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Background and motivation




@ Learning in Games

The basic context:

» Decision-making: agents choose actions, each seeking to optimize some objective.

> Payoffs: rewards are determined by the decisions of all interacting agents.

> Learning: the agents adjust their decisions and the process continues.
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@ Learning in Games

The basic context:

» Decision-making: agents choose actions, each seeking to optimize some objective.

Example: a trader chooses asset proportions in an investment portfolio.

> Payoffs: rewards are determined by the decisions of all interacting agents.

Example: asset placements determine returns.

> Learning: the agents adjust their decisions and the process continues.

Example: change asset proportions based on performance.

When does the agents’ learning process lead to a “reasonable” outcome?




» In many applications, decisions taken at very fast time-scales.

> Regulations/physical constraints limit changes in decisions.

» Fast time-scales have adverse effects on quality of feedback.




» In many applications, decisions taken at very fast time-scales.

Example: in high-frequency trading (HFT), decision times ~ 100 us.

> Regulations/physical constraints limit changes in decisions.

Example: the SEC requires small differences in HFT orders to reduce volatility.

» Fast time-scales have adverse effects on quality of feedback.

Example: volatility estimates highly inaccurate at the 100 us time-scale.




starts selling and HFTs
s its h (bottom

Aggressive selling due to imperfect volatility estimates induced a huge drop in liquidity and
precipitated the crash (Vuorenmaa and Wang, 2014)




What this talk is about:
Examine the robustness of a class of continuous-time learning schemes with noisy feedback.
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@ Game setup

Throughout this talk, we focus on finite games:

» Finite set of players: N = {1,...,N}
» Finite set of actions per player: Ax = {ak1, dk25 - }

» Reward of player k determined by corresponding payoff function ug:TT; Ar = R:

(1o s0n) = ug(an,...,an)
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Finite set of players: N = {1,...,N}
Finite set of actions per player: Ax = {ak1, dk 2. }
Reward of player k determined by corresponding payoff function ug: [T, Ax = R:
(o1y v 0tn) = ug(ou,. .., an)
Mixed strategies xi € X = A(Ay) yield expected payoffs
up(x1,...,x8) = Zal ... ZaN Xtyoq* XN,ay Uk (15 .05 AN)
Strategy profiles: x = (x1,...,xn) € X = [T X
Payoff vector of player k: v (x) = (Vka (%)) aca, where

Via(x) = vi(a3x-x)

is the payoff to the a-th action of player k in the mixed strategy profile x € X,




Suppose players follow a trajectory of play x(t) (based on some learning/adjustment rule,
to be discussed later).

How does xx (¢) compare on average to the “best possible” action ay € Aj?

ur(a;x_,(s)) — ur(x(s))
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Suppose players follow a trajectory of play x(t) (based on some learning/adjustment rule,
to be discussed later).

How does xx (¢) compare on average to the “best possible” action ay € Aj?

Reg, (1) = max [ (e 4(5)) i (x()) ds

Definition
x(t) leads to no regret if Reg, (t) = o(t) forall k € N, i.e. if every player's average regret is
non-positive in the long run.

NB: unilateral definition, no need for a game




@ Dominated strategies

Definition
A (pure) strategy a € Ay is dominated by § € Ay if

Vka(x) <vip(x) forallx e X.

More generally, a mixed strategy p € Xy is dominated by q € Xy if

(vi(x)|]p—q) <0 forallxeX.

Variants: weakly/iteratively dominated defined analogously.




@ Nash equilibrium

Definition
A strategy profile x* € X is a Nash equilibrium if

up (x5 x58) > un (s xZy)  forall xp € Xy, ke, (NE)

ie. when no player has an incentive to deviate from x*.

Variants:

» Pure: x* is a corner of X (the support of x* is a singleton)

» Strict: (NE) holds as an equality iff x; = x; forall k € N; equivalently, x* is strict iff x*
is pure and
ur(asx’y) <up(x™) forall a ¢ supp(xx)

» Restricted: (NE) holds for all xx whose support is contained in that of xj
(like Nash equilibrium but players not allowed to deviate to actions not present in x™)

strict € pure € Nash ¢ restricted
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@ Some basic questions

» Does x(t) lead to no regret?
» Are dominated strategies eliminated along x(t)?
> What are the possible limit points of x(#)?

» Does x(t) converge to Nash equilibrium?

> If not, do time averages converge?
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@ Exponential reinforcement learning

A well-known strategy adjustment process is exponential learning:

})kcx = Vka (x)
exp(yia(t))
Ypexp(yrp(t))

xka(t) =

L)
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In words:

» Score actions based on their cumulative payoffs.

» Assign probability weights exponentially proportionally to these scores.

