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Motivation

We want to address the following questions:

• How to compute the nucleolus of the assignment game?

• Are there many matrices with the same nucleolus?

• Which vectors can be a nucleolus?

• Which is the structure of ass. games with the same
nucleolus?

Why?

• The nucleolus for the general case is computed by a series of
linear programs.

• No formulas are known. Only an adapted algorithm
(Solymosi & Raghavan, 1994) is available.



Our results

• A procedure based on giving equal ‘dividends’ to the agents,
until some agents leave, and then giving to the rest of agents in an
ordered manner. Oper Res Lett, 2013

• Necessary and sufficient conditions for a vector to be a
nucleolus.

• The family of matrices with the same nucleolus is a
join-semilattice with one maximal element.

• Its unique maximum element is a valuation matrix and we
give its explicit form.

• It is a path-connected set, and we give the precise path. We
construct some minimal elements of the family,

• We give a rule to compute the nucleolus in some specific
cases.



What is an assignment market?

Introduced by Shapley and Shubik (1972):
There are two sides: sellers and buyers.

• M finite set of buyers,
• M ′ finite set of sellers,
• A non-negative matrix of profits:

aij joint profit if i ∈M, j ∈M ′ trade.

(M,M ′, A)

Each buyer demands exactly one unit of an indivisible good
(houses, horses), and each seller supplies one unit of the good.

From the valuations of the buyers and the reservation prices of the
sellers, a non-negative matrix can be obtained that represents the
joint profit that each buyer-seller pair can achieve.



Matchings

A matching µ ⊆M ×M ′ between M and M ′ is a bijection
between a subset of M and a subset of M ′.

We write (i, j) ∈ µ as well as j = µ (i) or i = µ−1 (j) . The set of
all maximal matchings is denoted by M (M,M ′) .

X A matching µ ∈M (M,M ′) is optimal for the assignment
market (M,M ′, A) if for all µ′ ∈M (M,M ′) we have∑

(i,j)∈µ

aij ≥
∑

(i,j)∈µ′
aij ,

and we denote the set of optimal matchings by M∗A (M,M ′) .



Cooperative games with transferable utility

A TU- cooperative game in coalitional form is described by a pair
(N, v)

N = {1, 2, . . . , n} is the set of players,

v(S) is the worth of the coalition S ⊆ N , with v(∅) = 0.



The cooperative assignment game

By Shapley and Shubik (1972):

• players: N =M ∪M ′, and
• characteristic function wA, defined by:

for S ⊆M and T ⊆M ′,

wA (S ∪ T ) = max

 ∑
(i,j)∈µ

aij | µ ∈M (S, T )

 .

Coalitions of buyers only or sellers only get zero.

The best that a coalition can do is to find the best pairs and pool
the profit.



An example

Consider the following matrix:

A =

 4 5 5
4 5 1
4 1 5


An optimal matching is set in boldface

µ∗A = {(1, 1′), (2, 2′), (3, 3′)}

and the worth of the grand coalition is:

wA (N) = 14.



The core of the game

X How to allocate this total worth wA(N)?
In a way such that no coalition has incentives to block the
formation of the grand coalition: the core.

Core (wA) =

{
x ∈ RN |

∑
i∈N

xi = wA (N) ,
∑
i∈S

xi ≥ wA (S) , for all S ⊆ N

}
.

X In the case of assignment games, it is proved that the core
coincides with the set of stable allocations: efficient and such that
no buyer-seller pair would do better by rejecting the assigned
partner and the proposed payoff and being matched together.
This guarantees that third-party payments are excluded in the core
of the assignment market.



The core of the game

For the core of the assignment game it is enough to impose
coalitional rationality for one-player coalitions and mixed-pair
coalitions:

Core (wA) =

{
(u, v) ∈ RM

+ × RM ′

+ |
∑

i∈M ui +
∑

j∈M ′ vj = wA (N) ,

ui + vj ≥ aij , for all (i, j) ∈M ×M ′
}
.

Then, (u, v) ∈ Core(wA) if and only if for any optimal assignment
µ∗A ∈M∗A (M,M ′) the following holds true:

1 ui + vj = aij if (i, j) ∈ µ∗A
2 ui + vj ≥ aij if (i, j) /∈ µ∗A
3 any player who is not assigned receives a payoff equal to 0, i.e.
ui = 0 if (i, j) /∈ µ∗A ∀j ∈M ′,
vj = 0 if (i, j) /∈ µ∗A ∀i ∈M.



