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1. INTRODUCTION

The size-Ramsey number of a graph G is the smallest number of edges in a
graph I with the Ramsey property for G, that is, with the property that any colour-
ing of the edges of I with two colours (say) contains a monochromatic copy of G.
The study of size-Ramsey numbers was proposed by Erdés, Faudree, Rousseau, and
Schelp in 1978, when they investigated the size-Ramsey number of certain classes
of graphs and, among others, raised some questions concerning the size-Ramsey
number of paths. In this talk, we shall survey some results that have been discov-
ered since, focusing on a couple of recent results obtained by the study of Ramsey
properties of fairly sparse random graphs by means of the regularity lemma.

We give some details below.

2. THE SIZE-RAMSEY NUMBER

Given an integer ¢ > 0 and graphs I' and H we write I' — (H), if I' contains
a monochromatic copy of H in any g-colouring of the edges of I'. That is, for
any ¢: E(T') — {1,2,...,q}, there is a copy H' of H in T" (that is, a subgraph of T
isomorphic to H) such that ¢ is constant on E(H’). For simplicity, we shall always
take ¢ = 2 in what follows.

The Ramsey number r(H) of a graph H is the smallest number of vertices in
a graph I' such that I' — (H)2. In contrast, the size-Ramsey number ro(H) of a
graph H is the smallest number of edges in a graph I' such that I' — (H)2, that is,

ro(H) =min{|ED)|: T — (H)2}. (1)
Note that, clearly, we have
(2)

The study of size-Ramsey numbers was proposed by Erdés, Faudree, Rousseau and
Schelp [9] in 1978. Those authors introduced the notion of o-sequences: sequences
of graphs (H,,) for which we have

lim 7e(H,) (T(H")> o 0, (3)

n— oo

that is, sequences of graphs for which the trivial upper bound in (2) may be sub-
stantially improved. Let P™ be the path on n vertices. The question whether (P™)
is a o-sequence was put forward in [9], and, in [8], Erdds stated the following version
of this problem.
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Problem 1. Is it true that
Te(P")/n — o0 and 7ro(P™)/n?* — 0? (4)

Beck [4], using probabilistic methods, proved the surprising fact that r.(P™) <
cn, where ¢ is an absolute constant, that is, the size-Ramsey number of paths is
‘linear’. Explicit examples of linear sized graphs that are Ramsey for P™ were given
by Alon and Chung [2], that is, they showed how to construct explicitly graphs T’
with O(n) edges such that I' — (P"),.

The linearity of the size-Ramsey number of paths was generalized to bounded
degree trees by Friedman and Pippenger [11] (see also [13, 18]). (See [15, 16, 17]
for more on tree embeddings.) It was proved in [14] that cycles also have linear
size-Ramsey numbers.

Beck [5] asked whether r.(H) is always linear in the size of H for graphs H of
bounded degree, and this was settled in the negative by Rodl and Szemerédi [25],
who proved that there are graphs of order n, maximum degree 3, and size-Ramsey
number Q(n(logn)/60). Tt is conjectured in [25] that, for some ¢ = (A) > 0, we
have

e <re(n, A) < n?7F, (5)
where r(n,A) is the maximum of r.(H) over all graphs H on n vertices and
of maximum degree at most A. The upper bound in (5) has been proved by
R6dl, Schacht, Szemerédi, and the speaker [19]. For further results on size-Ramsey
numbers, see [10, 22, 23, 24]. We emphasize that the the lower bound in (5) remains
open.

Subdivision of graphs. Let I be a graph and h a positive integer. We denote
by I™ the h-subdivision of I, namely the graph I® is obtained by replacing each
edge of I by a path with h + 1 edges (so, for instance, 100 = I). The following
result, which confirms a conjecture of Burr and Erdés [6], was proved by Alon [3].

Theorem 2 (Alon 1994). If an n-vertex graph H has no two vertices of degree at
least 3 adjacent, then its Ramsey number is at most 12n.

Therefore, if we subdivide every edge of a graph I at least once, then we obtain a
graph with linear Ramsey number. Thus, clearly, the size-Ramsey number of such
a subdivision is at most quadratic. Pak [21] put forward the following conjecture.

Conjecture 3 (Pak 2002). There is an absolute constant ¢ for which the following
holds. For every integer D, there is a constant Cp such that if H is a graph
with A(H) = D and h is an integer with h > clog N, where

N = |[V(H™)| = |V(H)| + h|E(H)|, (6)
then Te(H(h)) < CpN.

Making use of results on mixing times of random walks on expanders, Pak [21]
proved Conjecture 3 in a weaker form (he obtained the desired upper bound for
ro(H™) up to a polylogarithmic factor in N'). Donadelli, Haxell, and the speaker [7]
observed that Conjecture 3 holds in the case in which H is a fixed graph and h — oo.
A recent result obtained together with R6dl and Tengan [20] addresses the case
in which we subdivide every edge of a bounded degree graph a fixed, bounded
number of times. Our proof makes use of random graphs, the regularity lemma, a
path abundance result derived from results in [12], a result concerning embeddings
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of bounded degree graphs into almost complete graphs, and the Aharoni—Haxell
generalization of Hall’s matching theorem to hypergraphs [1].
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