Alrports and Rallways:
Facllity Location Meets
Network Design

Anna Adamaszek, Antonios Antoniadis, Tobias Mdmke

Votivation

Given a set of cities, make them
pairwise connected, through a
network of airports and railways. -

Each city has an associated cost
for building an airport, and each
railway line has cost proportional
to its distance.

Each airport can serve at most k
cities.

© Can Stock Photo

Minimise cost for building these
alrports and railways.

Formal Definition

 Complete graph on n vertices on the Euclidean
plane. Vertex costs a(v), and edge costs r(e).

» Goal: Compute a minimum-cost network of A C V(G)
airports , and R C E(G) railways connecting all the
cities, where each connected component contains
at most k vertices, and at least one airport.

k=4

Preliminaries

Approximation algorithm: Runs in polynomial time,
obtains a suboptimal solution.

Approximation factor a: on any instance the solution
returned by the algorithm is within a multiplicative
factor of a from the optimal one.

Polynomial Time Approximation Scheme (PTAS): A
family of algorithms, for each constant €>0, the family
contains an (1+¢&)-approximation algorithm (the running
time depends on €).

Related Work

- Facility Location: All cities have to be connected
directly to their airport.

- Capacitated Minimum Spanning Tree:
Collection of trees, of minimal cost, each of size at
most Kk, and connected to a pre-specified root.
Vertices can have demands.

- Capacitated Vehicle Routing Problem

(CVRP): Given a set of cities, output a set of tours
of size at most k each, that cover all the cities.

Capacitated Vehicle Routing
Problem (CVRP)

Related Work

» Capacitated Minimum Spanning Tree: Best known
approximation algorithm in the Euclidean setting:
3.15-approximation [Jothi and Raghavachari '05]

» Capacitated Vehicle Routing (CVRP): PTAS's for
very large capacity (k = Q(n)) [Asano et al. '97],

and small capacity (g < 218" o n) [Adamaszek et al.
10]. QPTAS for all k [Das and Mathieu '10]

 Long-standing open problem: PTAS for CVRP and
all k

Special Cases

« Components:
* No restriction (each component will be a tree).
 Each component must be a path.
* Airports:
e No restriction (infinite capacity).
e Uniform airport costs.

NP-hardness

ARp : Components are paths.
Reduction from Travelling Salesman Path Problem.

Even without airport-capacities and
uniform airport costs.

ARr : Components form a forest.
Reduction from Planar Monotone Cubic One-in-Three SAT.

Even with uniform airport costs.

SEN

INnfinite Capacity

AR . A generalisation of the Minimum Spanning Tree
problem.

A simple, exact algorithm:

. Augment G with a vertex v, s.t. each edge(v,v’) has

weight a(v). Result: not nec. Euclidean.
Compute MST in resulting graph.

. Output A={v : {v,v'} € MST},

R= {{”Ul,”UQ} c MST : V1, U9 # U/}.

Example

For each solution for the
AR7% instance there is a
corresponding tree of G/

& with the same cost and
vice-versa.
’ \‘\”:m’
P, \/

Arora’s Scheme for TSP
(Summary)

e Perturbation: (1) all nodes at integer coordinates,
(i) maximum internode distance O¢(n).
e Shifted Quadtree:

N . T
h Oi\\
s . @
.. " ‘ ‘
 Dynamic Programming: we introduce portals between the

squares, and compute optimal portal-respecting tour
using DP.

Infinite Capacity

ARPE : We develop a PTAS inspired by Arora’s
scheme:

Step 1: There may be large gaps between distinct connected
components in OPT.

Generate Independent

Instances
@
® %
o C
@ - ®
% * ¢ ® . @

1. Consider each edge e.
2. Pick a vertex v. Cluster all vertices reachable from v with
edges of length at most |e|.

Step 2. Introduce randomly shifted grid, and portals (exactly
as in Arora’s scheme).
Step 3. (1) Make sure that paths don't cross:

Example:

(i) We show tAtere ' an (Iog‘t‘ s‘ion, with
cost within a (1+¢)-factor of optimal.

logn:= roughly #portals per cell.
2:= maximum #paths crossing each portal.

Step 4. Extend Arora’s DP, to find an optimal (logn,2)-thin
solution.

Theorems

Infinite Airport Capacity

Thm1: There is an exact polynomial-time algorithm for the
2-dimensional Euclidean AR Problem.

Thm2: There is a PTAS for the 2-dimensional Euclidean
AR7 Problem.

Unitorm Airport Costs

Here we will handle 1ARr and 1ARp simultaneously.

General Structure:

1. Preprocess the instance.
2. Subdivide it into sparse and dense sub-instances.
3. Solve sparse and dense substances independently.

4. Recombine them into a global result.

Preprocessing

We Spllit the instance into substances of size ¢; x £; with

l; < —. .
€ (L,L) » Pick random
a B O0<a,b<1/e
Z ° Add horizontal
¢) * and vertical
ines at a + i(1/e)
P @ & and b + i(1/¢e).
@
= @ ®
@ o ®

0,0)

Note: substances of size
1/e O.(1)each. In Arora’s
scheme: O¢(n) .

1/€

Note: OPT cannot contain edges longer than 1!

Proof idea: One can show that the expected
total cost of removed edges is at most an
e-fraction of the optimal solution. Choice of

a and b can be derandomized.

Case 1: subinstance
contains «~ — points.

Slight adaption of Arora’s

[Asano et al.’97]

1

scheme,see

V

Case 2: subinstance

contains - ipoints.

e’

More interesting case!

Dense [Instances

Idea

Start with an infinite capacity solution. \/
Split instance into €? x € cells. \/

Cut each component of the infinite capacity solution
INnto ek-vertex chunks, and associate each of them
with a cell.

Connect the chunks greedily but cheaply.

For proof: (1) Prove that there exists an almost
optimal “chunk-respecting” solution, and (ii) find a
good “chunk-respecting” solution.

lARF l1ARp

o//Q(‘

i

Return trees of sizes Cut each path into
between ek and Gek: pieces of length ek.
« MST in Euclidean

plane has degree at

MOost 6.
* Collect the trees

bottom-up.

Associate chunks with cells:

* [Forest case: pick a random
vertex for each chunk.

e Path case: Assign each
endpoint of each chunk.

Assembling chunks

e Forest Case: greedily collect chunks for each cell
e Path Case: Follow a path, connect its endpoint to
another endpoint in the same cell etc.

Proof Sketch:

* Polynomial running time + Feasibllity.

* [he (infeasible) solutions for the uncapacitated case are a
lower bound (up to (1+€)) for the optimal solution.

* Airport cost: Roughly as many airports as OPT. “Stuck” at
most once per cell.

« Edge cost: Added at most 1/€ edges per component,
each of cost at most €v2, & a component has cost at
least 1.

Open Problems

ARp and ARrin general?
Other metrics?

Further problems in the Airport and Rallway
framework?

Other special instance classes of ARp and ARp"”

