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A two-person zero-sum game

Let G = (V ,A) be a directed graph with two distinguished
nodes s and t.

The first player called the attacker chooses a set of arcs to
intercept every path from s to t.

The second player called the inspector inspects an arc trying
to find the attacker.

Washburn and Wood (1995) study the game where the evader
chooses a path from s to t and the inspector chooses an arc to
find the evader.
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We assume that the attacker concentrate on intercepting the arcs
in an st-cut C , he will choose it with probability yC .

S V \ S

s t

C = δ+(S)

δ−(S)

The inspector inspects an arc a with probability xa. Moreover, if
the inspector is at arc a , there is a probability pa of detecting the
attacker if he is at this arc a.
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D the matrix whose columns are the incidence vectors of all
st-cuts.

P diagonal matrix that contains the probabilities {pa}.

Dy is a column whose component associated with an arc a is
the probability that the attacker will be at a.

xPDy is the probability that the attacker will be detected.

Thus we concentrate on the following two-person game:

max
x

min
y

xPDy

∑

xa = 1,
∑

yC = 1,

x ≥ 0, y ≥ 0.
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We fix y ,

max
x

xPDy
∑

xa = 1,

x ≥ 0.

Its dual is

min
µ

µ

µ ≥ pa
∑

{yC | a ∈ C} ∀a.

Then our problem is

min
µ,y

µ (1)

∑

{yC | a ∈ C} ≤
µ

pa
∀a, (2)

∑

yC = 1, (3)

y ≥ 0. (4)
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Look for the following problem

max
∑

yC
∑

{yC | a ∈ C} ≤
1

pa
∀a,

y ≥ 0.

Its dual is

6



Look for the following problem

max
∑

yC
∑

{yC | a ∈ C} ≤
1

pa
∀a,

y ≥ 0.

Its dual is

min
∑

a

1

pa
xa

x(C ) ≥ 1 ∀st-cut C ,

x ≥ 0.
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Look for the following problem

max
∑

yC
∑

{yC | a ∈ C} ≤
1

pa
∀a,

y ≥ 0.

Its dual is

min
∑

a

1

pa
xa

x(C ) ≥ 1 ∀st-cut C ,

x ≥ 0.

The first problem is a maximum packing of st-cuts and the
second problem is the shortest path problem with weights 1

pa
.
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Look for the following problem

max
∑

yC
∑

{yC | a ∈ C} ≤
1

pa
∀a,

y ≥ 0.

Its dual is

min
∑

a

1

pa
xa

x(C ) ≥ 1 ∀st-cut C ,

x ≥ 0.

The first problem is a maximum packing of st-cuts and the
second problem is the shortest path problem with weights 1

pa
.

Let λ be the value of the shortest path with weights 1
pa

and ȳ
is the solution of the maximum packing of st-cuts. Then
µ = 1

λ
and ŷ = ( 1

λ
)ȳ is a solution of (1)-(4).
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So ŷ is the strategy of the attacker.

Let P be a shortest st-path with arc weights { 1
pa
}.

Then the strategy of the inspector is x̂(a) = 1
(λpa)

if a ∈ P,

otherwise x̂(a) = 0.

The complementary slackness conditions imply

∑

{ŷC | a ∈ C} =
µ

pa
∀a ∈ P.

Thus

x̂PDŷ =
∑

a∈P
1

λpa
pa

∑

{ŷC | a ∈ C}

=
∑

a∈P
1

λpa
pa

µ
pa

= µ.
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Theorem

Optimal strategies for both players can be computed in polynomial
time. The inspector strategy can be obtained from a shortest
st-path with arc weights { 1

pa
}. The attacker strategy can be

obtained from a maximum packing of st-cuts with arc capacities
{ 1
pa
}.
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Dijkstra’s Algorithm
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ȳC = 0 for each st-cut C .
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s t

u v

r w

4

5
4

2

1

5

3

2

2

6
0

5

S1

S

C1 = δ+(S1).
ȳC1

= 3.
S = {s, u}.

9



s t

u v

r w

4

5
4

2

1

5

3

2

2

6
0

5

S1

S

C1 = δ+(S1).
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ȳC3

= 1.
S = {s, u, v , r}.

s t

u v

r w

4

4

5

3

6
0

0
3

03

S1

S2

S3

S4

1
3

1
3

C4 = δ+(S4).
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A Cooperative Game
Let G = (V ,A) a directed graph with two distinguished nodes s
and t. In the Network Disconnection Game (A, σ) each player
owns an arc in A. The characteristic function of the game σ gives
for each coalition S , the maximum number of disjoint st-cuts.

The core.

x(A) = σ(A),

x(S) ≥ σ(S), ∀S ⊆ A.

Lemma

Let k be the length of an st-path of minimum cardinality. Then
the core is determined by

x(A) = k ,

x(C ) ≥ 1, for each st-cut C ,

x ≥ 0.
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So the extreme points of the core are the shortest paths. Therefore
the core is also defined by the following network flow formulation:

x(δ−(v))− x(δ+(v)) =







−1 if v = s,
0 if v 6= s, t,
1 if v = t,

x(u, v) ≥ 0 for all (u, v) ∈ A,

x(u, v) = 0 for all (u, v) ∈ A0.

