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In the following presentation we presented an extended formulation for the
dominating set problem. We showed that it defines an integral polytope for
cactus graphs and it is valid for any graph. To show the integrality of the
polytope in cactus graph, we first gave an extended formulation when the
underlying graph is a cycle, then we proved a 1-sum composition theorem.
Our 1-sum composition is much more simpler than the one with the original
variables, since it is sufficient to put together the two pieces of a certain
relaxation. In fact our polytope is a face of this relaxation.

This shows that composing with the extended formulation is easier than
composing with the original variables formulation. The question is : how to
do a 2-sum with the extended formulation? Now the graph has a 2-node
cutset, u and v. That is the deletion of u and v disconnects the graph
into two pieces G1 = (V1, A1) and G2 = (V2, A2) with V1 ∩ V2 = {u, v},
E1∪E2 = E, E1∩E2 = ∅. You will remark that now we cannot longer put
the two pieces together, since we may have inequalities defining facets that
have one part in G1 and the other part in G2 as the lifted g-odd inequalities
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we introduced below. So we have to add some extra graph to both G1 and
G2, the idea is that this extra graph must as simple as possible.

As a result of doing a 2-sum is a complete characterization of the dominating
set polytope on series-parallel graphs. The minimum cardinality (all the
weights are equal 1) dominating set problem is polynomial in series-parallel
graphs but we do not have have such a result for the weighted case.
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Problem definition

G = (V,E) is an undirected graph. A subset D ⊆ V is called a dominating
set if every node in V \D is adjacent to a node in D.
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Problem definition

G = (V,E) is an undirected graph. A subset D \ V is called a dominating
set if every node of V \D is adjacent to a node of D.

The blue nodes are not a dominating set
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Problem definition

G = (V,E) is an undirected graph. A subset D \ V is called a dominating
set if every node of V \D is adjacent to a node of D.

The blue nodes are a dominating set
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Problem Input:

• G = (V,E) undirected graph.

• Node weight: wv for all v ∈ V .

The minimum weight dominating set problem (MWDS):

Find a minimum weight dominating set
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Related problems and known results

When the weights associated with the nodes are all equal to 1, the problem
is to find the minimum dominating set problem (MDS). If in addition the
graph induced by the dominating set must be connected the problem is
called minimum weight (cardinality) connected dominating set problem
(MWCDS (MCDS)).

• Complexity

– The MDS problem is NP-hard.
– Remains NP-hard for planar graphs with maximum degree 3 and those

that are regular of degree 4. (Garey and Johnson ’ 79).
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• Polynomiality via cominatorial algorithms

– MDS is polynomial for trees (Cockayne et al.’ 75), for cactus graphs
(Ore’62) and for series-parallel graphs (Kikuno et al’ 83), permutation
graphs (Farber and Keil’ 85), ...

– WMDS is polynomial for strongly chordal graphs (A primal dual
algorithm, (Farber’ 82)), Bounded boolean-width (Bui-Xuan et al.’
2011) (O(n2 + nk23k)).

• Polynomiality via polyhedra

– WMDS is polynomial when G is a cycle (Bouchakour’ 97, Bouchakour
et al’ 05).
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Polyhedra: The node-variable formulation

The following is the natural linear relaxation of the WMDS problem for a
given graph G = (V,E) with w a weight function associated with the nodes
of G.

N [v]= is the set containing v with its neighbors.
y(A) =

∑

e∈A

ye.

min
∑

v∈V

wvyv

RL(G) =







y(N [v]) ≥ 1 for all v ∈ V, (1)

0 ≤ yv ≤ 1 for all v ∈ V, (2)
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Let DSP (G) be the dominating set polytope,

DSP (G) = conv {y ∈ RL(G) ∩ {0, 1}|V |}.

Few papers studied DSP (G):

• DSP (G) is characterized for threshold graphs, (Mahjoub’ 83).

• If the graph is strongly chordal, then DSP (G) = RL(G), (Farber’ 84).

• Composition by 1-sum and facets of DSP (G), (Bouchakour and
Mahjoub’ 95).

