpha}^{\prime\prime}\right)^{2} + \sum_{\beta \neq \alpha} \left(\Theta_{k}^{\prime\prime}/\theta_{k\beta}^{\prime\prime}\right)^{2} \sigma_{k\beta}^{2}\right]$$

Background and motivation		Learning with noisy feedback
Evolution of mixe	ed strategies	

How do mixed strategies evolve under (SRL)?

Proposition

Suppose that the penalty function of player k is of the form $h_k(x_k) = \sum_{\alpha} \theta_k(x_{k\alpha})$ and Z_k is a Wiener process. Then, X(t) locally follows the stochastic differential equation

$$\begin{split} dX_{k\alpha} &= \frac{\eta_k}{\theta_{k\alpha}''} \left[v_{k\alpha} - \Theta_k'' \sum_{\beta} v_{k\beta} / \theta_{k\beta}'' \right] \mathrm{d}t \\ &+ \frac{\eta_k}{\theta_{k\alpha}''} \left[\sigma_{k\alpha} \, dW_{k\alpha} - \Theta_k \sum \sigma_{k\beta} / \theta_{k\beta}'' \, dW_{k\beta} \right] \\ &+ \frac{\eta_k}{\eta_k} e_{k\beta}^1 \left[\sigma_{k\alpha} - \Theta_k'' \sum_{\beta} \theta_{k\beta}' / \theta_{k\beta}'' \right] \mathrm{d}t \\ &- \frac{1}{2} \frac{\eta_k''}{\theta_{k\alpha}''} \left[\theta_{k\alpha}''' U_{k\alpha}^2 - \Theta_k'' \sum_{\beta} \theta_{k\beta}' / \theta_{k\beta}'' \, U_{k\beta}^2 \right] \mathrm{d}t, \end{split}$$

where:

a)
$$\Theta_{k}^{\prime\prime} = \left(\sum_{\beta} 1/\theta_{k\beta}^{\prime\prime}\right)^{-1},$$

b)
$$U_{k\alpha}^{2} = \left(\frac{\eta_{k}}{\theta_{k\alpha}^{\prime\prime}}\right)^{2} \left[\sigma_{k\alpha}^{2} \left(1 - \Theta_{k}^{\prime\prime}/\theta_{k\alpha}^{\prime\prime}\right)^{2} + \sum_{\beta \neq \alpha} \left(\Theta_{k}^{\prime\prime}/\theta_{k\beta}^{\prime\prime}\right)^{2} \sigma_{k\beta}^{2}\right]$$

Background and motivation		Learning with noisy feedback
Examples		

The entropic penalty $h(x) = \sum_{\alpha} x_{\alpha} \log x_{\alpha}$ yields the stochastic replicator dynamics

$$dX_{k\alpha} = \eta_k X_{k\alpha} \left[\nu_{k\alpha} - \sum_{\beta}^k X_{k\beta} \nu_{k\beta} \right] dt$$
 (drift)

$$+ \eta_k X_{k\alpha} \left[\sigma_{k\alpha} \, d \, W_{k\alpha} - \sum_{\beta}^k \sigma_{k\beta} X_{k\beta} \, d \, W_{k\beta} \right] \tag{noise}$$

$$+ \frac{\eta_k}{\eta_k} X_{k\alpha} \left[\log X_{k\alpha} - \sum_{\beta}^k X_{k\beta} \log X_{k\beta} \right] dt \qquad (\text{due to } \dot{\eta})$$

$$+\frac{1}{2}X_{k\alpha}\left[\sigma_{k\alpha}^{2}(1-2X_{k\alpha})-\sum_{\beta}^{k}\sigma_{k\beta}^{2}X_{k\beta}\left(1-2X_{k\beta}\right)\right]dt.$$
 (Itô)

Background and motivation		Learning with noisy feedback
Examples		

The quadratic penalty $h(x) = \frac{1}{2} \sum_{\alpha} x_{\alpha}^2$ yields the stochastic projection dynamics

$$dX_{k\alpha} = \begin{bmatrix} v_{k\alpha} - |\operatorname{supp}(X_k)|^{-1} \sum_{\beta \in \operatorname{supp}(X_k)} v_{k\beta} \end{bmatrix} dt \qquad (drift) \\ + \begin{bmatrix} \sigma_{k\alpha} dW_{k\alpha} - |\operatorname{supp}(X_k)|^{-1} \sum_{\beta \in \operatorname{supp}(X_k)} \sigma_{k\beta} dW_{k\beta} \end{bmatrix} \qquad (noise) \\ + \frac{\dot{\eta}_k}{\eta_k} \begin{bmatrix} X_{k\alpha} - |\operatorname{supp}(X_k)|^{-1} \end{bmatrix} dt. \qquad (due \text{ to } \dot{\eta})$$

NB: There is no Itô correction, but X(t) follows this SDE only locally

Background and motivation

CI

Preliminarie

The core scheme

Learning with noisy feedback

Examples

Evolution of play under (SRL) with logit and projection choice maps ($\sigma = 1$)

Background and motivation		Learning with noisy feedback
Consistency and regret		

(XL) leads to no regret (Sorin, 2009); in fact, so does (RL) (Kwon & M, 2014). Is this still true in the presence of noise?

Backgri 000			Learning with noisy feedback
cirs	Consistency and regret		

(XL) leads to no regret (Sorin, 2009); in fact, so does (RL) (Kwon & M, 2014). Is this still true in the presence of noise?

Yes, provided that the learning parameter $\eta(t)$ tends to zero.

