FIXED-CHARGE TRANSPORTATION PROBLEMS ON TREES

Gustavo Angulo* Mathieu Van Vyve[†]

*Departamento de Ingeniería Industrial y de Sistemas Pontificia Universidad Católica de Chile

[†]CENTER FOR OPERATIONS RESEARCH AND ECONOMETRICS (CORE) UNIVERSITÉ CATHOLIQUE DE LOUVAIN

Fixed-Charge Transportation Problem (FCTP)

- A set N of n warehouses with capacities $c_i \in \mathbb{Z}_+$
- A set M of m clients with demands $d_j \in \mathbb{Z}_+$
- For each pair (i, j): a fixed cost $q_{ij} > 0$ and a variable cost p_{ij}

GOAL: find amounts x_{ij} to be transported from i to j that minimizes overall cost:

(IP) min
$$p^{\top}x + q^{\top}y$$

s.t. $\sum_{j=1}^{m} x_{ij} \le c_i \quad i \in N$ (1)
 $\sum_{i=1}^{n} x_{ij} = d_j \quad j \in M$ (2)
 $0 \le x_{ij} \le \min\{c_i, d_j\}y_{ij} \quad i \in N, \ j \in M$ (3)
 $y_{ij} \in \{0, 1\} \quad i \in N, \ j \in M.$ (4)

Fixed-Charge Transportation Problem (FCTP)

What is known about FCTP

What is known about FCTP

Generalizes the single-node flow set: (x, y) such that

\rightarrow FCTP is (at least) weakly NP-hard.

Gustavo Angulo (PUC)

Solving integer programs

S: feasible set (integral points) *P*: linear relaxation (formulation) $\operatorname{conv}(S)$: convex hull of S

Results for 30×30 instances

B: upper bound on arc capacities *r*: total demand to total supply ratio

			(IP)	
B	r	Gap [%]	Time [s]	Nodes [#]
	0.90	0.00	167	29033
20	0.95	0.17	853	114655
	1.00	2.31	2905	308104
	0.90	0.00	626	106839
40	0.95	0.87	2419	329429
	1.00	8.66	3600	427371
	0.90	0.00	290	58686
60	0.95	1.89	2585	327116
	1.00	10.92	3600	456224

Generalizes the single-node flow set: (x, y) such that

$$\sum_{j=1}^{n} x_j \le b$$

$$0 \le x_j \le a_j y_j \quad j \in N$$

$$y_j \in \{0, 1\} \quad j \in N$$

ightarrow (at least) weakly NP-Hard + (lifted) flow cover inequalities, etc \ldots

Generalizes the single-node flow set: (x, y) such that

$$\sum_{j=1}^{n} x_j \le b$$

$$0 \le x_j \le a_j y_j \quad j \in N$$

$$y_j \in \{0, 1\} \quad j \in N$$

 \rightarrow (at least) weakly NP-Hard + (lifted) flow cover inequalities, etc ... Aggarwal and Aneja (OR, 2012): valid inequalities involving binary variables only + B&C.

Van Vyve (MP, 2013): Polyhedral characterization for the (easy) case where the graph is a path.

Roberto, Bartolini and Mingozzi (OR, 2014): column generation based on single-node flow set relaxations.

Generalizes the single-node flow set: (x, y) such that

$$\sum_{j=1}^{n} x_j \le b$$

$$0 \le x_j \le a_j y_j \quad j \in N$$

$$y_j \in \{0, 1\} \quad j \in N$$

 \rightarrow (at least) weakly NP-Hard + (lifted) flow cover inequalities, etc ... Aggarwal and Aneja (OR, 2012): valid inequalities involving binary variables only + B&C.

Van Vyve (MP, 2013): Polyhedral characterization for the (easy) case where the graph is a path.

Roberto, Bartolini and Mingozzi (OR, 2014): column generation based on single-node flow set relaxations.

Looking for better (tighter) formulations

Looking for better (tighter) formulations

Extended formulation of P

Higher dimensional polyhedron Q that linearly projects onto P.

[S. Pokutta]

Projection can imply a large (exponential) number of inequalities.