• Complete description of DSP (G) when G is a cycle, (Bouchakour et al’
97). Independently this result has been obtained by (Saxena’04)

• Facial study of DSP (G), (Saxena’ 03), (Bianchi et al’ 09).
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Our main result:

• An extended formulation via facility location that characterize
DSP (G) when G is a cactus, with a polynomial algorithm to solve
the WMDS problem in this class of graph.

This was an open question since the study of 1-sum compositions for
DSP (G) by Bouchakour and Mahjoub’ 95.
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Polyhedra composition

u

G

G1 G2u′
u′′

Figure 1: A 1-sum decomposition.
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w3 w3w4 w4

w2 w1w1 w2
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u

u u

G

GG1

Figure 2: A 1-sum decomposition with auxiliary graphs.

Bouchakour and mahjoub (95) gave a complete characterization ofDSP (G)
from DSP (G1) and DSP (G2)
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DSP (G) when G is a cactus

- A graph G is a cactus if each edge belongs to at mots one cycle f G.
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Theorem 1. [Bouchakour, Contenza, Lee and Mahjoub’05] WhenG =
(V,E) is a cycle, DSP(G) is characterized by the following system of linear
inequalities















































y(N [v]) ≥ 1 for all v ∈ V,

y(V ) ≥ ⌈|V |
3 ⌉

2
∑

v∈W

yv +
∑

v∈V \W

yv ≥

|W |
∑

i=1

ki + ⌈
|W |

2
⌉ for all W as defined below

0 ≤ yv ≤ 1 for all v ∈ V,
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v1

v2

v3

v4

v5

The number between two consecutive nodes vi and vi+1 in W is 3ki.

The squares are the nodes v1, . . . , v5 in W .

The rhs in this example is 5+3.
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• Remark 1. [Bouchakour et al.’05] Given an integer p > 0, there
exists a cactus graph G such that DSP (G) has a facet defining inequality
with coefficients 1, . . . , p.
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Extended formulation for DSP (G) via facility location

Given a direct graph D = (V,A) where each arc (u, v) and node v are
associated with a weight wuv and wv.

The Uncapacitated Fcaility Location (UFL) problem is to select some
nodes, and assign to them the non-selected one such that the assignment
cost + the cost of the selected nodes is minimized.
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Selected nodes
Non−Selected nodes

12 8

3
5

4

37

2

3

5
6

2

9

18

6
1

5

23 3

The  costof this solution is : 

8+2+7+

1

2

2+3+1+6+2
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The following is a linear relaxation for the uncapacitated facility location
problem:

minimize
∑

(u,v)∈E wuvxuv +
∑

v∈V wvyv

P (D) =































x(δ+(u)) + yu = 1 ∀u ∈ V,

xuv ≤ yv ∀(u, v) ∈ A,

xuv ≥ 0 ∀(u, v) ∈ A,

where δ+(u) = {(u, v) : (u, v) ∈ A} (the set of arcs leaving u).

Let UFLP (D) denote the uncapacitated facility location polytope,

UFLP (D) = conv {(x, y) ∈ P (D) ∩ {0, 1}|A|+|V |}.
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Let G = (V,E) an undirected graph. Let
←→
G = (V,A) a symmetric directed

graph obtained from G by replacing each edge uv of G by two arcs (u, v)
and (v, u).

Theorem 2. The projection of UFLP (
←→
G ) onto the y-variables gives

DSP (G).

In the sequel we will give a complete description of UFLP (
←→
G ) when G is

a cactus.
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1-sum composition

Suppose u is an articulation point in G.

u

G

G1 G2u′
u′′

Figure 3: A 1-sum decomposition.
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Notice that just a 1-sum does not suffice to describe UFLP (G) from
UFLP (G1) and UFLP (G2) as shown by the following example.

u
G

G1 G2

u′
u′′

0

1
2

1
2

1
2

1

1
2

1
2

1
2

1
2

1
2

P (G1) and P (G2) are integral but not P (G).
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From G1 and G2 define G′
1 and G′′

2 .

u

G

G′
1 G′

2u′
u′′

t′ t′′

Assume that:

UFLP (G′
1) is described by A

[

z1
α

]

≤ b , α is associated with (u′, t′).

