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A two-person zero-sum game

@ Let G = (V,A) be a directed graph with two distinguished
nodes s and t.

@ The first player called the attacker chooses a set of arcs to
intercept every path from s to t.

@ The second player called the inspector inspects an arc trying
to find the attacker.

Washburn and Wood (1995) study the game where the evader
chooses a path from s to t and the inspector chooses an arc to

find the evader.



We assume that the attacker concentrate on intercepting the arcs
in an st-cut C, he will choose it with probability yc.

S V\S
= 6H(S

5(5)

The inspector inspects an arc a with probability x,. Moreover, if
the inspector is at arc a, there is a probability p, of detecting the
attacker if he is at this arc a.



@ D the matrix whose columns are the incidence vectors of all
st-cuts.
@ P diagonal matrix that contains the probabilities {p,}.

@ Dy is a column whose component associated with an arc a is
the probability that the attacker will be at a.

@ xPDy is the probability that the attacker will be detected.

Thus we concentrate on the following two-person game:

max m|n xPDy

Zxa =1,
Y ye=1,

x>0,y >0.



We fix y,
max xPDy
x
Zxa =1,
x > 0.
Its dual is
min
I
p>pay fyclaeC} Va

Then our problem is

min p (1)
Drclac s va (2)

> ye=1, (3)

y > 0. (4)



Look for the following problem
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Look for the following problem
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Look for the following problem
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@ The first problem is a maximum packing of st-cuts and the
second problem is the shortest path problem with weights p—la.



Look for the following problem

manyC
1
Z{yc|aEC}§p— Va,

y =0.

Its dual is
. 1
min —X
za: pa°
x(C)>1 Vst-cut C,
x > 0.

@ The first problem is a maximum packing of st-cuts and the
second problem is the shortest path problem with weights p—la.
@ Let X be the value of the shortest path with weights é and y
is the solution of the maximum packing of st-cuts. Then
p =13 and § = (3)y is a solution of (1)-(4).



@ So y is the strategy of the attacker.
@ Let P be a shortest st-path with arc weights {é}

@ Then the strategy of the inspector is X(a) = ﬁ ifacP,
otherwise %X(a) = 0.

The complementary slackness conditions imply
" _ K
E {yclae C}=— VaeP.
Pa
Thus

RPDY =3 cp 3pParidclac C}
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Theorem

Optimal strategies for both players can be computed in polynomial
time. The inspector strategy can be obtained from a shortest
st-path with arc weights {é} The attacker strategy can be
obtained from a maximum packing of st-cuts with arc capacities

{z}




Dijkstra’s Algorithm

¥c = 0 for each st-cut C.

S ={s}.
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. .
S={s,u,v,r,t}
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R(s,u) =% %(u,v) = %; 2(v, 1)

[N
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A Cooperative Game

Let G = (V, A) a directed graph with two distinguished nodes s
and t. In the Network Disconnection Game (A, o) each player
owns an arc in A. The characteristic function of the game o gives
for each coalition S, the maximum number of disjoint st-cuts.

The core.

Lemma

Let k be the length of an st-path of minimum cardinality. Then
the core is determined by

x(A) = k,
x(C) > 1, for each st-cut C,
x > 0.
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So the extreme points of the core are the shortest paths. Therefore
the core is also defined by the following network flow formulation:

-1 ifv=s,
x(67(v)) = x(0T(v)) =< 0 ifv#s,t,
1 if v=t,
x(u,v) >0 forall (u,v) € A,
x(u,v) =0 forall (u,v) € Ap.

Here Ap is the set of arcs that do not belong to any shortest
st-path.
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Theorem
For the Network Disconnection Game:

@ The core is non-empty if and only if there is a path from s to
t.

© Given a vector X, we can test whether X belongs to the core in
polynomial time.
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The nucleolus.