Here A0 is the set of arcs that do not belong to any shortest
st-path.
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Theorem

For the Network Disconnection Game:

1 The core is non-empty if and only if there is a path from s to
t.

2 Given a vector x̄ , we can test whether x̄ belongs to the core in
polynomial time.
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The nucleolus.

For a coalition S and a vector x in the core, the excess is
e(x ,S) = x(S)− σ(S).

The nucleolus is the vector in the core that lexicographically
maximizes the vector of non-decreasingly ordered excesses
Schmeidler (1969).

The nucleolus can be computed with a sequence of linear
programs, Kopelowitz (1967):

max ǫ

x(S) ≥ σ(S) + ǫ, ∀S ⊆ A,

x(A) = σ(A).
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Let ǫ1 be the optimal value, then P1(ǫ1) will denote the set of the
optimal solutions.
For a polytope P ⊂ R

A let

F(P) = {S ⊆ A | x(S) = y(S),∀x , y ∈ P}.

In general given ǫr−1 we solve

max ǫ (5)

x(S) ≥ σ(S) + ǫ, ∀S /∈ F(Pr−1(ǫr−1)), (6)

x ∈ Pr−1(ǫr−1). (7)

Lemma

Instead of solving (5)-(7), we can solve

max ǫ

x(C ) ≥ 1 + ǫ, for each st-cut C /∈ F(Pr−1(ǫr−1)),

x(a) ≥ ǫ, for each arc a /∈ F(Pr−1(ǫr−1))

x ∈ Pr−1(ǫr−1).
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Lemma

For x in the core, if x(a) ≥ ǫ for each a /∈ F(Pr−1(ǫr−1)) and
x(a) = l(a) for a ∈ F(Pr−1(ǫr−1)), then x(δ+(S)) ≥ 1 + ǫ for
δ+(S) /∈ F(Pr−1(ǫr−1)).

Proof.

Using the network flow formulation we get
x(δ+(S)) = 1 + x(δ−(S)).
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Thus we have to look for the maximum value λ such that the
system below has a solution:

x(δ−(v))− x(δ+(v)) =







−1 if v = s,
0 if v 6= s, t,
1 if v = t,

x(u, v) = l(u, v) ∀(u, v) ∈ F(Pr−1(ǫr−1)),

x(u, v) ≥ l(u, v) + λ ∀(u, v) ∈ Vr = V \ F(Pr−1(ǫr−1))

which may be reduced to the following system :

x ′(δ−(v))− x ′(δ+(v)) = b(v) + λd(v), ∀v ∈ V
x ′ ≥ 0.

with x ′(u, v) = x(u, v)− l(u, v)− λ for each arc (u, v) ∈ Ar . Here
∑

b(v) = 0 and
∑

d(v) = 0.
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How to decide if the system below has a solution or not.

x(δ−(v))− x(δ+(v)) = b(v) ∀v ∈ V
x ≥ 0.
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How to decide if the system below has a solution or not.
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x ≥ 0.

s ′ t ′
u v
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−b(u) b(v)

∞
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∃ a solution iff the value of the
maximum s ′t ′-flow is

α = −b(B−) = b(B+)

.
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How to decide if the system below has a solution or not.

x(δ−(v))− x(δ+(v)) = b(v) ∀v ∈ V
x ≥ 0.

s ′ t ′
u v

B+B−

−b(u) b(v)

∞

∃ a solution iff the value of the
maximum s ′t ′-flow is

α = −b(B−) = b(B+)

.

s ′

t ′

S

T = V \ S

The capacity of the cut
δ+((S ∪ {s ′}) is

= −b(B− ∩ T ) + b(B+ ∩ S)
= α+ b(B− ∩ S) + b(B+ ∩ S)
= α+ b(S).
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Finding the max s ′t ′-flow reduces to minimizing b(S) for
S ⊆ V and δ+(S) = ∅.

When there is no solution, b(S) < 0.

For our problem, when λ = 0 we have a solution.

If the system is infeasible for λ̄ > 0, then there is δ+(S) = ∅
with b(S) + λ̄d(S) < 0 and d(S) < 0.

To have feasibility we should impose b(S) + λd(S) ≥ 0. Therefore

λ = min
b(S)

−d(S)
.

We solve this with Newton’s method.
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1 Set λ = λM .

2 S̄ = argmin{b(S) + λd(S)}, δ+(S) = ∅ and d(S) < 0.

3 If b(S̄) + λd(S̄) < 0, then update

λ =
b(S̄)

−d(S̄)
,

and go to 2. Otherwise b(S̄) + λd(S̄) = 0, and we stop.

Theorem

Computing the nucleolus of the Network Disconnection Game
requires O(|A|2) min-cut problems.
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