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Centralized school admission mechanisms are an attractive way of improving social welfare and fairness in

large educational systems. In this paper we report the design and implementation of the newly established

school choice system in Chile, where over 274,000 students applied to more than 6,400 schools. The Chilean

system presents unprecedented design challenges that make it unique. First, it is a simultaneous nationwide

system, making it one of the largest school choice problems worldwide. Second, the system is used for all

school grade levels, from pre-K to 12th grade. One of our primary goals is to favor the assignment of siblings

to the same school. By adapting the standard notions of stability, we show that a stable assignment may not

exist. Hence, we propose a heuristic approach that elicits preferences and breaks ties between students in

the same priority group at the family level. In terms of implementation, we adapt the Deferred Acceptance

algorithm as in other systems around the world.
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1. Introduction

According to the Duncan Segregation Index, Chilean schools are extremely socially segregated

(Bellei 2013, Valenzuela et al. 2014). Several authors have shown that the costs of school segre-

gation are high, including low social cohesion and lack of equal opportunities and social mobility
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(Villalobos and Valenzuela 2012, Wormald et al. 2012). While the drivers of school segregation

include societal aspects well beyond school choice, social movements and politicians were probably

right in blaming features of the admissions system.

The School Inclusion Law marks a breaking point in the organization and functioning of the

school system. The law, promulgated in 2015, changed the old admissions process drastically by (i)

eliminating co-payments in publicly subsidized schools; (ii) forbidding publicly subsidized schools

from selecting their students based on social, religious, economic, or academic criteria; and (iii)

defining priorities that must be used to assign students to schools.1

In this paper we report the results of an ongoing collaboration with the Chilean Ministry of

Education (MINEDUC) addressing the practical challenges of implementing the School Inclusion

Law. To this end, we designed and implemented a centralized system that (i) provides information

about schools to help parents and students in building their preferences; (ii) collects families’

preferences through an online platform, reducing the time and cost that visiting each school involved

in the past; and (iii) assigns students to schools using a transparent and fair procedure.

One of the distinctive features of this new school choice system is its universality, as it is used

nationwide and for all school grade levels (from pre-K to 12th grade). We agreed with MINEDUC

that one of the primary goals of the system should be to obtain an assignment that favors the joint

allocation of siblings to the same school, although it is not required by law. The reason is that,

since the new law does not include walk-zone priorities and there is no public provision of school

transportation, the simplest way to reduce the travel time of families with multiple children is to

increase the chances of them getting assigned to the same school. This objective imposes several

challenges, as it introduces complementarities into the preferences of families, similar to those in

the matching with couples literature. Indeed, we show that a stable assignment may not exist if

families are allowed to report their preferences regarding the joint assignment of their children. For

this reason, we adopt a heuristic approach where we allow families to submit one preference list

per child, and we also allow them to report whether they want to prioritize the joint assignment of

their children. If this is the case, our heuristic automatically updates the preferences of the younger

siblings to account for the assignment of older siblings and to leverage the siblings’ priority. We

explore the stability and incentives of the mechanism when families’ preferences are consistent

with this heuristic, which we call higher-first preferences (see Sections 4.1 and 4.1.4, respectively).

Further, we break ties between students in the same priority group at the family level within

each school, as opposed to having one lottery number per student. Lotteries over families create

correlations between the priorities of siblings applying to different grades in a given school. We

show, theoretically and through simulations, that this correlation increases the probability that

siblings are assigned to the same school.
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Apart from obtaining a fair allocation that favors the assignment of siblings to the same school,

our implementation—based on the Deferred Acceptance (DA) algorithm introduced in the seminal

paper by Gale and Shapley (1962)—needs to accommodate several elements required by law and

by MINEDUC. In particular, the system needs to consider a set of priority groups—students with

siblings in the school, students with parents that work in the school, and students returning to the

school—that are served in strict order of priority. The system also needs to fill quotas for students

(i) with special educational needs and disabilities, (ii) with high academic performance, and (iii)

from disadvantaged environments. The law requires ties between students be broken at the school

level, and that students who are currently enrolled but are trying to transfer to a different school

be guaranteed the option to enroll in their current school if they cannot improve their assignment.