The core of the game

Some properties

X The core is always non-empty (Shapley and Shubik, 1972)

X The core of the assignment game has a lattice structure
with two opposite extreme points:
the buyers-optimal core allocation, where each buyer receives
her maximum core payoff,
and the sellers-optimal core allocation where each seller does.

X Demange (1982) and Leonard (1983) prove that, if the
buyers-optimal core allocation is implemented, it is a dominant
strategy for each buyer to reveal her true valuations. Similarly,
truth-telling is a dominant strategy for the sellers under a
mechanism that assigns to each market its sellers-optimal core
allocation.



The core of the game

Some properties

X The core is always non-empty (Shapley and Shubik, 1972)

X The core of the assignment game has a lattice structure
with two opposite extreme points:
the buyers-optimal core allocation, where each buyer receives
her maximum core payoff,
and the sellers-optimal core allocation where each seller does.

X Demange (1982) and Leonard (1983) prove that, if the
buyers-optimal core allocation is implemented, it is a dominant
strategy for each buyer to reveal her true valuations. Similarly,
truth-telling is a dominant strategy for the sellers under a
mechanism that assigns to each market its sellers-optimal core
allocation.



The core of the game

Some properties

X The core is always non-empty (Shapley and Shubik, 1972)

X The core of the assignment game has a lattice structure
with two opposite extreme points:
the buyers-optimal core allocation, where each buyer receives
her maximum core payoff,
and the sellers-optimal core allocation where each seller does.

X Demange (1982) and Leonard (1983) prove that, if the
buyers-optimal core allocation is implemented, it is a dominant
strategy for each buyer to reveal her true valuations. Similarly,
truth-telling is a dominant strategy for the sellers under a
mechanism that assigns to each market its sellers-optimal core
allocation.



The nucleolus of the assignment game

• The nucleolus (Schmeidler, 1969) is the unique core element
that lexicographically minimizes the vector of non-increasingly
ordered excesses of coalitions.

If x ∈ C(wA), define for each coalition S ⊆M ∪M ′ its excess as

e (S, x) := wA (S)−
∑
i∈S

xi.

X For assignment games (see Solymosi and Raghavan, 1994) the
only coalitions that matter are the individual and mixed-pair ones.

Define the vector θ (x) of excesses of individual and mixed-pair
coalitions arranged in a non-increasing order.



The nucleolus of the assignment game

The nucleolus of the game (M ∪M ′, wA) is the
unique allocation

ν (wA) ∈ C(wA)

which minimizes θ (x) with respect to the lexicographic order over
the set of core allocations.

The lexicographic order ≥lex on Rd, is defined in the following
way: x ≥lex y, where x, y ∈ Rd, if x = y or if there exists
1 ≤ t ≤ d such that xk = yk for all 1 ≤ k < t and xt > yt.



The nucleolus of the assignment game

Llerena and Núñez (2011) characterize the nucleolus of a square
assignment game from a geometric point of view.
The nucleolus is the unique core allocation that is the midpoint of
some well-defined segments inside the core.

Let ∅ 6= S ⊆M, and ∅ 6= T ⊆M ′, with |S| = |T |

δAS,T (u, v) := min
i∈S, j∈M ′\T

{ui, ui + vj − aij} ,

δAT,S (u, v) := min
j∈T, i∈M\S

{vj , ui + vj − aij} ,

for any core allocation (u, v) ∈ C (wA).
This is the largest amount that can be transferred from players
in S to players in T with respect to the core allocation (u, v) while
remaining in the core.



The nucleolus of the assignment game

The nucleolus is the unique core allocation (u, v) ∈ C(wA) such
that

δAS,T (u, v) = δAT,S (u, v)

for any ∅ 6= S ⊆M and ∅ 6= T ⊆M ′ with |S| = |T |.

Notice that if T 6= µ(S) for some µ ∈M∗A (M,M ′) , then
δAS,T (u, v) = δAT,S (u, v) = 0. Then, for this characterization we
only check the case T = µ(S) for all optimal matchings.

[ bisection property]



An example

Consider

A =

(
8 6
4 4

)
and B =

(
8 4
0 4

)
.

The worth to share is v∗ = 12, and their nucleolus are in both
cases (5, 2, 3, 2) ∈ R2

+ × R2
+.

We depict the core of the associated assignment games and their
nucleolus. We depict the projection on the buyers’ (first)
coordinates of the core of both games. The core of the first one
C(wA) is in dark shading and the second one C(wB) in light
shading.
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Figure : Two cores with the same nucleolus, (5, 2; 3, 2).



When a vector may be a nucleolus?