A unary expansion-based formulation

$$(\text{IP}+z) \quad \min \quad p^{\top}x + q^{\top}y \\ \text{s.t.} \quad (1) - (4), \\ \sum_{l=0}^{a_{ij}} l * z_{ijl} = x_{ij} \quad (i,j) \in E \\ \sum_{l=1}^{a_{ij}} z_{ijl} \leq y_{ij} \quad (i,j) \in E \\ \sum_{l=0}^{a_{ij}} z_{ijl} = 1 \quad (i,j) \in E \\ z_{ijl} \in \{0,1\} \quad (i,j) \in E, \ 0 \leq l \leq a_{ij}.$$

where the intended meaning is that $z_{ijl} = 1$ if $x_{ij} = l$ and 0 otherwise.

A short proof that I'm being stupid

Theorem

The LP relaxation of (IP+z) is NOT stronger than that of (IP).

Proof.

Given (x, y) in the linear relaxation of (IP), for each arc (i, j) let:

•
$$z_{ij(a_{ij})} = x_{ij}/a_{ij}$$
,

•
$$z_{ij0} = 1 - z_{ija_{ij}}$$

•
$$z_{ijl} = 0$$
 for $0 < l < a_{ij}$.

Then (x, y, z) belongs to the linear relaxation of (IP+z).

Or not?? Results for 30 x 30 instances

			(IP)			(IP+z)					
B	r	Gap	Time	Nodes	ΔLB	$\Delta {\sf UB}$	Gap	Time	Nodes		
20	0.90	0.00	167	29033	0.00	0.00	0.00	4	22		
	0.95	0.17	853	114655	0.17	0.00	0.00	8	43		
	1.00	2.31	2905	308104	2.16	-0.22	0.00	68	789		
40	0.90	0.00	626	106839	0.00	0.00	0.00	16	180		
	0.95	0.87	2419	329429	0.86	-0.03	0.00	42	475		
	1.00	8.66	3600	427371	5.75	-0.32	2.93	2824	13022		
60	0.90	0.00	290	58686	0.00	0.00	0.00	15	84		
	0.95	1.89	2585	327116	1.82	-0.13	0.00	184	1323		
	1.00	10.92	3600	456224	6.51	7.81	11.90	3600	12197		

Or not?? Results for 30 x 30 instances

			(IP)			(IP+z)					
B	r	Gap	Time	Nodes	ΔLB	$\Delta {\sf UB}$	Gap	Time	Nodes		
20	0.90	0.00	167	29033	0.00	0.00	0.00	4	22		
	0.95	0.17	853	114655	0.17	0.00	0.00	8	43		
	1.00	2.31	2905	308104	2.16	-0.22	0.00	68	789		
40	0.90	0.00	626	106839	0.00	0.00	0.00	16	180		
	0.95	0.87	2419	329429	0.86	-0.03	0.00	42	475		
	1.00	8.66	3600	427371	5.75	-0.32	2.93	2824	13022		
60	0.90	0.00	290	58686	0.00	0.00	0.00	15	84		
	0.95	1.89	2585	327116	1.82	-0.13	0.00	184	1323		
	1.00	10.92	3600	456224	6.51	7.81	11.90	3600	12197		

WHY?

Overview

- Complexity results.
- ② Extended formulations.
- Omputational Results.

It is obviously weakly NP-hard, since $\rm FCTP$ generalizes the single-node flow set. In fact, it is strongly NP-hard.

It is obviously weakly NP-hard, since FCTP generalizes the single-node flow set. In fact, it is strongly NP-hard.

3-Partition: given 3n nonnegative integers a_1, \ldots, a_{3n} such that $\sum_i a_i = nb$ and $\frac{b}{4} < a_i < \frac{b}{2} \ \forall i$.

It is obviously weakly NP-hard, since FCTP generalizes the single-node flow set. In fact, it is strongly NP-hard.

3-Partition: given 3n nonnegative integers a_1, \ldots, a_{3n} such that $\sum_i a_i = nb$ and $\frac{b}{4} < a_i < \frac{b}{2} \forall i$. Can we partition these 3n numbers into n groups such that each group sums up to b?

It is obviously weakly NP-hard, since FCTP generalizes the single-node flow set. In fact, it is strongly NP-hard.

3-Partition: given 3n nonnegative integers a_1, \ldots, a_{3n} such that $\sum_i a_i = nb$ and $\frac{b}{4} < a_i < \frac{b}{2} \ \forall i$. Can we partition these 3n numbers into n groups such that each group sums up to b?

Consider an instance of $\ensuremath{\operatorname{FCTP}}$ with

n suppliers with capacity b each,

3n clients with demands a_1, \ldots, a_{3n} ,

no variable cost and unit fixed cost $q_{ij} = 1$ for all (i, j).