The results reported in this paper consider the admissions process of 2018—for students who

started the academic year in March 2019—which includes all regions except the Santiago metropoli-

tan area, involving 274,990 students and 6,421 schools in the main round. In this admissions process

students applied to 3.18 schools on average, and 59.2% of students were assigned to their top

preference. Moreover, 82.5% of the students were assigned to one of the schools in their preference

list, 8.6% were assigned to their current school, and only 8.9% were unassigned. In addition, there

were 10,301 family applications involving 21,424 students and 65.3% of these were successful, i.e.,

siblings got assigned to the same school, while 3% were partially successful, i.e., only a subset of

siblings got assigned together.2 We also provide simulations evaluating different elements of our

design, including: (1) the use of a family application (as opposed to no updating of preferences);

(2) the use of a family lottery (as opposed to a student lottery); (3) modifying the order in which

we process quotas; and (4) processing grade levels in decreasing order (as opposed to doing so in

increasing order).

Contributions. Designing, implementing, and improving the Chilean school choice system has

resulted in many contributions that could help other practitioners design large-scale clearinghouses.

From a theoretical standpoint, we contribute to the existing literature by introducing the notion

of family applications. We show that a stable matching may not exist, and we provide heuristics

that are successful at increasing the fraction of siblings assigned to the same school. In addition,

our results show that having lotteries over families significantly increases the fraction of siblings

assigned to the same school.

From a practical standpoint, a key lesson is that maintaining continuous communication and

collaboration with policy-makers is essential, as many practical issues arise and must be incorpo-

rated into the design. In addition, decomposing the implementation into a given number of steps

allowed us to gain experience, solve unexpected problems, and continuously improve the system.
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As centralized procedures to assign students to schools are becoming the norm in many coun-

tries, we expect that the lessons and solutions offered in this work will be deemed useful in other

implementations.

The remainder of the paper is organized as follows. In Section 2 we describe the school choice

problem in Chile. In Section 3 we discuss how this paper relates to several strands of the literature.

In Section 4 we present our model and describe its implementation. In Section 5 we present the

results. In addition, we evaluate the effects of (i) family applications and (ii) quotas for disadvan-

taged students via simulations. Finally, in Section 6 we conclude and provide directions for future

work.

2. The School Choice Problem in Chile

Depending on their type of funding, schools can be classified into three types: (1) private, i.e.,

schools that are independent and privately funded; (2) voucher, i.e., schools where families make

co-payments to complement state subsidies; and (3) public, i.e., schools that are fully funded and

operated by local governments. Voucher and public schools, which are the focus of this paper,

account for more than 90.3% of the total number of students in primary and secondary education

(MINEDUC 2018). These schools can offer a subset of the fourteen grades that are part of the

Chilean school system (from pre-kindergarten to 12th grade), but their lowest grade must be one

of the following five entry-level ones: pre-kindergarten, kindergarten, 1st, 7th, and 9th grade.

Before the introduction of the School Inclusion Law, schools ran their admission processes inde-

pendently, often selecting their students based on arbitrary rules, such as interviews with the

students and their parents, results of unofficial admissions exams, past academic records, and more.

Since the admissions processes were not coordinated, in many cases parents were forced to decide

whether to accept an offer or to reject it and wait until other schools released their admissions offers,

and declined seats were not efficiently reassigned. Moreover, many schools used “first-come first-

served” rules to prioritize students, resulting in parents waiting in long overnight queues to secure

a seat for their children. Overall, the freedom of schools to choose their students and the existence

of voucher schools are considered among the main reasons for the polarization and segregation of

the Chilean school system (Valenzuela et al. 2014).

To address these problems, the School Inclusion Law forbids any sort of discrimination in the

admissions processes of schools that receive (partial or full) government funding, and mandates

schools to use a centralized system that collects families’ and students’ preferences and returns

a fair allocation. In this system, students and families can access a platform where they collect

information—number of open seats, number of students per classroom and grade, educational

project, rules and values, co-payments required, and more—to build their preferences. Later, they
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can use this information to apply to as many schools as they want by submitting a strict order

of preferences. The system collects all these applications and runs a mechanism that aims to

assign each student to their top preference provided that there are enough seats available. More

specifically, if the number of applicants is less than the number of open seats, the law requires that

all students applying to that school be admitted, unless they can be allocated to a school they

prefer to it. On the other hand, for schools that are over-demanded, the law defines a set of priority

groups that are used to order students. In particular, there are three priority groups, which are

processed in strict order of priority:

1. Sibling. This group consists of students that have a sibling already enrolled or admitted at

the school.