Theorem (Bravo & M, 2015)

If a player runs (SRL) with $\eta(t)$ such that $\lim_{t\to\infty}\eta(t)=0$, then

$$\operatorname{Reg}(t) \leq \frac{\Omega}{\eta(t)} + \sigma_{\max}^2 \frac{|\mathcal{A}|}{2K} \int_0^t \eta(s) \, ds + \mathcal{O}(\sigma_{\max}\sqrt{t \log \log t}) \quad (a.s.),$$

where Ω and K are constants related to the player's penalty function.

Corollary If $\eta(t) \sim t^{-\gamma}$, optimal regret bound obtained for $\gamma = 1/2$ and is of order $\mathfrak{O}(\sqrt{t \log \log t})$; subleading term is $2\sigma_{\max}\sqrt{\frac{\Omega|A|}{2K}t}$.

Sketch of proof.

Introduce the (primal-dual) Fenchel coupling

$$F(x, y) = h(x) + h^*(y) - \langle y | x \rangle$$

• Fix some test strategy $p \in \mathfrak{X}$ and consider the rate-adjusted coupling

$$H(t) = \frac{1}{\eta(t)} F(p, \eta(t)Y(t))$$

- Use Itô's lemma to calculate dH(t)
- Bound each of the resulting terms (iterated logarithm for the noise, strong convexity for the Itô correction, etc.)
- Maximize over all $p \in \mathcal{X}$ to obtain bound on the regret.

Background and motivation		Learning with noisy feedback
	<u>()</u>	

Extinction of dominated strategies

Are dominated strategies eliminated under (SRL)?

Backgri 000			Learning with noisy feedback 0000000000000
cirs	Extinction of dom	inated strategies	

Are dominated strategies eliminated under (SRL)?

Yes, with no vanishing parameter assumptions on $\eta(t)$

Theorem (Bravo & M, 2015)

If $p_k \in \mathfrak{X}_k$ is dominated (even iteratively), then it becomes extinct along X(t) almost surely.

Backgri 000			Learning with noisy feedback
cnrs	Extinction of domi	inated strategies	

Are dominated strategies eliminated under (SRL)?

Yes, with no vanishing parameter assumptions on $\eta(t)$

Theorem (Bravo & M, 2015)

If $p_k \in \mathcal{X}_k$ is dominated (even iteratively), then it becomes extinct along X(t) almost surely.

Extinction rate of a pure dominated strategy $\alpha \in \mathcal{A}_k$:

• If η_k is constant, $h_k(x_k) = \sum_{\beta} \theta(x_{k\beta})$ and $\tau_{\delta} = \inf\{t > 0 : X_{k\alpha}(t) < \delta\}$, then

$$\mathbb{E}[au_{\delta}] \leq rac{C_k - heta_k'(\delta)}{\eta_k m_k} \quad ext{for some } C_k > 0, \ m_k > 0$$

• If θ_k is non-steep, dominated strategies become extinct in finite time (a.s.)

Background and motivation		Learning with noisy feedback
Stability and con	vergence properties	

What is the dynamics' long-term behavior in regards to Nash equilibria?

0000	00000	000000000	000000000000000000000000000000000000000
Stability and con	vergence properties		

What is the dynamics' long-term behavior in regards to Nash equilibria?

Theorem

Let $x^* \in \mathfrak{X}$. Then:

- If a trajectory X(t) converges to x^* with positive probability, x^* is a Nash equilibrium.
- If x^* is a strict Nash equilibrium, it is stochastically stable and attracting: for all $\varepsilon > 0$ and for every neighborhood U_0 of x^* , there exists a neighborhood $U \subseteq U_0$ of x^* such that

 $\mathbb{P}(X(t) \in U_0 \text{ for all } t \ge 0 \text{ and } \lim_{t \to \infty} X(t) = x^*) \ge 1 - \varepsilon.$

NB: no vanishing parameter assumptions on $\eta(t)$

Backgro 0000			Learning with noisy feedback
cnrs	Long-term time av	verages	

In zero-sum games, the dynamics do not converge to a Nash equilibrium, but their time-averages do (Hofbauer et al., 2009; M & Sandholm, 2015). Is this still true for (SRL)?

Backgr 000			Learning with noisy feedback 000000000●0
cnrs	Long-term time av	verages	

In zero-sum games, the dynamics do not converge to a Nash equilibrium, but their time-averages do (Hofbauer et al., 2009; M & Sandholm, 2015). Is this still true for (SRL)?

Yes, provided that the learning parameter $\eta(t)$ tends to zero.

Theorem (Bravo & M, 2015)

Let \mathcal{G} be a zero-sum 2-player game with an interior equilibrium. If both players run (SRL) with vanishing learning parameters ($\eta_k(t) \rightarrow 0$), the time averages $\bar{X}(t) = t^{-1} \int_0^t X(s) ds$ converge to the Nash set of \mathcal{G} .

(Corollary of more general result linking time averages of (SRL) to the best-response dynamics)

Background and motivation

CINIS

Preliminar

The core scheme

Learning with noisy feedback

Time averages

Background and motivation	Preliminaries 00000	The core scheme 0000000000	Learning with noisy feedback
Concluding remarks			

- Dichotomy between "converging to a face" (undom. strategies, strict equilibria) and "average" results (regret, time-averages, ...): constant η better for the former, vanishing η better for the latter
- Itô's formula introduces second-order terms: same control trade-offs as in discrete time
- Some results extend to more general games (e.g. continuous action sets); others trickier
- Possible to handle more intense noise processes (semimartingale noise, fractional Brownian motion), but results different
- Other directions???