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1. Introduction

The size-Ramsey number of a graph G is the smallest number of edges in a
graph Γ with the Ramsey property for G, that is, with the property that any colour-
ing of the edges of Γ with two colours (say) contains a monochromatic copy of G.
The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and
Schelp in 1978, when they investigated the size-Ramsey number of certain classes
of graphs and, among others, raised some questions concerning the size-Ramsey
number of paths. In this talk, we shall survey some results that have been discov-
ered since, focusing on a couple of recent results obtained by the study of Ramsey
properties of fairly sparse random graphs by means of the regularity lemma.

We give some details below.

2. The size-Ramsey number

Given an integer q > 0 and graphs Γ and H we write Γ → (H)q if Γ contains
a monochromatic copy of H in any q-colouring of the edges of Γ. That is, for
any ϕ : E(Γ) → {1, 2, . . . , q}, there is a copy H ′ of H in Γ (that is, a subgraph of Γ
isomorphic to H) such that ϕ is constant on E(H ′). For simplicity, we shall always
take q = 2 in what follows.

The Ramsey number r(H) of a graph H is the smallest number of vertices in
a graph Γ such that Γ → (H)2. In contrast, the size-Ramsey number re(H) of a
graph H is the smallest number of edges in a graph Γ such that Γ → (H)2, that is,

re(H) = min {|E(Γ)| : Γ → (H)2} . (1)

Note that, clearly, we have

re(H) ≤
(

r(H)
2

)
. (2)

The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau and
Schelp [9] in 1978. Those authors introduced the notion of o-sequences: sequences
of graphs (Hn) for which we have

lim
n→∞

re(Hn)
(

r(Hn)
2

)−1

= 0, (3)

that is, sequences of graphs for which the trivial upper bound in (2) may be sub-
stantially improved. Let Pn be the path on n vertices. The question whether (Pn)
is a o-sequence was put forward in [9], and, in [8], Erdős stated the following version
of this problem.
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Problem 1. Is it true that

re(Pn)/n →∞ and re(Pn)/n2 → 0? (4)

Beck [4], using probabilistic methods, proved the surprising fact that re(Pn) ≤
cn, where c is an absolute constant, that is, the size-Ramsey number of paths is
‘linear’. Explicit examples of linear sized graphs that are Ramsey for Pn were given
by Alon and Chung [2], that is, they showed how to construct explicitly graphs Γ
with O(n) edges such that Γ → (Pn)q.

The linearity of the size-Ramsey number of paths was generalized to bounded
degree trees by Friedman and Pippenger [11] (see also [13, 18]). (See [15, 16, 17]
for more on tree embeddings.) It was proved in [14] that cycles also have linear
size-Ramsey numbers.

Beck [5] asked whether re(H) is always linear in the size of H for graphs H of
bounded degree, and this was settled in the negative by Rödl and Szemerédi [25],
who proved that there are graphs of order n, maximum degree 3, and size-Ramsey
number Ω(n(log n)1/60). It is conjectured in [25] that, for some ε = ε(∆) > 0, we
have

n1+ε ≤ re(n, ∆) ≤ n2−ε, (5)
where re(n, ∆) is the maximum of re(H) over all graphs H on n vertices and
of maximum degree at most ∆. The upper bound in (5) has been proved by
Rödl, Schacht, Szemerédi, and the speaker [19]. For further results on size-Ramsey
numbers, see [10, 22, 23, 24]. We emphasize that the the lower bound in (5) remains
open.

Subdivision of graphs. Let I be a graph and h a positive integer. We denote
by I(h) the h-subdivision of I, namely the graph I(h) is obtained by replacing each
edge of I by a path with h + 1 edges (so, for instance, I(0) = I). The following
result, which confirms a conjecture of Burr and Erdős [6], was proved by Alon [3].

Theorem 2 (Alon 1994). If an n-vertex graph H has no two vertices of degree at
least 3 adjacent, then its Ramsey number is at most 12n.

Therefore, if we subdivide every edge of a graph I at least once, then we obtain a
graph with linear Ramsey number. Thus, clearly, the size-Ramsey number of such
a subdivision is at most quadratic. Pak [21] put forward the following conjecture.

Conjecture 3 (Pak 2002). There is an absolute constant c for which the following
holds. For every integer D, there is a constant CD such that if H is a graph
with ∆(H) = D and h is an integer with h > c log N , where

N = |V (H(h))| = |V (H)|+ h|E(H)|, (6)

then re(H(h)) ≤ CDN .

Making use of results on mixing times of random walks on expanders, Pak [21]
proved Conjecture 3 in a weaker form (he obtained the desired upper bound for
re(H(h)) up to a polylogarithmic factor in N). Donadelli, Haxell, and the speaker [7]
observed that Conjecture 3 holds in the case in which H is a fixed graph and h →∞.
A recent result obtained together with Rödl and Tengan [20] addresses the case
in which we subdivide every edge of a bounded degree graph a fixed, bounded
number of times. Our proof makes use of random graphs, the regularity lemma, a
path abundance result derived from results in [12], a result concerning embeddings
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of bounded degree graphs into almost complete graphs, and the Aharoni–Haxell
generalization of Hall’s matching theorem to hypergraphs [1].
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and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., vol. 11, János Bolyai
Math. Soc., Budapest, 2002, pp. 291–309. MR 2003k:05083

[11] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7
(1987), no. 1, 71–76. MR 88k:05063

[12] Stefanie Gerke, Yoshiharu Kohayakawa, Vojtěch Rödl, and Angelika Steger, Small subsets
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of bounded degree, in preparation.
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