
Airports and Railways:
Facility Location Meets

Network Design
Anna Adamaszek, Antonios Antoniadis, Tobias Mömke

Motivation
• Given a set of cities, make them

pairwise connected, through a
network of airports and railways.

• Each city has an associated cost
for building an airport, and each
railway line has cost proportional
to its distance.

• Each airport can serve at most k
cities.

• Minimise cost for building these
airports and railways.

Formal Definition

• Complete graph on n vertices on the Euclidean
plane. Vertex costs a(v), and edge costs r(e).

• Goal: Compute a minimum-cost network of
airports , and railways connecting all the
cities, where each connected component contains
at most k vertices, and at least one airport.

A ✓ V (G)
R ✓ E(G)

Example
k=4

Example
k=4

Preliminaries
• Approximation algorithm: Runs in polynomial time,

obtains a suboptimal solution.
• Approximation factor α: on any instance the solution

returned by the algorithm is within a multiplicative
factor of α from the optimal one.

• Polynomial Time Approximation Scheme (PTAS): A
family of algorithms, for each constant ε>0, the family
contains an (1+ε)-approximation algorithm (the running
time depends on ε).

Related Work
• Facility Location: All cities have to be connected

directly to their airport.

• Capacitated Minimum Spanning Tree:
Collection of trees, of minimal cost, each of size at
most k, and connected to a pre-specified root.
Vertices can have demands.

• Capacitated Vehicle Routing Problem
(CVRP): Given a set of cities, output a set of tours
of size at most k each, that cover all the cities.

Capacitated Vehicle Routing
Problem (CVRP)

Depot

k=4

Related Work
• Capacitated Minimum Spanning Tree: Best known

approximation algorithm in the Euclidean setting:
3.15-approximation [Jothi and Raghavachari ’05]

• Capacitated Vehicle Routing (CVRP): PTAS’s for
very large capacity () [Asano et al. ’97],
and small capacity () [Adamaszek et al.
’10]. QPTAS for all k [Das and Mathieu ’10]

• Long-standing open problem: PTAS for CVRP and
all k

k = ⌦(n)
k  2log

o(1) n

Special Cases
• Components:

• No restriction (each component will be a tree).
• Each component must be a path.

• Airports:
• No restriction (infinite capacity).
• Uniform airport costs.

NP-hardness
ARP

Reduction from Travelling Salesman Path Problem.
: Components are paths.

ARF

Reduction from Planar Monotone Cubic One-in-Three SAT.
: Components form a forest.

Even without airport-capacities and
uniform airport costs.

Even with uniform airport costs.

 Infinite Capacity
AR1

F : A generalisation of the Minimum Spanning Tree
 problem.

A simple, exact algorithm:
1. Augment G with a vertex , s.t. each edge has

weight . Result: not nec. Euclidean.
2. Compute MST in resulting graph.
3. Output A= ,

R= .

v0 (v, v0)
a(v)

{v : {v, v0} 2 MST}
{{v1, v2} 2 MST : v1, v2 6= v0}

Example

Example
v0

v

a(v)

Example
v0

v

a(v)

Example

Example
For each solution for the
 instance there is a
corresponding tree of
with the same cost and
vice-versa.

G0
AR1

F

√

Arora’s Scheme for TSP
(Summary)

• Perturbation: (i) all nodes at integer coordinates,
(ii) maximum internode distance .

• Shifted Quadtree:

• Dynamic Programming: we introduce portals between the
squares, and compute optimal portal-respecting tour
using DP.

O✏(n)

Infinite Capacity
AR1

P : We develop a PTAS inspired by Arora’s
scheme:

Step 1: There may be large gaps between distinct connected
components in OPT.

Generate Independent
Instances

1. Consider each edge e.
2. Pick a vertex v. Cluster all vertices reachable from v with

edges of length at most |e|.

e

v

Step 2. Introduce randomly shifted grid, and portals (exactly
as in Arora’s scheme).
Step 3. (i) Make sure that paths don’t cross:

(ii) We show that there exists an (logn,2)-thin solution, with
cost within a (1+ε)-factor of optimal.
logn:= roughly #portals per cell.
2:= maximum #paths crossing each portal.
Step 4. Extend Arora’s DP, to find an optimal (logn,2)-thin
solution.

Example:

Theorems

Thm1: There is an exact polynomial-time algorithm for the
2-dimensional Euclidean Problem.

Thm2: There is a PTAS for the 2-dimensional Euclidean
Problem.AR1

P

AR1
F

Infinite Airport Capacity

 Uniform Airport Costs

General Structure:
1. Preprocess the instance.
2. Subdivide it into sparse and dense sub-instances.
3. Solve sparse and dense substances independently.
4. Recombine them into a global result.

Here we will handle simultaneously. 1ARF and 1ARP

Preprocessing
We split the instance into substances of size with
 .

`i ⇥ `i
`i 

1

✏ • Pick random
0<a,b<1/ε

• Add horizontal
and vertical
lines at a + i(1/ε)
and b + i(1/ε).

(L,L)

(0,0)

1/ε

1/ε

Note: substances of size
 each. In Arora’s

 scheme: .
O✏(1)

O✏(n)

Proof idea: One can show that the expected
total cost of removed edges is at most an
ε-fraction of the optimal solution. Choice of

a and b can be derandomized.

Note: OPT cannot contain edges longer than 1!

Case 1: subinstance
contains points. 1

✏7

Case 2: subinstance
contains points.>

1

✏7

√

Slight adaption of Arora’s
scheme,see

[Asano et al.’97]

More interesting case!

Dense Instances

• Start with an infinite capacity solution.
• Split instance into cells.
• Cut each component of the infinite capacity solution

into εk-vertex chunks, and associate each of them
with a cell.

• Connect the chunks greedily but cheaply.
• For proof: (i) Prove that there exists an almost

optimal “chunk-respecting” solution, and (ii) find a
good “chunk-respecting” solution.

Idea

✏2 ⇥ ✏2
√√

1ARF 1ARP

Return trees of sizes
between εk and 6εk:
• MST in Euclidean

plane has degree at
most 6.

• Collect the trees
bottom-up.

Cut each path into
pieces of length εk.

Associate chunks with cells:
• Forest case: pick a random

vertex for each chunk.
• Path case: Assign each

endpoint of each chunk.

✏2

✏2

Assembling chunks
• Forest Case: greedily collect chunks for each cell
• Path Case: Follow a path, connect its endpoint to

another endpoint in the same cell etc.

✏2

✏2

✏2

✏2

Proof Sketch:
• Polynomial running time + Feasibility.
• The (infeasible) solutions for the uncapacitated case are a

lower bound (up to (1+ε)) for the optimal solution.
• Airport cost: Roughly as many airports as OPT. “Stuck” at

most once per cell.
• Edge cost: Added at most edges per component,

each of cost at most , & a component has cost at
least 1.

✏2
p
2

1/✏

Open Problems

• and in general?

• Other metrics?

• Further problems in the Airport and Railway
framework?

• Other special instance classes of and ?

ARP ARF

ARP ARF

Thanks!

