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†Center for Operations Research and Econometrics (CORE)
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Fixed-Charge Transportation Problem (FCTP)

A set N of n warehouses with capacities ci ∈ Z+

A set M of m clients with demands dj ∈ Z+

For each pair (i, j): a fixed cost qij > 0 and a variable cost pij

GOAL: find amounts xij to be transported from i to j that minimizes
overall cost:

(IP) min p>x+ q>y

s.t.

m∑
j=1

xij ≤ ci i ∈ N (1)

n∑
i=1

xij = dj j ∈M (2)

0 ≤ xij ≤ min{ci, dj}yij i ∈ N, j ∈M (3)

yij ∈ {0, 1} i ∈ N, j ∈M. (4)
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What is known about FCTP

Generalizes the single-node flow set: (x, y) such that

n∑
j=1

xj ≤ b

0 ≤ xj ≤ ajyj j ∈ N
yj ∈ {0, 1} j ∈ N

→ FCTP is (at least) weakly NP-hard.
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Solving integer programs

S: feasible set (integral points)
P : linear relaxation (formulation)
conv(S): convex hull of S

Pconv(S)
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Results for 30 x 30 instances

B: upper bound on arc capacities
r: total demand to total supply ratio

(IP)

B r Gap [%] Time [s] Nodes [#]

20
0.90 0.00 167 29033
0.95 0.17 853 114655
1.00 2.31 2905 308104

40
0.90 0.00 626 106839
0.95 0.87 2419 329429
1.00 8.66 3600 427371

60
0.90 0.00 290 58686
0.95 1.89 2585 327116
1.00 10.92 3600 456224

Gustavo Angulo (PUC) Fixed-charge transportation problems on trees 6 / 34



What is known

Generalizes the single-node flow set: (x, y) such that
n∑

j=1

xj ≤ b

0 ≤ xj ≤ ajyj j ∈ N
yj ∈ {0, 1} j ∈ N

→ (at least) weakly NP-Hard + (lifted) flow cover inequalities, etc . . .

Aggarwal and Aneja (OR, 2012): valid inequalities involving binary
variables only + B&C.

Van Vyve (MP, 2013): Polyhedral characterization for the (easy) case
where the graph is a path.

Roberto, Bartolini and Mingozzi (OR, 2014): column generation based on
single-node flow set relaxations.

Complexity? (In)Approximability?
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Looking for better (tighter) formulations

Pconv(S)
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Extended formulation of P

Higher dimensional polyhedron Q that linearly projects onto P .

[S. Pokutta]

Projection can imply a large (exponential) number of inequalities.
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A unary expansion-based formulation

(IP+z) min p>x+ q>y

s.t. (1)− (4),
aij∑
l=0

l ∗ zijl = xij (i, j) ∈ E

aij∑
l=1

zijl ≤ yij (i, j) ∈ E

aij∑
l=0

zijl = 1 (i, j) ∈ E

zijl ∈ {0, 1} (i, j) ∈ E, 0 ≤ l ≤ aij .

where the intended meaning is that zijl = 1 if xij = l and 0 otherwise.
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A short proof that I’m being stupid

Theorem

The LP relaxation of (IP+z) is NOT stronger than that of (IP).

Proof.

Given (x, y) in the linear relaxation of (IP), for each arc (i, j) let:

zij(aij) = xij/aij ,

zij0 = 1− zijaij
zijl = 0 for 0 < l < aij .

