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Motivation
• Given a set of cities, make them 

pairwise connected, through a 
network of airports and railways.

• Each city has an associated cost 
for building an airport, and each 
railway line has cost proportional 
to its distance. 

• Each airport can serve at most k 
cities. 

• Minimise cost for building these 
airports and railways.



Formal Definition

• Complete graph on n vertices on the Euclidean 
plane. Vertex costs a(v), and edge costs r(e). 

• Goal: Compute a minimum-cost network of 
airports , and                  railways connecting all the 
cities, where each connected component contains 
at most k vertices, and at least one airport.

A ✓ V (G)
R ✓ E(G)
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Preliminaries
• Approximation algorithm: Runs in polynomial time, 

obtains a suboptimal solution. 
• Approximation factor α: on any instance the solution 

returned by the algorithm is within a multiplicative 
factor of α from the optimal one.  

• Polynomial Time Approximation Scheme (PTAS): A 
family of algorithms, for each constant ε>0, the family 
contains an (1+ε)-approximation algorithm (the running 
time depends on ε).



Related Work
• Facility Location: All cities have to be connected 

directly to their airport. 

• Capacitated Minimum Spanning Tree: 
Collection of trees, of minimal cost, each of size at 
most k, and connected to a pre-specified root. 
Vertices can have demands.

• Capacitated Vehicle Routing Problem 
(CVRP): Given a set of cities, output a set of tours 
of size at most k each, that cover all the cities. 



Capacitated Vehicle Routing 
Problem (CVRP)

Depot

k=4



Related Work
• Capacitated Minimum Spanning Tree: Best known 

approximation algorithm in the Euclidean setting: 
3.15-approximation [Jothi and Raghavachari ’05] 

• Capacitated Vehicle Routing (CVRP): PTAS’s for 
very large capacity (              ) [Asano et al. ’97], 
and small capacity (                    ) [Adamaszek et al. 
’10]. QPTAS for all k [Das and Mathieu ’10] 

• Long-standing open problem: PTAS for CVRP and 
all k

k = ⌦(n)
k  2log

o(1) n



Special Cases
• Components: 

• No restriction (each component will be a tree). 
• Each component must be a path. 

• Airports: 
• No restriction (infinite capacity). 
• Uniform airport costs.



NP-hardness
ARP

Reduction from Travelling Salesman Path Problem.
: Components are paths.

ARF

Reduction from Planar Monotone Cubic One-in-Three SAT.
: Components form a forest.

Even without airport-capacities and 
uniform airport costs.

Even with uniform airport costs.



 Infinite Capacity
AR1

F : A generalisation of the Minimum Spanning Tree 
   problem.

A simple, exact algorithm:
1. Augment G with a vertex   , s.t. each edge          has 

weight       . Result: not nec. Euclidean. 
2. Compute MST in resulting graph. 
3. Output A=                               ,                                               

R=                                                .

v0 (v, v0)
a(v)

{v : {v, v0} 2 MST}
{{v1, v2} 2 MST : v1, v2 6= v0}
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Example
For each solution for the  
      instance there is a 
corresponding tree of    
with the same cost and 
vice-versa.

G0
AR1

F

√



Arora’s Scheme for TSP 
(Summary)

• Perturbation: (i) all nodes at integer coordinates,            
(ii) maximum internode distance          . 

• Shifted Quadtree:  

• Dynamic Programming: we introduce portals between the 
squares, and compute optimal portal-respecting tour 
using DP. 

O✏(n)



Infinite Capacity
AR1

P : We develop a PTAS inspired by Arora’s 
scheme:

Step 1: There may be large gaps between distinct connected 
components in OPT. 



Generate Independent 
Instances

1. Consider each edge e. 
2. Pick a vertex v. Cluster all vertices reachable from v with 

edges of length at most |e|. 

e

v



Step 2. Introduce randomly shifted grid, and portals (exactly 
as in Arora’s scheme). 
Step 3. (i) Make sure that paths don’t cross: 

(ii) We show that there exists an (logn,2)-thin solution, with 
cost within a (1+ε)-factor of optimal. 
logn:= roughly #portals per cell. 
2:= maximum #paths crossing each portal. 
Step 4. Extend Arora’s DP, to find an optimal (logn,2)-thin 
solution.

Example:



Theorems

Thm1: There is an exact polynomial-time algorithm for the 
2-dimensional Euclidean                Problem.

Thm2: There is a PTAS for the 2-dimensional Euclidean                   
Problem.AR1

P

AR1
F

Infinite Airport Capacity



 Uniform Airport Costs

General Structure:
1. Preprocess the instance. 
2. Subdivide it into sparse and dense sub-instances. 
3. Solve sparse and dense substances independently. 
4. Recombine them into a global result.

Here we will handle                               simultaneously. 1ARF and 1ARP



Preprocessing
We split the instance into substances of size           with 
            .

`i ⇥ `i
`i 

1

✏ • Pick random 
0<a,b<1/ε 

• Add horizontal 
and vertical 
lines at a + i(1/ε) 
and b + i(1/ε).

(L,L)

(0,0)



1/ε

1/ε

Note: substances of size 
               each. In Arora’s 

               scheme:          .
O✏(1)

O✏(n)

Proof idea: One can show that the expected 
total cost of removed edges is at most an 
ε-fraction of the optimal solution. Choice of 

a and b can be derandomized.

Note: OPT cannot contain edges longer than 1!



Case 1: subinstance 
contains          points. 1

✏7

Case 2: subinstance 
contains          points.>

1

✏7

√

Slight adaption of Arora’s 
scheme,see  

[Asano et al.’97]

More interesting case!



Dense Instances

• Start with an infinite capacity solution. 
• Split instance into             cells. 
• Cut each component of the infinite capacity solution 

into εk-vertex chunks, and associate each of them 
with a cell. 

• Connect the chunks greedily but cheaply.  
• For proof: (i) Prove that there exists an almost 

optimal “chunk-respecting” solution, and (ii) find a 
good “chunk-respecting” solution. 

Idea

✏2 ⇥ ✏2
√√



1ARF 1ARP

Return trees of sizes 
between εk and 6εk: 
• MST in Euclidean 

plane has degree at 
most 6. 

• Collect the trees 
bottom-up.

Cut each path into 
pieces of length εk.



Associate chunks with cells: 
• Forest case: pick a random 

vertex for each chunk. 
• Path case: Assign each 

endpoint of each chunk.

✏2

✏2



Assembling chunks
• Forest Case: greedily collect chunks for each cell 
• Path Case: Follow a path, connect its endpoint to 

another endpoint in the same cell etc.

✏2

✏2

✏2

✏2



Proof Sketch:  
• Polynomial running time + Feasibility. 
• The (infeasible) solutions for the uncapacitated case are a 

lower bound (up to (1+ε)) for the optimal solution. 
• Airport cost: Roughly as many airports as OPT. “Stuck” at 

most once per cell. 
• Edge cost: Added at most        edges per component, 

each of cost at most           , & a component has cost at 
least 1.

✏2
p
2

1/✏



Open Problems

•         and         in general? 

• Other metrics? 

• Further problems in the Airport and Railway 
framework? 

• Other special instance classes of          and          ?

ARP ARF

ARP ARF



Thanks!