It is obviously weakly NP-hard, since FCTP generalizes the single-node flow set. In fact, it is strongly NP-hard.

3-Partition: given 3n nonnegative integers a_1, \ldots, a_{3n} such that $\sum_i a_i = nb$ and $\frac{b}{4} < a_i < \frac{b}{2} \ \forall i$. Can we partition these 3n numbers into n groups such that each group sums up to b?

Consider an instance of FCTP with n suppliers with capacity b each, 3n clients with demands a_1, \ldots, a_{3n} , no variable cost and unit fixed cost $q_{ij} = 1$ for all (i, j).

optimal value of $FCTP = 3n \Leftrightarrow answer to 3-Partition is YES.$

For notational convenience, let's change the problem

Given a graph G = (V, E), consider

(IP) min
$$p^{\top}x + q^{\top}y$$

s.t. $\sum_{j \in V: (i,j) \in E} x_{ij} \leq b_i \quad i \in V$
 $0 \leq x_{ij} \leq a_{ij}y_{ij} \quad (i,j) \in E$
 $y_{ij} \in \{0,1\} \quad (i,j) \in E,$

so that there is no distinction between suppliers and consumers.

The single-node flow set

Pairs of vectors (x, y) such that

$$\sum_{j=1}^{n} x_j \leq b$$

$$0 \leq x_j \leq a_j y_j \quad j = 1, \dots, n$$

$$y_j \in \{0, 1\} \quad j = 1, \dots, n$$

$$b \underbrace{x_j} \underbrace{j}_{j} a_j$$

The single-node flow set

$$\sum_{k' \le k} f_{jk'k} = \sum_{k' \ge k} f_{(j+1)kk'} \quad j = 1, \dots, n-1, \ k = 0, \dots, b$$
$$x_j = \sum_{k-k' \ge 0} (k-k') * f_{jk'k} \quad j = 1, \dots, n$$
$$y_j \ge \sum_{k-k' > 0} f_{jk'k} \quad j = 1, \dots, n$$

Gustavo Angulo (PUC)

FCTP is pseudo-polynomially solvable on a tree

$$\alpha_{ijk} = \begin{cases} \beta_{ijk} \quad j = f(i) \\ k' \ge 0: \quad 0 \le k - k' \le a_{ij} \\ k' \ge 0: \quad 0 \le k - k' \le a_{ij} \end{cases} \left\{ \alpha_{i(j-1)k'} + \beta_{ij(k-k')} \right\} \quad j > f(i) \quad \forall i, j, k \end{cases}$$
$$\beta_{ijl} = \begin{cases} c_{ijl} \quad j \text{ is a leaf node} \\ 0 \le k \le b_j - l \\ 0 \le k \le b_j - l \\ 0 \le k \le b_1 \end{cases} \left\{ \alpha_{jl(j)k} \right\} + c_{ijl} \quad j \text{ is a nonleaf node} \quad \forall i, j, l \end{cases}$$
$$\beta_{010} = \min_{0 \le k \le b_1} \left\{ \alpha_{1l(1)k} \right\}$$

Fixed-charge transportation problems on trees

Writing the DP as an LP $% \mathcal{A}$

$$\begin{aligned} \max \beta_{010} \\ \alpha_{ijk} &\leq \begin{cases} \beta_{ijk} & j = f(i) \\ \alpha_{i(j-1)k'} + \beta_{ij(k-k')} & j > f(i), \ 0 \leq k - k' \leq a_{ij} \end{cases} \quad \forall i, j, k \\ \beta_{ijl} &\leq \begin{cases} c_{ijl} & j \text{ is a leaf node} \\ \alpha_{jl(j)k} + c_{ijl} & j \text{ is a nonleaf node}, \ 0 \leq k \leq b_j - l \end{cases} \quad \forall i, j, l \\ \beta_{010} &\leq \alpha_{1l(1)k} \quad 0 \leq k \leq b_1 \\ \alpha, \beta \in \mathbb{R}^{|E|B}. \end{aligned}$$

The DP has complexity $\mathcal{O}(|E|B^2)$

By duality, this yields an ugly LP extended formulation of the same size:

min $\sum \sum c_{ijl} v_{ijlk}$ $(i,i) \in E \quad kl$ s.t. $\sum_{0 \le k-k' \le a_{ij}} u_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum_{0 \le l \le b_i-k} v_{p(i)ilk} & j = l(i) \end{cases}} \\ j = l(i) \end{cases}$ $\sum_{0 \leq k \leq b_j-l} v_{ijlk} = \sum_{0 \leq k' \leq k \leq b_i: \ k-k'=l} u_{ijk'k}(i,j) \in E, \ 0 \leq l \leq a_{ij}$ $\sum v_{010k} = 1$ $0 \le k \le b_1$ u, v > 0.