UFLP (G′
2) is described by C

[

z2
β

]

≤ d , β is associated with (u′′, t′′).
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Theorem 3. UFLP (G) is described by

A

[

z1
α

]

≤ b,

C

[

z2
β

]

≤ d,

α = z2(δ
+(u′′)),

β = z1(δ
+(u′)),

z1(u
′) = z2(u

′′).
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Characterization of UFLP (
←→
G ) when G is a cactus

If G is a cactus, then
←→
G may be decomposed by means of 1-sum into the

following pieces:

bidirected cycle: BICn
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From the composition Theorem 1, to characterize UFLP (
←→
G ) it suffices to

describe UFLP (D) when D is one of the following pieces:

extended bidirected cycle

trivial graph
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For a directed graph D = (V,A) let P ′(D) be the polytope defined from
P (D) by replacing the equalities in P (D) by inequalities. Define UFLP ′(D)
to be to be convex hull of the 0-1 solutions in P ′(D).

It is easy to check the following

Lemma 1. The characterization of UFLP (D) when D is an extended
bidirected cycle reduces to the characterization of UFLP ′(D) when D is a
bidirected cycle.
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Characterizing UFLP ′(BICn)

• Valid inequalities for UFLP ′(D) for any directed graph D.

- bicycle inequalities. If BICr is a bicycle in D (not necessary induced),
then

∑

a∈A(BICr)

x(a) ≤

⌊

2|r|

3

⌋

, (1)

is valid for UFLP ′(D).
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- g-dd cycle inequalities.

A g-odd cyle C. Its parity is the number of green and red nodes

∑

a∈A(C)

x(a)−
∑

•

y(v) ≤
|•|+ |•| − 1

2
(2)
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- lifted g-odd inequalities.

A g-odd cycle A lifted g-odd cycle
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- lifted g-odd inequalities.

A g-odd cycle A lifted g-odd cycle
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- lifted g-odd inequalities

A g-odd cycle A lifted g-odd cycle
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- lifted g-odd inequalities.

A g-odd cycle A lifted g-odd cycle
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- lifted g-odd inequalities.

A g-odd cycle A lifted g-odd cycle

∑

a∈A(C)

x(a) +
∑

a∈red arcs

x(a)−
∑

•

y(v) ≤
|•|+ |•| − 1

2
(3)
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Theorem 4. UFLP ′(BICn) is described by







P (BICn) : the linear relaxation,
(1) : the bicycle inequality,
(2) : the lifted g-odd cycle inequalities.

Idea of the proof.

• Let αTx+ βTy ≤ ρ be a facet of UFLP ′(BICn).

• Eisenbrand, Oriolo, Stauffer and Ventura’ 05 completely describe the
stable set polytope when G is a quasi-line graph. Using their result
we show that the coefficients of any facet of UFLP ′(BICn) are all in
{0, 1,−1}.

• The last part of the proof shows that any inequality defining a facet of
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UFLP ′(BICn) is a bicycle inequality, a g-odd cycle inequality, a lifted
g-odd cycle or among the inequalities that define P (BICn).
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Let us conclude
• Notice that the coefficients of our description are all 0, 1 or -1. And may
be reduced to only 0, 1 coefficients.

• We can optimize over UFLP (
←→
G ) in polynomial time, when G is a

cactus. This is done using a linear time algorithm for the separation
problem of the g-odd lifted cycle inequalities. The separation of the
inequalities in node-variables formulation may be done in O(n2).

• Using the extended formulation, we can solve the MWDSP in linear time
when G is a cycle. In the original variable-dimension it may be solved in
O(n2).

• If we add
∑

v∈V yv = p to UFLP (
←→
G ) when G is a cycle, then the

bicycle with the lifted g-odd inequalities are redundant.
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First part of the proof uses the following reduction to the stable set problem

• G = (V,E) an undirected graph. A subset S ⊆ V is called a stable set
of G if no two nodes in S are adjacent.