Notice that not any vector is a candidate to be a nucleolus. For
example,
(3, 2, 1, 4) ∈ R2

+ × R2
+

can never be the nucleolus of any 2× 2 assignment game,

Nevertheless, and curiously enough, for the non-square case, that is
|M | 6= |M ′|, the vector (3, 2, 1, 4, 0) ∈ R2

+ × R3
+ may be the

nucleolus of an assignment game, for example, for the assignment
game associated to(

4 6 0
0 6 1

)
, or

(
0 7 2
3 5 0

)
.



When a vector may be a nucleolus?

1. For square markets
(x, y) ∈ RM+ × RM ′+ , with |M | = |M ′|.
The vector (x, y) is the nucleolus of a square assignment game if
and only if

min
i∈M
{xi} = min

j∈M ′
{yj} .

2. For non-square markets
(x, y) ∈ RM+ × RM ′+ , with |M | < |M ′|, and
Z0 = {j ∈M ′ | yj = 0} .
The vector (x, y) is the nucleolus of a non-square assignment game
if and only if

1 There exists Z ′0 ⊆ Z0 with |Z ′0| = |M ′| − |M |, and

2 min
i∈M
{xi} ≥ min

j∈M ′\Z′0
{yj} .



When a vector may be a nucleolus?

1. For square markets
(x, y) ∈ RM+ × RM ′+ , with |M | = |M ′|.
The vector (x, y) is the nucleolus of a square assignment game if
and only if

min
i∈M
{xi} = min

j∈M ′
{yj} .

2. For non-square markets
(x, y) ∈ RM+ × RM ′+ , with |M | < |M ′|, and
Z0 = {j ∈M ′ | yj = 0} .
The vector (x, y) is the nucleolus of a non-square assignment game
if and only if

1 There exists Z ′0 ⊆ Z0 with |Z ′0| = |M ′| − |M |, and

2 min
i∈M
{xi} ≥ min

j∈M ′\Z′0
{yj} .



Which are the matrices with the same nucleolus?

Proposition
Let A,A′ ∈ M+

m×m′ two matrices such that they share the same
nucleolus. Then, A ∨A′ has the same nucleolus.

• Notice that the nucleolus is not preserved by taking the
minimum operator.

The family of matrices with the same nucleolus is a ∨−semilattice
or join-semilattice.
It is a compact set.



Which are the matrices with the same nucleolus?

Theorem
Let (x, y) ∈ RM+ × RM ′+ be a vector, and
Fν (x, y) be the family of matrices in M+

m×m′ such that (x, y) is
the nucleolus of the associated assignment game.

If Fν (x, y) 6= ∅, there exists a unique maximum element, the
valuation matrix V ∈ Fν (x, y) such that A ≤ V for all
A ∈ Fν (x, y) .
Matrix V is given by

vij =

{
xi + yj if i ∈M, and j ∈M ′ \ Z ′0,
xi − min

j∈M ′\Z′0
{yj} if i ∈M, and j ∈ Z ′0,

where Z ′0 is any subset of Z0 = {j ∈M ′ | yj = 0} with cardinality
|Z ′0| = |M ′| − |M | .

• A matrix A ∈ M+
m×m′ is a valuation if for any i, i′ ∈ {1, . . .m}

and j, j′ ∈ {1, . . .m′} we have aij + ai′j′ = aij′ + ai′j .



Increasing piecewise linear path

Let Fν(x, y) be a nonempty family of matrices with a given
nucleolus, where (x, y) ∈ RM+ × RM ′+ , |M | ≤ |M ′| , and
V ∈ Fν(x, y) be its maximum.

Proposition
There is a continuous piecewise linear path (maybe not unique)
between any matrix in Fν(x, y) and its maximum element V.
From here it is clear that the family Fν(x, y) is a path-connected
set.



Minimal elements in Fν(x, y)

There are many minimal elements. Basically we obtain a minimal
matrix each time we fix an appropriate optimal matching, but not
any optimal matching can be used.
For instance, take the nucleolus (x, y) = (0, 3, 2, 0) ∈ R2

+ × R2
+.

Note that Fν(x, y) 6= ∅. and min{x1, x2} = 0 = min{y1, y2}. The
valuation matrix

V =

(
2 0
5 3

)
has two optimal matchings.
The first one, µ1 = {(1, 1) , (2, 2)} cannot be preserved if we look
for minimality, but the second one µ2 = {(1, 2) , (2, 1)} can.
Indeed,

C =

(
0 0
5 1

)
is the desired minimal matrix.