(Exponential reinforcement of highest scoring strategies).
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@ Exponential reinforcement learning

A well-known strategy adjustment process is exponential learning:

Yia(t) = /(;tvka(x(s)) ds

exp(yra (1))
Ypexp(yrp(t))

L)
Xka ( t) =

In words:
» Score actions based on their cumulative payoffs.
» Assign probability weights exponentially proportionally to these scores.

(Exponential reinforcement of highest scoring strategies).

Continuous-time analogue of EXP3/EWA class of online learning algorithms (Vovk, 1990;
Littlestone and Warmuth, 1994; Sorin, 2009;...)
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@ Links with evolutionary game theory

Trajectories of play under (XL) follow the replicator dynamics (Taylor & Jonker; 1978):

Kka = Xka [Vka (x) - Zﬁ XkpVip (X)] (RD)

Most widely studied dynamics in evolutionary game theory; known properties include:

» Dominated strategies become extinct under interior solutions of (RD)

» Nash equilibria are stationary under (RD); stationary points of (RD) are restricted
equilibria

> Limit points of interior solutions are Nash equilibria

> Strict Nash equilibria are locally stable and attracting

» Convergence to restricted equilibria in potential games.




@ An dlternative characterization of exponential learning

The logit map ya + e’/ 35 e”# can be equivalently characterized as

y > argmax{(y|x) - h(x)}

xeA

where h(x) = - Y5 xg log xg is the (negative) Gibbs entropy.

In words:
Agents play mixed strategies that maximize their expected cumulative payoff minus a penalty.

Interpretation:
The entropic penalty promotes exploration (contrast to greedily playing arg max(y|x))
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@ Reinforcement learning via regularization

A general reinforcement principle:

» Score actions by keeping track of their cumulative payoffs over time.

» Play an “approximate” best response to the resulting score vector




@ Reinforcement learning via regularization

A general reinforcement principle:

» Score actions by keeping track of their cumulative payoffs over time.

» Play an “approximate” best response to the resulting score vector

Formally:
Vi =vi(x)
xi () = Qe(yx(1))

where the approximate best response (or choice map) Qy is defined as

(RL)

Qi (yx) = argmax{(yxlxr) — he(xx)}

xp€Xp
for some penalty function hg: Xy — R

Assumptions for h:
Continuous on X; smooth on interiors of faces; strongly convex:

h(tx + (1= t)x) < th(x) + (1= t)h(x) - 1Kt(1—t)[x - x'|* forall te[0,1]




@ Examples

Ex. |. Entropic penalty
h(x) = Zﬂ xplog xg

Induces the logit map

) < exp(va)
GeV) = 5 exp ()
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@ Examples

Ex. |. Entropic penalty:
h(x) = Zﬂ xplog xg
Induces the logit map
Ga(v) = exp(va)
DI exp(vp)

Ex. 2. Quadratic penalty:
1 2
h(x) = 3 Zp xg
Induces the closest point projection map

II(v) = argmin||v — x| = proj, v
xeA

Important dichotomy: / is steep ~» im Q = A°; h is non-steep ~» im Q = A
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@ Examples of dynamics

Ex. | The entropic penalty leads to exponential reinforcement learning:
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Trajectories of (XL) satisfy the replicator dynamics




@ Examples of dynamics

Ex. | The entropic penalty leads to exponential reinforcement learning:

j’kzx = Vika (X)
__exp(Jka) &)

Xka =
g exp(yip)

Trajectories of (XL) satisfy the replicator dynamics

Ex. 2 The quadratic penalty h(x) = % s xé leads to projected reinforcement learning:

Vi = Vi (x
i k(_ ) L)
X = Projy ¥
Closely related to the projection dynamics of Friedman (1991):
-1 .
 [vea®)  1supp () Sy vip(x) i€ supp ()
Xka = . (PD)
0 otherwise

The x-orbits of (PL) satisfy (PD) on an open dense set of times (M & Sandholm, 2015).
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@ Example portraits

Projection Dynamics (q=2)

X1

h(x) =3 2555
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@ Example portraits

g—Replicator Dynamics (q=3/2)
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@ Example portraits

Replicator Dynamics (g=1)
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@ Example portraits

Log—Barrier Dynamics (q—0)

X1

h(x) = - ¥ 4logxp
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@ Extinction of Dominated Strategies

Recall:

> pi is dominated by py if (vi(x)|px — pi) < 0 forall x € X.