•When each node v is associated with a weight w′
v, the maximum weighted

stable set (MWSS) problem is to find a stable set S that maximize w′(S).

• MWSS can be formulated as follows:

maximize
∑

v∈v

w′
vxv

Q(G) =

{

x(C) ≤ 1 for each maximal clique C in G,

x(v) ≥ 0 ∀v ∈ V,

xv ∈ {0, 1} ∀v ∈ V.

The stable set polytope of G is
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SSP (G) = conv{x ∈ Q(G) ∩ {0, 1}|V |}.
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- From a directed graph D = (V,A) define an undirected graph
I(D) = (A,E) called the intersection graph of D.

- The nodes of I(D) are the arcs of D,

- The edges of I(D) are defined as below:
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minimize
∑

(u,v)∈A

wuvxuv+

∑

v∈V

wvyv

P (D) =














∑

(u,v)∈A

xuv + yu = 1 ∀u

xuv ≤ yv ∀(u, v)
xuv ≥ 0 ∀(u, v)

x and y are integer.

maximize
∑

(u,v)∈Aw′
uvxuv

Proj(D) =



























∑

(u,v)∈A

xuv ≤ 1 ∀u

xuv +
∑

(v,t)∈A

xvt ≤ 1 ∀(u, v)

xuv ≥ 0 ∀(u, v)

x integer .

Notice that P (D) is integral if and only if Proj(D) is integral.

Remark 2. Proj(D) = Q(I(D)).
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v1

v3

v5

v7

v9

v11

v13

v2

v4

v6
v8

v10

v12

v14

A circulant graph.
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v11

v13

v2

v4

v6

v8

v10

v12

v14

A circulant graph.
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G′
1 I(G′

1).

Remark 3. The intersection graph I(G′
1) of G

′
1 is a quasi-line graph. But

I(
←→
G ) when G is a cactus is not even a claw-free graph.
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Eisenbrand, Oriolo, Stauffer and Ventura’ 05 completely describe SSP (G)
when G is a quasi-line graph. Using their result we show that the coefficients
of any facet of SSP (G′

1) are all in {0, 1,−1}.

• The second part of the proof shows that any inequality defining a facet
of SSP (G′

1) is a bicycle inequality, a g-odd cycle inequality, a lifted g-odd
cycle or among the inequalities that define P (G′

1).
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Let us conclude

Theorem 5. [Bouchakour, Contenza, Lee and Mahjoub’05] WhenG =
(V,E) is a cycle, DSP(G) is characterized by the following system of linear
inequalities















































y(N [v]) ≥ 1 for all v ∈ V,

y(V ) ≥ ⌈|V |
3 ⌉

2
∑

v∈W

yv +
∑

v∈V \W

yv ≥

|W |
∑

i=1

ki + ⌈
|W |

2
⌉ for all W as defined below

0 ≤ yv ≤ 1 for all v ∈ V,
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v1

v2

v3

v4

v5

The number between two consecutive nodes vi and vi+1 in W is 3ki.

The squares v1, . . . , vp are the nodes in W .

The rhs in this example is 5+3.
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• Remark 4. [Bouchakour et al.’05] Given an integer p > 0, there
exists a cactus graph G such that DSP (G) has a facet defining inequality
with coefficients 1, dots, p.

• Notice that the coefficients of our description are all 0, 1 or -1. And may
be reduced to only 0, 1 coefficients.

• We can optimize over UFLP (
←→
G ) in polynomial time, when G is a

cactus. This is done using a linear time algorithm for the separation
problem of the g-odd lifted cycle inequalities. The separation of the
inequalities in Theorem 3 may be done in O(n2).

• Using the extended formulation, we can solve the MWDSP in linear time
when G is a cycle. In the original variable-dimension it may be solved in
O(n2).
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• If we add
∑

v∈V yv = p to UFLP (
←→
G ) when G is a cycle, then he

bicycle with the lifted g-odd inequalities are redundant.
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 UFLPMWDSP

MWSSP
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