Then (x, y, z) belongs to the linear relaxation of (IP+z).
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Or not?? Results for 30 x 30 instances

(IP) (IP+z)

B r Gap Time Nodes ∆LB ∆UB Gap Time Nodes

20
0.90 0.00 167 29033 0.00 0.00 0.00 4 22
0.95 0.17 853 114655 0.17 0.00 0.00 8 43
1.00 2.31 2905 308104 2.16 -0.22 0.00 68 789

40
0.90 0.00 626 106839 0.00 0.00 0.00 16 180
0.95 0.87 2419 329429 0.86 -0.03 0.00 42 475
1.00 8.66 3600 427371 5.75 -0.32 2.93 2824 13022

60
0.90 0.00 290 58686 0.00 0.00 0.00 15 84
0.95 1.89 2585 327116 1.82 -0.13 0.00 184 1323
1.00 10.92 3600 456224 6.51 7.81 11.90 3600 12197

WHY?
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Overview

1 Complexity results.

2 Extended formulations.

3 Computational Results.
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FCTP is strongly NP-hard

It is obviously weakly NP-hard, since FCTP generalizes the single-node
flow set. In fact, it is strongly NP-hard.

3-Partition: given 3n nonnegative integers a1, . . . , a3n such that∑
i ai = nb and b

4 < ai <
b
2 ∀i.

Can we partition these 3n numbers into n groups such that each group
sums up to b?

Consider an instance of FCTP with
n suppliers with capacity b each,
3n clients with demands a1, . . . , a3n,
no variable cost and unit fixed cost qij = 1 for all (i, j).

optimal value of FCTP = 3n⇔ answer to 3-Partition is YES.
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For notational convenience, let’s change the problem

Given a graph G = (V,E), consider

(IP) min p>x+ q>y

s.t.
∑

j∈V : (i,j)∈E

xij ≤ bi i ∈ V

0 ≤ xij ≤ aijyij (i, j) ∈ E
yij ∈ {0, 1} (i, j) ∈ E,

so that there is no distinction between suppliers and consumers.
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The single-node flow set

Pairs of vectors (x, y) such that

n∑
j=1

xj ≤ b

0 ≤ xj ≤ ajyj j = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n
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The single-node flow set

∑
k′≤k

fjk′k =
∑
k′≥k

f(j+1)kk′ j = 1, . . . , n− 1, k = 0, . . . , b

xj =
∑

k−k′≥0

(k − k′) ∗ fjk′k j = 1, . . . , n

yj ≥
∑

k−k′>0

fjk′k j = 1, . . . , n

0,1$ 0,2$ 0,3$

1,1$ 1,2$ 1,3$

2,1$ 2,2$ 2,3$

3,1$ 3,2$ 3,3$

s$

t$

arcs$

bu
dg
et
$
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FCTP is pseudo-polynomially solvable on a tree

αijk =

{
βijk j = f(i)

min
k′≥0: 0≤k−k′≤aij

{
αi(j−1)k′ + βij(k−k′)

}
j > f(i) ∀i, j, k

βijl =

{
cijl j is a leaf node

min
0≤k≤bj−l

{
αjl(j)k

}
+ cijl j is a nonleaf node ∀i, j, l

β010 = min
0≤k≤b1

{
α1l(1)k

}
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Writing the DP as an LP

maxβ010

αijk ≤
{

βijk j = f(i)
αi(j−1)k′ + βij(k−k′) j > f(i), 0 ≤ k − k′ ≤ aij

∀i, j, k

βijl ≤
{

cijl j is a leaf node
αjl(j)k + cijl j is a nonleaf node, 0 ≤ k ≤ bj − l

∀i, j, l

β010 ≤ α1l(1)k 0 ≤ k ≤ b1

α, β ∈ R|E|B.
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The DP has complexity O(|E|B2)

By duality, this yields an ugly LP extended formulation of the same size:

min
∑

(i,j)∈E

∑
kl

cijlvijlk

s.t.
∑

0≤k−k′≤aij

uijk′k =


∑

k′≤bi: 0≤k′−k≤ai(j+1)

ui(j+1)kk′ f(i) ≤ j < l(i)∑
0≤l≤bi−k

vp(i)ilk j = l(i)

∑
0≤k≤bj−l

vijlk =
∑

0≤k′≤k≤bi: k−k′=l

uijk′k(i, j) ∈ E, 0 ≤ l ≤ aij∑
0≤k≤b1

v010k = 1

u, v ≥ 0.