The DP has complexity $\mathcal{O}(|E|B^2)$

By duality, this yields an ugly LP extended formulation of the same size:

min $\sum \sum c_{ijl} v_{ijlk}$ $(i, j) \in E \quad kl$ s.t. $\sum_{0 \le k-k' \le a_{ij}} u_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum_{0 \le l \le b_i-k} v_{p(i)ilk} \\ j = l(i) \end{cases}$ $\sum_{0 \le k \le b_j - l} v_{ijlk} = \sum_{0 \le k' \le k \le b_i: \ k - k' = l} u_{ijk'k}(i, j) \in E, \ 0 \le l \le a_{ij}$ $\sum v_{010k} = 1$ $0 \le k \le b_1$ u, v > 0.

This does not seem to be useful for other things than trees...

A unary expansion-based formulation

$$(\text{IP}+z) \quad \min \quad p^{\top}x + q^{\top}y$$

s.t. $x = \dots, y = \dots$
$$\sum_{j} \sum_{l=0}^{a_{ij}} l * z_{ijl} \leq b_i \quad i \in V$$

$$\sum_{l=0}^{a_{ij}} z_{ijl} = 1 \quad (i,j) \in E$$

 $z_{ijl} \in \{0,1\} \quad (i,j) \in E, 0 \leq l \leq a_{ij}.$

Each node *i* is essentially a single-node flow set for which we can write an identical DP and an extended formulation of size $O(d(i)B^2)$.

Another ugly extended formulation

$$\sum_{\substack{k' \ge 0: \ 0 \le k-k' \le a_{ij}}} f_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum \\ k' \le b_i: \ 0 \le k'-k \le a_{ip(i)} \end{cases}} f_{ip(i)kk'} & f(i) \le j < l(i) \\ \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{ip(i)} \\ j = l(i)}} f_{ip(i)k'k} = 1, \quad i \in V \\ \sum_{\substack{k' \ge 0: \ k-k' = l}} f_{ijk'k} = z_{ijl} & (i,j) \in E, \ 0 \le l \le a_{ij} \\ \sum_{\substack{k' \ge 0: \ k-k' = l}} f_{jik'k} = z_{ijl} & (i,j) \in E, \ 0 \le l \le a_{ij} \\ f \ge 0. \end{cases}$$

 $f_{ijkk'} = 1$ iff looking at node *i*, considering edges $j, \ldots, l(i)$, budget of *k* is used and $x_{ij} = k - k'$.

A unary expansion-based extended formulation (SNF)

$$\sum_{\substack{k' \ge 0: \ 0 \le k-k' \le a_{ij}}} f_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum \\ k' \le b_i: \ 0 \le k'-k \le a_{ip(i)}}} f_{ip(i)kk'} & f(i) \le j < l(i) \end{cases}$$

$$\sum_{\substack{0 \le k \le b_i \ k' \ge 0: \ 0 \le k-k' \le a_{ip(i)}}} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{ip(i)}}} f_{ip(i)k'k} = 1, \quad i \in V$$

$$\sum_{\substack{k \\ k' \ge 0: \ k-k'=l}} f_{ijk'k} = z_{ijl} \quad (i,j) \in E, \ 0 \le l \le a_{ij}$$

$$\sum_{\substack{k \\ k' \ge 0: \ k-k'=l}} f_{jik'k} = z_{ijl} \quad (i,j) \in E, \ 0 \le l \le a_{ij},$$

$$f \ge 0.$$

Theorem

This formulation is tight as well (for trees).

The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.

- The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.
- The SNF formulation suggests a strong formulation for general graphs.

The two formulations have size $O(|E|B^2)$, tight for trees. The SNF formulation suggests a strong formulation for general graphs. For trees: is tightening single-node flow sets enough? The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.

The SNF formulation suggests a strong formulation for general graphs. For trees: is tightening single-node flow sets enough? NO

- The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.
- The SNF formulation suggests a strong formulation for general graphs.
- For trees: is tightening single-node flow sets enough? NO, in the original variable space.