2. Working parent. This group consists of students that have a parent working at the school.

3. Returning student. This group consists of students that were enrolled at the school in the past

and were not expelled from it.

In addition to these priorities, the law specifies three different types of quotas:

1. Special needs. This quota prioritizes students with disabilities. It reserves at most two seats

per classroom per school and must be processed before any other priority group or quota. The

quota only applies to schools that have a validated special program.

2. Academic excellence. This quota prioritizes students with high academic performance. It must

be processed right after the special needs quota and assigns between 30% and 85% of the total

number of seats depending on the school. MINEDUC allows only a subset of pre-selected schools

to implement this quota in the 7th and 9th grades, and schools can rank students based on an

admissions exam only.3

3. Disadvantaged. This quota prioritizes the most vulnerable students (the bottom third in terms

of income according to the Social Registry of Homes). At each grade in every school, 15% of the

seats are reserved for disadvantaged students, and this group is processed right after students with

siblings.

Finally, the School Inclusion Law sets three additional requirements: (1) ties between students

in the same priority group must be broken at each school independently, i.e., a Single Tie-Breaking

(STB) rule cannot be implemented;4 (2) if a student that is currently enrolled in a school partici-

pates in the system with the aim of transferring but remains unassigned, the system must guarantee

that student the option to enroll in her current school; and (3) students that are left unassigned

must be allocated to the school with remaining seats that is closest to their home. We refer to this

as assignment by distance.5

To accommodate all these requirements, the first step was to decide which mechanism to use

to perform the allocation. The law only requires that the resulting assignment be fair, and so
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we considered two alternatives: the Deferred Acceptance algorithm, and the Top-Trading Cycles

(TTC) algorithm. We decided to opt for the former because communicating the results of the

assignment—especially to families that are unhappy with the allocation—is much simpler under

DA. Moreover, this mechanism has been used in many other school districts worldwide. A second

major choice was how to handle families with multiple children participating in the system. As

opposed to many frameworks for inclusion in education around the world, the School Inclusion Law

intentionally excludes walk-zone priorities due to the high urban segregation that characterizes

most of the major cities in Chile. In addition, public provision of school transportation is almost

nonexistent, making families responsible for getting their children to school. Hence, having siblings

assigned to different schools can dramatically increase the transportation time and cost for families,

and therefore the assignment of siblings to the same school is a priority in our design.

As discussed in the previous section, accommodating this goal is challenging because it intro-

duces complementarities into the preferences of families with multiple children participating in the

system, similar to those in the literature on matching with couples. However, the problem with

families is even more complicated because families may have more than two children participat-

ing in the system, increasing the complexity of eliciting their preferences for their children’s joint

allocation. For instance, a family with three children interested in applying to three schools would

have to submit a preference list with 27 triplets to exhaust all possibilities. Moreover, due to the

siblings’ priority, the ordering of students by schools becomes dynamic, as at any given iteration of

the mechanism a student may be tentatively assigned to a school, thereby increasing the priority

of her siblings being assigned to that school. This feature is in sharp contrast with the standard

implementation of DA, where students’ preferences and schools’ priorities are fixed and known.

To address these challenges, we made three important decisions. First, instead of eliciting tuples

of preferences to account for all siblings, we ask families to report one preference list per child and

whether they want to prioritize the joint assignment of their children in the same school over each

child’s individual preferences. We refer to this feature as a family application. Second, to avoid the

problems associated with simultaneously finding an assignment (for all grade levels) that satisfies

families’ preferences and schools’ priorities, we process grade levels sequentially and in decreasing

order. More specifically, we start by solving the allocation of students in the 12th grade. Then,

we use this allocation—and the enrollment of siblings not participating in the system—to update

schools’ priorities in all lower grades to account for the siblings’ priority. We also use this allocation