This does not seem to be useful for other things than trees...
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A unary expansion-based formulation

(IP+z) min p>x+ q>y

s.t. x = . . . , y = . . .∑
j

aij∑
l=0

l ∗ zijl ≤ bi i ∈ V

aij∑
l=0

zijl = 1 (i, j) ∈ E

zijl ∈ {0, 1} (i, j) ∈ E, 0 ≤ l ≤ aij .

Each node i is essentially a single-node flow set for which we can write an
identical DP and an extended formulation of size O(d(i)B2).
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Another ugly extended formulation

∑
k′≥0: 0≤k−k′≤aij

fijk′k =


∑

k′≤bi: 0≤k′−k≤ai(j+1)

fi(j+1)kk′ f(i) ≤ j < l(i)∑
k′≤bi: 0≤k′−k≤aip(i)

fip(i)kk′ j = l(i)

∑
0≤k≤bi

∑
k′≥0: 0≤k−k′≤aip(i)

fip(i)k′k = 1, i ∈ V

∑
k

∑
k′≥0: k−k′=l

fijk′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij∑
k

∑
k′≥0: k−k′=l

fjik′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij

f ≥ 0.

fijkk′ = 1 iff looking at node i, considering edges j, . . . , l(i), budget of k is used

and xij = k − k′.
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A unary expansion-based extended formulation (SNF)

∑
k′≥0: 0≤k−k′≤aij

fijk′k =


∑

k′≤bi: 0≤k′−k≤ai(j+1)

fi(j+1)kk′ f(i) ≤ j < l(i)∑
k′≤bi: 0≤k′−k≤aip(i)

fip(i)kk′ j = l(i)

∑
0≤k≤bi

∑
k′≥0: 0≤k−k′≤aip(i)

fip(i)k′k = 1, i ∈ V

∑
k

∑
k′≥0: k−k′=l

fijk′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij∑
k

∑
k′≥0: k−k′=l

fjik′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij ,

f ≥ 0.

Theorem

This formulation is tight as well (for trees).
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Comparing formulations

The two formulations have size O(|E|B2), tight for trees.

The SNF formulation suggests a strong formulation for general graphs.

For trees: is tightening single-node flow sets enough?
NO, in the original variable space.
YES, in the extended space zijl.
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∑
l

∑
k

∑
k′≥0: k−k′=l

l ∗ fjik′k = xij (i, j) ∈ E

f ≥ 0.

Theorem

This formulation is not tight (even for trees).
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Comparing formulations

The two formulations have size O(|E|B2), tight for trees.

The SNT formulation suggests a strong formulation for general graphs.

For trees: is tightening single-node flow sets enough?
NO, in the original variable space.
YES, in the extended space zijl.

Very much in the spirit of Bodur, Dash, Günlük (2015):
There is an extended formulation Q of P , i.e. projx,y(Q) = P , such that

projx,y(Q+ cuts) = conv(S) ( (P + cuts).

But Q needs an exponential number of additional variables.

B2 is too large for practical purposes. But let’s let the solver do the
single-node tightening in variable space zijl (only linear in B).
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Results for 30 x 30 instances

(IP) (IP+z)

B r Gap Time Nodes ∆LB ∆UB Gap Time Nodes

20
0.90 0.00 167 29033 0.00 0.00 0.00 4 22
0.95 0.17 853 114655 0.17 0.00 0.00 8 43
1.00 2.31 2905 308104 2.16 -0.22 0.00 68 789

40
0.90 0.00 626 106839 0.00 0.00 0.00 16 180
0.95 0.87 2419 329429 0.86 -0.03 0.00 42 475
1.00 8.66 3600 427371 5.75 -0.32 2.93 2824 13022