- The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.
- The SNF formulation suggests a strong formulation for general graphs.
- For trees: is tightening single-node flow sets enough? NO, in the original variable space.
- YES, in the extended space z_{ijl} .

A unary expansion-based extended formulation (SNF)

$$\sum_{\substack{k' \ge 0: \ 0 \le k-k' \le a_{ij}}} f_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum \\ k' \le b_i: \ 0 \le k'-k \le a_{ip(i)}}} f_{ip(i)kk'} & f(i) \le j < l(i) \end{cases}$$

$$\sum_{\substack{0 \le k \le b_i \ k' \ge 0: \ 0 \le k-k' \le a_{ip(i)}}} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{ip(i)}}} f_{ip(i)k'k} = 1, \quad i \in V$$

$$\sum_{\substack{k \\ k' \ge 0: \ k-k'=l}} f_{ijk'k} = z_{ijl} \quad (i,j) \in E, \ 0 \le l \le a_{ij}$$

$$\sum_{\substack{k \\ k' \ge 0: \ k-k'=l}} f_{jik'k} = z_{ijl} \quad (i,j) \in E, \ 0 \le l \le a_{ij}$$

$$f \ge 0.$$

Theorem

This formulation is tight as well (for trees).

A unary expansion-based extended formulation (SNF)

$$\sum_{k' \ge 0: \ 0 \le k-k' \le a_{ij}} f_{ijk'k} = \begin{cases} \sum_{\substack{k' \le b_i: \ 0 \le k'-k \le a_{i(j+1)} \\ \sum \\ k' \le b_i: \ 0 \le k'-k \le a_{ip(i)} \\ \end{array}} f_{ip(i)kk'} & f(i) \le j < l(i) \end{cases}$$

$$\sum_{\substack{0 \le k \le b_i \\ k' \ge 0: \ 0 \le k-k' \le a_{ip(i)} \\ \end{array}} f_{ip(i)k'k} = 1, \quad i \in V$$

$$\sum_{\substack{l \ \sum \\ k \\ k' \ge 0: \ k-k' = l} l * f_{ijk'k} = x_{ij} \quad (i,j) \in E$$

$$\sum_{\substack{l \ \sum \\ k \\ k' \ge 0: \ k-k' = l} l * f_{jik'k} = x_{ij} \quad (i,j) \in E$$

$$f \ge 0.$$

Theorem

This formulation is not tight (even for trees).

The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.

The SNT formulation suggests a strong formulation for general graphs.

For trees: is tightening single-node flow sets enough?

NO, in the original variable space.

YES, in the extended space z_{ijl} .

The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.

The SNT formulation suggests a strong formulation for general graphs.

For trees: is tightening single-node flow sets enough? NO, in the original variable space. YES, in the extended space z_{ijl} .

Very much in the spirit of Bodur, Dash, Günlük (2015): There is an extended formulation Q of P, i.e. $\operatorname{proj}_{x,y}(Q) = P$, such that

$$\operatorname{proj}_{x,y}(Q + \operatorname{cuts}) = \operatorname{conv}(S) \subsetneq (P + \operatorname{cuts}).$$

But Q needs an exponential number of additional variables.

The two formulations have size $\mathcal{O}(|E|B^2)$, tight for trees.

The SNT formulation suggests a strong formulation for general graphs.

For trees: is tightening single-node flow sets enough? NO, in the original variable space. YES, in the extended space z_{ijl} .

Very much in the spirit of Bodur, Dash, Günlük (2015): There is an extended formulation Q of P, i.e. $\operatorname{proj}_{x,y}(Q) = P$, such that

$$\operatorname{proj}_{x,y}(Q + \operatorname{cuts}) = \operatorname{conv}(S) \subsetneq (P + \operatorname{cuts}).$$

But Q needs an exponential number of additional variables.

 B^2 is too large for practical purposes. But let's let the solver do the single-node tightening in variable space z_{ijl} (only linear in B).