to update the preferences of siblings in a family application. In particular, if a family submits a

family application and the older sibling is assigned to a school included in the preference lists of

the younger siblings, the preference lists of the younger siblings are updated to place that school

as their top preference.6 Based on the updated students’ preferences and schools’ priorities, we
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then obtain the next grade’s allocation. We repeat this process until we obtain the allocation for

the lowest grade (pre-K). Finally, the third choice we make to favor the joint allocation of siblings

is to break ties between students in the same priority group (if any) at the family level in each

school. As we show theoretically in Section 4 and through simulations in Section 5, this approach

to breaking ties considerably helps to increase the fraction of siblings assigned to the same school.

2.1. Timeline of Process

Figure 1 Timeline of the Admissions Process

September October November December January

Applications
Main round

Start

Applications
Main round

End
Tie-

Breaking

Assignment
Main round

Application
Complementary round

Assignment
Complementary

round

Enrollment

We summarize the timing of the admissions process in Figure 1. Families submit their preference

lists between September and October. The centralized mechanism collects all these lists, generates

the lotteries used to order students in over-demanded schools, and executes the main round of the

process to obtain the allocation. Families have five days to make one of the following decisions:

(1) to accept their initial assignment, (2) to wait in case of improvement from movements in the

waiting lists, and accept the resulting assignment, (3) to reject the assignment, and (4) to reject

it but also wait in case of improvement from movements in the waiting lists. Families that do not

accept their assignment or are unassigned, together with those that do not participate in the main

round, can participate in the complementary round by submitting a new preference list that only

includes schools with available seats. Students that are unassigned in the complementary round

are assigned to the closest school with available seats that does not charge a co-payment. The

complementary round results are published in mid-December, and families can choose to either

accept their assignment or reject it and reach out to MINEDUC to find a better assignment directly.

Notice that students and families have incentives to accept their main round allocation, as there are

fewer seats available in the complementary round, and rejecting the main round allocation entails

giving up both their assignment and their right to enroll in their current school (if any). The last

step in the timeline is enrollment, which takes place in late December. The system grants students

the right to enroll in the school to which they were assigned. However, students can also enroll

in schools outside the centralized system (private schools and some other exceptions), or they can

directly contact schools that are part of the system to check whether they can accommodate them.

However, direct contact can happen only after the official enrollment is over. In Appendix B.5 we

discuss the results of the enrollment process.
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3. Literature

This paper is related to five strands of literature: (1) school choice, (2) implementation of large-scale

clearinghouses, (3) affirmative action, (4) matching with externalities, and (5) tie-breaking.

School Choice. In the past two decades, starting from the theoretical formalization of the school

choice problem by Abdulkadiroğlu and Sönmez (2003), there have been reforms to the school choice

system in many places worldwide. New York City introduced the first major reform, implement-

ing a variation of the Deferred Acceptance (DA) algorithm with restricted lists (Abdulkadiroğlu

et al. 2005a). In 2005, the Boston public school system decided to switch from the so-called Boston

Mechanism (BM), also known as Immediate Acceptance (IA) mechanism, to DA to address the

strategic incentives introduced by the former algorithm (Abdulkadiroğlu et al. 2005b). Since then,

other school systems, e.g., Barcelona (Calsamiglia and Güell 2018), Amsterdam (Gautier et al.

2016), and New Orleans (Abdulkadiroglu et al. 2017), have implemented centralized school choice

systems using some variant of DA, BM, or Top-Trading Cycles (TTC). Abdulkadiroğlu and Sönmez

(2003) also initiated a large literature that theoretically analyzes the school choice problem. Recent

papers have extended it by including multiple priorities and quotas (see discussion below), allowing

different admissions processes to run simultaneously (Manjunath and Turhan 2016) or sequen-

tially (Andersson et al. 2018), optimizing other distributional goals (Bodoh-Creed 2020), and more.

This paper contributes to this literature by adding a feature that has not been explored in previous

literature: favoring siblings’ joint allocation to the same school.