Minimal elements in Fν(x, y)

We say that an optimal matching µ ∈M∗V (M,M ′) is a
minimal-matrix compatible matching (m2-compatible) if
min

j∈µ(M)
{yj} = 0 then there exists a buyer i∗ ∈M such that

xi∗ = min
i∈M
{xi} and his optimal partner receives

yµ(i∗) = min
j∈µ(M)

{yj} = 0.

The set of all m2-compatible matchings is denoted by Mm (V ) .

Notice that in the square case, if min
i∈M
{xi} = min

j∈M ′
{yj} > 0, all

matchings are m2-compatible. As a consequence, m! minimal
matrices may appear.



Minimal elements in Fν(x, y)

Theorem

For any minimal-matrix compatible matching µ ∈Mm (V ) there
exists matrix C ∈ Fν(x, y) with µ ∈M∗C (M,M ′) and C is
minimal in (Fν(x, y),≤) . Moreover, if |M | ≥ 3 then C 6= V
whenever (x, y) is not the null vector.



Minimal elements in Fν(x, y)

As a direct consequence we obtain an interesting result on the
cardinality of the family Fν(x, y).

Corollary
For any vector (x, y) ∈ RM+ × RM ′+ either

(a) Fν(x, y) = ∅,
(b) Fν(x, y) is a singleton, or

(c) Fν(x, y) has a continuum of elements.



A rule for valuation matrices

Equal-split Smallest Entry Rule

For any valuation square assignment matrix, divide equally the
smallest entry(ies) of the matrix between the two involved agents
and complete the payoff by solving the adequate core equalities.
This is the nucleolus.

Example:

A =


6 8 8 11
4 6 6 9
1 3 3 6
2 4 4 7

 .

Its nucleolus is:

(5.5, 3.5, 0.5, 1.5; 0.5, 2.5, 2.5, 5.5).



A formula for assortative matrices

Assortative markets

A square assignment matrix is called assortative if it satisfies two
properties:

1 The matrix has increasing rows and columns, i.e.

ai,k ≤ ai,k+1 for k = 1, 2, . . . ,m− 1.

ak,j ≤ ak+1,j for k = 1, 2, . . . ,m− 1,

for all i and j, and
2 The matrix satisfies the inverse Monge property, i.e.

aij+akl ≥ ail+akj for all 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ m′.
This is equivalent to saying that any 2× 2 submatrix has an
optimal matching in its main diagonal.
Becker, 1973, or Eriksson et al., 2000 analyze assignment markets
where agents can be ordered by some trait, and it is preferable to
match with “better” agents, because they produce a larger output,
that is, the mating of the likes.



A formula for assortative matrices

Example:

A =

 2 4 5
3 6 8
4 7 10

 .

Its nucleolus is:
(1, 2.5, 4; 1, 3.5, 6).

The formula:

xi(wA) =
1

2
aii +

1

2

i−1∑
k=1

ak+1,k −
1

2

i−1∑
k=1

ak,k+1 for i ∈M,

yj(wA) =
1

2
ajj +

1

2

j−1∑
k=1

ak,k+1 −
1

2

j−1∑
k=1

ak+1,k for j ∈M ′.



The procedure to compute the nucleolus

• Main idea:

1. Distribute some “dividends” to the players in such a way that
we retain an assignment market, whose nucleolus gives the
remaining worth to the agents.
2. In it, we lower the entries in the matrix, until at least one
optimal entry of some optimal matching is set to zero. Players
involved in this(these) entry(ies) will not receive any more
dividends.
3. In this way we associate a new game with, at least, one player
less on each side.



The procedure to compute the nucleolus

Notation
Given a square assignment matrix A ∈ M+

m we define the set of all
entries that belong to some optimal matching,

HA =
{
(i, j) ∈M ×M ′ | (i, j)belongs to some optimal matching inA

}
.

Consider now the minimum entry in matrix A that is in some
optimal matching, and define

αA := min
{aij

2
| (i, j) ∈ HA

}
.



The procedure to compute the nucleolus

For t ≥ 0, we introduce the following matrix At.

atij =

{
max{0, aij − 2t} for (i, j) ∈ HA,
max{0, aij − t} for (i, j) /∈ HA.

Now for each non-optimal matching,
µ ∈M (M,M ′) \M∗A (M,M ′) , consider the following equation,
in t ≥ 0 :

fAµ (t) = wA(M ∪M ′)− 2mt−
∑

(i,j)∈µ

atij = 0,

and denote tAµ ≥ 0 its unique solution.

Define

βA := min
{
tAµ | µ ∈M

(
M,M ′

)
\M∗A

(
M,M ′

)}
.