» A strategy px € Xx becomes extinct along x(t) if

min{xg,(t) : @ € supp(px)} >0 ast— oo
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@ Extinction of Dominated Strategies

Recall:

> pi is dominated by py if (vi(x)|px — pi) < 0 forall x € X.
» A strategy px € Xx becomes extinct along x(t) if

min{xg,(t) : @ € supp(px)} >0 ast— oo

Theorem (M & Sandholm, 2015)

Dominated strategies become extinct under the reinforcement learning dynamics (RL).
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@ Stability and convergence analysis

Recall:

» x™ is a Nash equilibrium iff ug (x™) > ug (x4 27, ) for all x € Xy, k € N.

» A Nash equilibrium is strict if the above inequality is strict for all xx # xj.
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@ Stability and convergence analysis

Recall:

» x™ is a Nash equilibrium iff ug (x™) > ug (x4 27, ) for all x € Xy, k € N.

» A Nash equilibrium is strict if the above inequality is strict for all xx # xj.

Theorem (M & Sandholm '15)
Let x(t) = Q(¥(t)) be an orbit of (RL).
L Ifx(t) — x*, then x* is a Nash equilibrium.
Il. x* is stable and attracting iff it is a strict Nash equilibrium.

Il x(¢) converges to Nash equilibrium in potential games.

Special case: EGT “folk theorem” for the replicator dynamics
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@ Convergence to Equilibrium

Replicator Dynamics (q=1)
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@ Convergence to Equilibrium

Projection Dynamics (q=2)
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@ The model

Noisy payoff observations lead to the stochastically perturbed learning model

dYk = Vk(X) dt+de

(SRL)
Xi = Qr(niYi)

where:

> the noise process Zx is an Itd martingale (think Brownian motion) with covariance
AZka-dZog = Zop dt
(noise possibly state-dependent and/or correlated across players and strategies)
> 1k = Nk () is a (possibly variable) learning parameter, introduced for flexibility

» the rest, as before

Assumptions for the noise (Z) and the learning parameter ()

> sup, [Z(2)] < oo

» 1(t) smooth, nonincreasing, and () = w(t) (ie. limioo t7(t) = 00)
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@ Evolution of mixed strategies

How do mixed strategies evolve under (SRL)?
Proposition
Suppose that the penalty function of player k is of the form hy(xx) = ¥, Ok (xko) and Zy is

a Wiener process. Then, X(t) locally follows the stochastic differential equation

dXie = %}; [Vka - @Z Z/} vkﬁ/eff,;] dt

+ ng I:O'ka dea - @;: Zﬁ akﬁ/foﬂ deﬁ]
flk 1 7 ” ’ "

+ a 62’0( [Hk,,t - ®k Zﬁ Gkﬂ/ekﬁ] dt
11 " " "oyt

- E@ I:ekaUI%a -0 Zﬂ Op/Oks UIE;;] dt,

where:

a) ®;</ = (Z/; 1/9;!5)_1,

2
0 Ut () [t (- 061+ 3y, (065" ]
ka
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@ Evolution of mixed strategies

How do mixed strategies evolve under (SRL)?
Proposition

Suppose that the penalty function of player k is of the form hy(xx) = ¥, Ok (xko) and Zy is
a Wiener process. Then, X(t) locally follows the stochastic differential equation

ka(x = 6’1% [Vka - @Z Zﬁ Vi 4 N
ka (Y
+ 9’1% K 6;&; deﬁ]

ka
’:I ! "
+}171]: ﬁekﬁ/ekﬁ]dt
1 nr 4 nr "
EYT [eka Uke — O Zﬂ Okp/Okp UIEB] dt,

where:

a) ®;</ = (Z/; 1/9;!5)_1,

2
0 Vi = () Lot (- 04/00) + 5., (01015 ]
ka
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@ Examples

The entropic penalty h(x) = 3, X« log x4 yields the stochastic replicator dynamics

dXka = Nk Xka [Vk.x - Z; Xip Vkﬁ] dt (drift)
+ ﬂkaa I:O‘ka dea — Z; Uk/iXk/} del;] (noise)
+ %Xm [10g X = 3} Xig log X | dt (due to )

k

1 k A
+ EXka I:D‘Ifa(l = 2Xka) - Zﬂ a,f,;Xk,; (1 - ZXk/;):I dt. (td)
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@ Examples

The quadratic penalty h(x) = 1 3, x3 yields the stochastic projection dynamics

dXpo = [vk,x ~1supp (X0 ™ e Vk,s] dt (drift)
+ [Oka AWy — |supp(Xk)|71 Zﬁesupp(Xk) Okp de/;] (noise)
+ % [Xka - |supp(Xk)|_1:| dt. (due to #)

NB: There is no [t correction, but X(t) follows this SDE only locally
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Noisy Exponential Reinforcement Learning Noisy Projected Reinforcement Learning

©,0) G, D ©,0)

I s

©,0)

01 06 [ 0 00 2 07 06 0% [

Evolution of play under (SRL) with logit and projection choice maps (o = 1)
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@ Consistency and regret

(XL) leads to no regret (Sorin, 2009); in fact, so does (RL) (Kwon & M, 2014). Is this still true in
the presence of noise?
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@ Consistency and regret

(XL) leads to no regret (Sorin, 2009); in fact, so does (RL) (Kwon & M, 2014). Is this still true in
the presence of noise?