@ For a coalition S and a vector x in the core, the excess is
e(x,S) = x(S) — a(S).
@ The nucleolus is the vector in the core that lexicographically

maximizes the vector of non-decreasingly ordered excesses
Schmeidler (1969).

The nucleolus can be computed with a sequence of linear
programs, Kopelowitz (1967):

x(S)>0(S)+e€ VSCA,
x(A) = o(A).
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Let €1 be the optimal value, then P;(e1) will denote the set of the
optimal solutions.
For a polytope P C R let

F(P)={S C A|x(S)=y(S),Vx,y € P}.

In general given ¢,_1 we solve

max e (5)
x(S) > o(S)+e€ VS & F(Pr_1(e,—1)), (6)
X € Pr—l(ﬁr—1)~ (7)

Lemma
Instead of solving (5)-(7), we can solve

max e
x(C)>1+e, for each st-cut C ¢ F(P,-1(er—1)),
x(a) > €,  for each arc a ¢ F(Pr—1(€r—1))
x € Pr_1(€r—1).

18



Lemma

For x in the core, if x(a) > € for each a ¢ F(P,—1(e,—1)) and
x(a) = I(a) for a € F(Pr_1(€r—1)), then x(67(S)) > 1+ € for
07(S) ¢ F(Pr-1(er-1))-

Proof.
Using the network flow formulation we get
x(0%(S)) =1+ x(67(9)).
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Thus we have to look for the maximum value A such that the
system below has a solution:

-1 ifv=s,
x(6~(v)) = x(0T(v)) =< 0 ifv#s,t,
1 if v=rt,

x(u,v) = I(u,v) Y(u,v) € F(Pr-1(€er—1)),
x(u,v) > l(u,v)+ X Y(u,v) eV, =V\F(Pr-1(er-1))

which may be reduced to the following system :

x'(67(v)) = X' (6%(v)) = b(v) + Ad(v), YveV
">0.

with x'(u, v) = x(u, v) — I(u, v) — X for each arc (u,v) € A,. Here

> b(v) =0and > d(v)=0.
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How to decide if the system below has a solution or not.

(6‘(§v)) —x(6T(v))=b(v) VYveV

X
X

v
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How to decide if the system below has a solution or not.

x(07(v)) = x(6%(v)) = b(v) VveV
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How to decide if the system below has a solution or not.

x(07(v)) = x(6%(v)) = b(v) VveV

3 a solution iff the value of the
maximum s’t'-flow is

a=—b(B~) = b(B")
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How to decide if the system below has a solution or not.

x(07(v)) = x(6%(v)) = b(v) VveV

T=V\S

3 a solution iff the value of the
maximum s’t'-flow is

a=—b(B~) = b(B")
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How to decide if the system below has a solution or not.

x(07(v)) = x(6%(v)) = b(v) VveV

T=V\S

3 a solution iff the value of the  The capacity of the cut

maximum s’t'-flow is dT((SU{s'})is
a=—b(B~) = b(BY) = _b(B-NT)+b(BTNS)
=a+bB " NS)+b(BTNS)
= a+ b(S).
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@ Finding the max s't’-flow reduces to minimizing b(S) for
SC Vanddt(S)=0.
@ When there is no solution, b(S) < 0.
@ For our problem, when A = 0 we have a solution.
o If the system is infeasible for X > 0, then there is 6(S) = 0)
with b(S) + Ad(S) < 0 and d(S) < 0.
To have feasibility we should impose b(S) + Ad(S) > 0. Therefore

b(S)
—d(S)

A = min

We solve this with Newton's method.
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Q Set A =\
Q S = argmin{b(S) + \d(S)}, 67(S) =0 and d(S) < 0.
Q If b(S) + \d(S) < 0, then update

_ b(S
= iy

and go to 2. Otherwise b(S) 4+ A\d(S) = 0, and we stop.

Theorem

Computing the nucleolus of the Network Disconnection Game
requires O(|A|?) min-cut problems.
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