The procedure to compute the nucleolus

In each step, for
ε = min{αA, βA},

either we obtain at least one entry of an optimal matching equal to
zero, and/or at least one more optimal matching.

If αA < βA we obtain, for ε = αA, that at least one entry in the
optimal matching has been dropped to zero.

If αA > βA we obtain, for ε = βA, that at least we have another
optimal matching.

The iterated application of the procedure increases the number of
optimal matchings and/or reduces the number of players. In a
finite number of steps we finish the procedure.



An example

Consider the following assignment market: M = {1, 2, 3, 4} and
M ′ = {1′, 2′, 3′, 4′, 5′}, and matrix

A =


6 7 4 5 9
4 3 7 8 3
0 1 3 6 4
2 2 5 7 8

 .

[Section 7 in Solymosi and Raghavan, 1994]



An example

In the first place, we add a dummy buyer, buyer 5, whose row is
filled with zeroes. The optimal matching is denoted by the boxes
around the entries.
Therefore, the square matrix that we begin with is the following
one:

A[0] =


6 7 4 5 9

4 3 7 8 3

0 1 3 6 4

2 2 5 7 8

0 0 0 0 0

 .



An example

Step 1:
Since there is one entry equal to zero in one optimal matching,
a51 = 0, players 5 and 1’ leave the market.

The new assignment market is M = {1, 2, 3, 4} and
M ′ = {2′, 3′, 4′, 5′} and its matrix is:

A[1] =


1 0 0 3

0 3 4 0

1 3 6 4

0 3 5 6

 .

Recall that a
[1]
ij = max{0, aij − ai1 − a5j}, for i = 1, 2, 3, 4 and

j = 2, 3, 4, 5.



An example

Step 2:
Since there is no entry equal to zero in some optimal matching, we
distribute the players ε = 1

2 which is exactly one half of the
minimum entry in the unique optimal matching.

In fact, in this case βA
[1]

= 1 and min{αA[1]
, βA

[1]} = 1
2 . The new

assignment market is M = {1, 2, 3, 4} and M ′ = {2′, 3′, 4′, 5′} and
its matrix is:

A[2] =


0 0 0 21

2

0 2 31
2 0

1
2 21

2 5 31
2

0 21
2 41

2 5

 .

Notice that the optimal entries reduce their worth by 2 ε = 2 1
2 = 1,

whilst the non-optimal entries reduce their worth by ε = 1
2 .



An example

Step 3:
Since there is one entry equal to zero in one optimal matching,
players 1 and 2’ leave the market.

The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′}
and its matrix is:

A[3] =


2 31

2 0

2 41
2

1
2

21
2 41

2 21
2

 .



An example

Step 4:
Since there is no entry equal to zero in some optimal matching, we
must compute α and β.

In this case αA
[3]

= 1 and βA
[3]

= 1
2 . Players receive 1

2 and we
obtain another optimal matching.
The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′}
and its matrix is:

A[4] =


1 3 0

11
2 31

2 0

2 4 11
2

 .

Notice that this matrix has two optimal matchings.



An example

Step 5:
Since there is no entry equal to zero in some optimal matching, we
obtain αA

[4]
= 1

2 and βA
[4]

= 1
6 . Therefore we distribute 1

6 to the
players and we obtain several additional optimal matchings.

The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′}
and its matrix is:

A[5] =


2
3 22

3 0

11
6 31

6 0

15
6 35

6 11
6

 .

Notice that we have obtained a new matrix with four optimal
matchings.



An example

Step 6:
Since there is one entry equal to zero in one optimal matching,
players 2 and 5’ leave the market.

The new assignment market is M = {3, 4} and M ′ = {3′, 4′} and
its matrix is:

A[6] =

(
1
2

1
2

0 0

)
.

Step 7:
Since there are two entries equal to zero, one in each optimal
matching, all remaining players leave the market.



An example

Player 1 2 3 4 5 1’ 2’ 3’ 4’ 5’

Step 1 6 4 0 2 0 0 0 0 0 0
Step 2 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

Step 3 0 0 1
2 0 0 0 0 21

2
Step 4 1

2
1
2

1
2

1
2

1
2

1
2

Step 5 1
6

1
6

1
6

1
6

1
6

1
6

Step 6 0 0 7
6

2
3 22

3 0

Step 7 1
2 0 0 0

TOTAL 61
2 51

6 21
6 41

3 0 0 1
2 15

6 35
6 32

3

ν(wA) =

(
6
1

2
, 5

1

6
, 2

1

6
, 4

1

3
; 0,

1

2
, 1

5

6
, 3

5

6
, 3

2

3

)
.



Thanks!!!
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