Priorities and Affirmative Action. Many school choice systems include affirmative action poli-

cies to promote diversity in the classroom. Ehlers (2010) explores DA under type-specific quotas,

finding that the student-proposing DA is strategy-proof for students if schools’ priorities satisfy

responsiveness. Kojima (2012) studies the implementation of majority quotas and shows that these

may hurt minority students. Consequently, Hafalir et al. (2013) propose using minority reserves

to overcome this problem, and show that DA with minority reserves Pareto dominates DA with

majority quotas. Ehlers et al. (2014) extend the previous model to account for multiple disjoint

types and propose extensions of DA to incorporate soft and hard bounds. Other types of constraints

are considered by Kamada and Kojima (2015), who study problems with distributional constraints

motivated by the Japanese Medical Residency program. Dur et al. (2016a) and Dur et al. (2016b)

analyze the Boston and Chicago school systems, respectively.

Within the literature on affirmative action, the line of research closest to our paper is that

on multiple reserves and overlapping types. Kurata et al. (2017) study this problem and show

that a stable matching might not exist even in the soft-bound minority quota scenario. As a

solution, they propose a model in which they recover stability by assuming that students have
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preferences over contracts that specify the school and the type of seat to be used, while schools have

preferences over contracts specifying the student and the type of seat. A similar setting is assumed

by Aygün et al. (2020), who propose a mechanism to transfer seats from low-demand groups to

high-demand ones in order to reduce the number of unassigned seats. Recently (following the

implementation of the system in Chile), two papers—Sönmez and Yenmez (2020) and Delacrétaz

(2020)—consider overlapping types. Both papers axiomatically characterize desirable properties

and propose algorithms to find an allocation satisfying them. Sönmez and Yenmez (2020) aim to

maximize the number of targeted students receiving a seat, while Delacrétaz (2020) focuses on

respecting priorities and treating all target groups identically. Although both goals are valid, we

cannot implement the algorithm of Sönmez and Yenmez (2020) in our setting. The reason is that

their algorithm assumes that all seat types rank students according to the same baseline priority

order, which is not the case in Chile. For instance, academic excellence seats are assigned based

on test scores, special needs seats are assigned based on the fit of students with the infrastructure

available to accommodate them, and general seats are assigned based on a random lottery. In this

sense, the algorithm of Delacrétaz (2020) is closer to ours, as it allows students to have different

priority orders for each type of seat. Nevertheless, the fact that most students have at most one

type (93.8% in 2018)7 guarantees that our approach—based on Kurata et al. (2017)—incorporates

quotas as minimum guarantees (Hafalir et al. 2013, Sönmez and Yenmez 2020), which is precisely

our aim.

Matching with Externalities. The allocation of siblings is related to the work on matching with

externalities, which extends the standard setting by allowing agents to have preferences over the

allocation of other agents (Pycia and Yenmez 2015). An example of this is the labor market of

medical residents, where couples prefer (in general) to be allocated to the same city. Roth (1984)

shows that one cannot guarantee the existence of a matching without justified envy when couples

have arbitrary preferences over pairs of hospitals. Kojima et al. (2013) show that a stable matching

exists if the number of couples is relatively small and preference lists are sufficiently short relative to

the size of the market. Another positive result is presented by Ashlagi et al. (2014), who introduce a

new algorithm that finds a stable matching with high probability (in large matching markets) and

where truth-telling becomes an approximate equilibrium for the induced game. Another example

where complementarities are important is in the school choice context, where students may prefer to

be assigned to the same school as their neighbors. Ashlagi et al. (2014b) show that using correlated

lotteries, which maintain marginal assignment probabilities but increase the chance that students

from the same neighborhood are assigned together, can significantly increase community cohesion.

Dur and Wiseman (2019) study the case where neighbors share a subset of schools that they prefer

to attend together and, beyond that subset, each of them has an individual ranking of schools.
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The authors show that a stable matching may not exist, that the student-proposing DA algorithm

is neither stable nor strategy-proof, and that there exists a variation of this algorithm to alleviate

these problems. To our knowledge, the only paper that studies complementarities in the context of

school choice with families is Dur et al. (2019b). The authors focus on the particular case where an

assignment is feasible only if all family members submit the same preference list and all of them

are assigned to the same school (or all of them are unassigned). These constraints may be too

restrictive in a large system like the Chilean one, especially considering that most schools offer only

a limited subset of school grade levels. Therefore, our paper expands their setting by introducing

the family application and using lotteries at the family level to increase the probability that siblings

are assigned to the same school. Moreover, we contribute to this literature by showing that a stable

matching may not exist when there are family applications and by introducing a new heuristic that

can solve this problem.