Yes, provided that the learning parameter #(t) tends to zero.

Theorem (Bravo & M, 2015)
If a player runs (SRL) with n(t) such that lim—co 7(t) = 0, then

A t
Reg(t) < — (t) ;ax% \ 17(s) ds + O(omax\/tloglogt) (as.),

where Q and K are constants related to the player's penalty function.

Corollary
If y(t) ~ 77, optimal regret bound obtained for y = 1/2 and is of order O(+/tloglog t);
subleading term is 20max % t.
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Sketch of proof.

> Introduce the (primal-dual) Fenchel coupling

F(x,y) = h(x) + 1" (y) = (ylx)
> Fix some test strategy p € X and consider the rate-adjusted coupling
1

HO =0

F(pn(0)Y (1))

» Use [td's lemma to calculate dH(t)

» Bound each of the resulting terms (iterated logarithm for the noise, strong convexity
for the It6 correction, etc.)

» Maximize over all p € X to obtain bound on the regret. O
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@ Extinction of dominated strategies

Are dominated strategies eliminated under (SRL)?
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@ Extinction of dominated strategies

Are dominated strategies eliminated under (SRL)?

Yes, with no vanishing parameter assumptions on #(t)

Theorem (Bravo & M, 2015)

If pr € Xy is dominated (even iteratively), then it becomes extinct along X (t) almost surely.
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@ Extinction of dominated strategies

Are dominated strategies eliminated under (SRL)?

Yes, with no vanishing parameter assumptions on #(t)

Theorem (Bravo & M, 2015)

If pr € Xy is dominated (even iteratively), then it becomes extinct along X (t) almost surely.

Extinction rate of a pure dominated strategy « € Ay:
> If yx is constant, hi(xx) = X5 0(xxp) and 75 = inf{t > 0 X, (¢) < 8}, then

. G 6:(9)

E[7s] < e for some Cy > 0, my >0

> If B is non-steep, dominated strategies become extinct in finite time (a.s.)
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@ Stability and convergence properties

What is the dynamics’ long-term behavior in regards to Nash equilibria?
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@ Stability and convergence properties

What is the dynamics’ long-term behavior in regards to Nash equilibria?

Theorem
Let x* € X. Then:

» If a trajectory X(t) converges to x™ with positive probability, x* is a Nash equilibrium.

» If x™ is a strict Nash equilibrium, it is stochastically stable and attracting: for all € > 0 and
for every neighborhood Uy of x*, there exists a neighborhood U € Uy of x™* such that

P(X(t) € U forall t >0 and lim,.e X(t) =x") > 1-e.

NB: no vanishing parameter assumptions on #(t)




@ Long-term time averages

In zero-sum games, the dynamics do not converge to a Nash equilibrium, but their
time-averages do (Hofbauer et al, 2009; M & Sandholm, 2015). Is this still true for (SRL)?
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@ Long-term time averages

In zero-sum games, the dynamics do not converge to a Nash equilibrium, but their
time-averages do (Hofbauer et al, 2009; M & Sandholm, 2015). Is this still true for (SRL)?

Yes, provided that the learning parameter #(t) tends to zero.

Theorem (Bravo & M, 2015)

Let G be a zero-sum 2-player game with an interior equilibrium. If both players run (SRL) with
vanishing learning parameters (1 (t) — 0), the time averages X(t) =t fof X(s)ds
converge to the Nash set of G.

(Corollary of more general result linking time averages of (SRL) to the best-response
dynamics)
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% Time averages

Noisy Exponential Reinforcement Learning T=5 T=10
10
03 0
o 0
B #
0. - 04
02 02
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00 02 04 06 05 10 00 02 o1 06 08 10
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08 0
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00 00 0.
00 2 o7 7% 3 o 00 02 04 06 08 10 00 02 01 06 05 10

(a) A sample trajectory and its time average. (b) Distribution of time averages at time T.




@ Concluding remarks

v

v

v

Dichotomy between “converging to a face” (undom. strategies, strict equilibria) and
“average” results (regret, time-averages, ...): constant # better for the former,
vanishing # better for the latter

[t&'s formula introduces second-order terms: same control trade-offs as in discrete
time
Some results extend to more general games (e.g. continuous action sets); others

trickier

Possible to handle more intense noise processes (semimartingale noise, fractional
Brownian motion), but results different

Other directions??”?
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