60
0.90 0.00 290 58686 0.00 0.00 0.00 15 84
0.95 1.89 2585 327116 1.82 -0.13 0.00 184 1323
1.00 10.92 3600 456224 6.51 7.81 11.90 3600 12197
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Results for 30 x 30 instances

(IP) (IP+z)

Root B&C Root B&C

B r Time Gap Time Nodes ∆LB ∆UB Time ∆LB ∆UB Gap Time Nodes

20
0.90 1 0.00 167 29033 2.06 -1.95 4 0.00 0.00 0.00 4 22
0.95 2 0.17 853 114655 3.87 -4.89 7 0.17 0.00 0.00 8 43
1.00 3 2.31 2905 308104 5.49 69.52 15 2.16 -0.22 0.00 68 789

40
0.90 2 0.00 626 106839 3.58 -2.36 10 0.00 0.00 0.00 16 180
0.95 2 0.87 2419 329429 4.76 -1.68 17 0.86 -0.03 0.00 42 475
1.00 3 8.66 3600 427371 8.08 353.10 31 5.75 -0.32 2.93 2824 13022

60
0.90 2 0.00 290 58686 3.60 -2.67 14 0.00 0.00 0.00 15 84
0.95 3 1.89 2585 327116 4.63 231.29 19 1.82 -0.13 0.00 184 1323
1.00 3 10.92 3600 456224 8.77 468.14 46 6.51 7.81 11.90 3600 12197
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Results for 40 x 40 instances

(IP) (IP+z)

B r Gap Time Nodes ∆LB ∆UB Gap Time Nodes

20
0.90 0.01 402 39345 0.00 0.00 0.00 8 2
0.95 1.53 3303 246765 1.38 -0.18 0.00 20 123
1.00 5.27 3600 257034 4.22 -1.14 0.15 1193 5751

40
0.90 0.57 2221 195118 0.53 -0.05 0.00 22 73
0.95 4.32 3600 260138 3.46 -1.02 0.00 175 1070
1.00 10.93 3600 223986 6.64 5.31 9.65 3360 7815

60
0.90 0.57 1725 150346 0.51 -0.07 0.00 48 308
0.95 4.61 3600 265815 3.89 -0.91 0.01 1023 4430
1.00 13.31 3602 216712 6.71 12.08 17.39 3600 6045
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Results for 40 x 40 instances

(IP) (IPz)

Root B&C Root B&C

B r Time Gap Time Nodes ∆LB ∆UB Time ∆LB ∆UB Gap Time Nodes

20
0.90 3 0.01 402 39345 2.15 -2.23 9 0.00 0.00 0.01 8 2
0.95 4 1.53 3303 246765 3.80 -6.49 16 1.38 -0.18 0.00 20 123
1.00 5 5.27 3600 257034 5.83 240.27 33 4.22 -1.14 0.15 1193 5751

40
0.90 3 0.57 2221 195118 3.14 -4.13 21 0.53 -0.05 0.00 22 73
0.95 5 4.32 3600 260138 4.98 61.81 34 3.46 -1.02 0.00 175 1070
1.00 5 10.93 3600 223986 8.51 408.39 66 6.64 5.31 9.65 3360 7815

60
0.90 3 0.57 1725 150346 2.89 -3.26 25 0.51 -0.07 0.00 48 308
0.95 4 4.61 3600 265815 4.73 257.09 40 3.89 -0.91 0.01 1023 4430
1.00 5 13.31 3602 216712 8.68 492.87 96 6.71 12.08 17.39 3600 6045
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Conclusion

Binarization of continuous variables is not a ridiculous idea!

Possible workarounds for the size of these formulations:

power-of-2 binarization of continuous variable does not do the job

approximate binarization (each binary variable represents an interval
of values) does not do the job

but maybe we should build the discretization ”dynamically”
(depending on the objective).

Derive strong valid inequalities in the original variable space (hard!)
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Thanks!!
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