Results for 30×30 instances

			(IP)			(IP+z)					
B	r	Gap	Time	Nodes	ΔLB	$\Delta {\sf UB}$	Gap	Time	Nodes		
20	0.90	0.00	167	29033	0.00	0.00	0.00	4	22		
	0.95	0.17	853	114655	0.17	0.00	0.00	8	43		
	1.00	2.31	2905	308104	2.16	-0.22	0.00	68	789		
40	0.90	0.00	626	106839	0.00	0.00	0.00	16	180		
	0.95	0.87	2419	329429	0.86	-0.03	0.00	42	475		
	1.00	8.66	3600	427371	5.75	-0.32	2.93	2824	13022		
60	0.90	0.00	290	58686	0.00	0.00	0.00	15	84		
	0.95	1.89	2585	327116	1.82	-0.13	0.00	184	1323		
	1.00	10.92	3600	456224	6.51	7.81	11.90	3600	12197		

Results for 30×30 instances

	(IP)						(IP+z)									
		Root		B&C			Root				B&C					
B	r	Time	Gap	Time	Nodes	ΔLB	ΔUB	Time	ΔLB	ΔUB	Gap	Time	Nod			
	0.90	1	0.00	167	29033	2.06	-1.95	4	0.00	0.00	0.00	4				
20	0.95	2	0.17	853	114655	3.87	-4.89	7	0.17	0.00	0.00	8				
	1.00	3	2.31	2905	308104	5.49	69.52	15	2.16	-0.22	0.00	68	7			
	0.90	2	0.00	626	106839	3.58	-2.36	10	0.00	0.00	0.00	16	1			
40	0.95	2	0.87	2419	329429	4.76	-1.68	17	0.86	-0.03	0.00	42	4			
	1.00	3	8.66	3600	427371	8.08	353.10	31	5.75	-0.32	2.93	2824	130			
	0.90	2	0.00	290	58686	3.60	-2.67	14	0.00	0.00	0.00	15				
60	0.95	3	1.89	2585	327116	4.63	231.29	19	1.82	-0.13	0.00	184	13			
	1.00	3	10.92	3600	456224	8.77	468.14	46	6.51	7.81	11.90	3600	121			

Results for 40×40 instances

			(IP)			(IP+z)					
В	r	Gap	Time	Nodes	ΔLB	$\Delta {\sf UB}$	Gap	Time	Nodes		
20	0.90	0.01	402	39345	0.00	0.00	0.00	8	2		
	0.95	1.53	3303	246765	1.38	-0.18	0.00	20	123		
	1.00	5.27	3600	257034	4.22	-1.14	0.15	1193	5751		
40	0.90	0.57	2221	195118	0.53	-0.05	0.00	22	73		
	0.95	4.32	3600	260138	3.46	-1.02	0.00	175	1070		
	1.00	10.93	3600	223986	6.64	5.31	9.65	3360	7815		
60	0.90	0.57	1725	150346	0.51	-0.07	0.00	48	308		
	0.95	4.61	3600	265815	3.89	-0.91	0.01	1023	4430		
	1.00	13.31	3602	216712	6.71	12.08	17.39	3600	6045		

Results for 40×40 instances

			(IP)			(IP_z)									
		Root		B&C			Root			B&C						
B	r	Time	Gap	Time	Nodes	ΔLB	ΔUB	Time	ΔLB	ΔUB	Gap	Time	Noc			
	0.90	3	0.01	402	39345	2.15	-2.23	9	0.00	0.00	0.01	8				
20	0.95	4	1.53	3303	246765	3.80	-6.49	16	1.38	-0.18	0.00	20	1			
	1.00	5	5.27	3600	257034	5.83	240.27	33	4.22	-1.14	0.15	1193	57			
	0.90	3	0.57	2221	195118	3.14	-4.13	21	0.53	-0.05	0.00	22				
40	0.95	5	4.32	3600	260138	4.98	61.81	34	3.46	-1.02	0.00	175	10			
	1.00	5	10.93	3600	223986	8.51	408.39	66	6.64	5.31	9.65	3360	78			
	0.90	3	0.57	1725	150346	2.89	-3.26	25	0.51	-0.07	0.00	48	3			
60	0.95	4	4.61	3600	265815	4.73	257.09	40	3.89	-0.91	0.01	1023	44			
	1.00	5	13.31	3602	216712	8.68	492.87	96	6.71	12.08	17.39	3600	60			

Binarization of continuous variables is not a ridiculous idea!

Binarization of continuous variables is not a ridiculous idea!

Possible workarounds for the size of these formulations:

- power-of-2 binarization of continuous variable does not do the job
- approximate binarization (each binary variable represents an interval of values) does not do the job
- but maybe we should build the discretization "dynamically" (depending on the objective).
- Derive strong valid inequalities in the original variable space (hard!)

Thanks!!