Tie-breaking. A common approach to breaking ties between students in the same priority group

is to use random tie-breaking rules, such as Single Tie-Breaking (STB)—all schools use the same

ordering for breaking ties—and Multiple Tie-Breaking (MTB)—each school uses a different random

order. Abdulkadiroğlu et al. (2009) are the first to compare these tie-breaking rules empirically, and

they find that there is no stochastic dominance between these tie-breaking rules in New York City’s

school choice system. De Haan et al. (2015) obtain a similar result for Amsterdam. These findings

are consistent with the theoretical results in Arnosti (2015) and Ashlagi et al. (2019). Arnosti

(2015) shows that there is no first-order stochastic dominance among these two tie-breaking rules

when preferences are short, as STB assigns more students to their top preferences, while MTB

leads to more students being assigned. Similarly, Ashlagi et al. (2019) find no stochastic dominance

when there is low competition. However, they also show that when there is a shortage of seats,

STB almost dominates MTB and leads to a lower variance in students’ assignment preferences. We

contribute to this literature by studying the effect of breaking ties at the family level to increase

the probability that the mechanism assigns siblings to the same school.

Implementation of Large-Scale Clearinghouses. Our paper also contributes to the literature on

designing large-scale clearinghouses. Laws, institutional details, and special requirements often

forbid the use of tools directly taken from the theory, and other engineering aspects become rele-

vant in the design and implementation. Special attention has been devoted to redesigning medical

labor markets (Roth and Peranson 2002, Alon et al. 2018), college admissions systems (Biró 2008,

Baswana et al. 2019, Rios et al. 2020), kidney exchange programs (Roth et al. 2004, Anderson et al.

2015), and the assignment to (pre)military branches and programs (Sönmez and Switzer 2013,

Gonczarowski et al. 2019). We contribute to this literature by adding an example of successful

implementation of a large-scale clearinghouse in the school choice context, and we also share some

lessons that can be useful to other practitioners implementing large-scale clearinghouses.
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4. Model

The Chilean school choice problem can be formalized as follows. Let S be a set of students and T be

a set of traits. Each student s has a subset of traits τ(s)⊆ T , which captures special characteristics

of the student, such as socioeconomic status, academic performance, and more. We say that τ(s)

is the type of student8 s, and we denote by St = {s∈ S : t∈ τ(s)} the set of students with trait

t∈ T . In addition, let F be a partition of students into families, and let f(s)∈ F be the family of

student s. Then, we say that students s and s′ are siblings if and only if f(s) = f(s′), and we say

that s in an only child if f(s) 6= f(s′) for all s′ ∈ S \ {s}. Finally, let G be the set of all grade levels

from pre-K to 12th grade. Each student s∈ S belongs to a grade in G that we denote by g(s), and

we denote by Sg the set of students in grade g.

On the other side of the market, let C be the set of schools. Without loss of generality we

assume that each school c∈C offers a number of seats qcg in each grade g ∈G, and we use qcg = 0

to represent that grade g is not offered at school c. In addition, each school c in each grade g

has a number of seats reserved—also referred to as quotas—for each student trait t, ptcg, and so∑
t∈T p

t
cg ≤ qcg.

In a slight abuse of notation, we assume that each family f =
{
f1, . . . , f|f |

}
∈ F can be ordered

and written as a tuple
(
f1, . . . , f|f |

)
. Then, each (ordered) family f has a preference order �f over

possible assignments of its members, i.e., over tuples in the set (C ∪ {∅})f , where the symbol ∅

represents that a student is unassigned. For instance, if f = (f1, f2), then for any c, c′, c′′, c′′′ ∈

C ∪ {∅}, (c, c′) �f (c′′, c′′′) implies that family f prefers that students f1 and f2 attend schools c

and c′ over schools c′′ and c′′′, respectively. On the other side of the market, each school has a

preference order �c over feasible subsets of assigned students, i.e., over sets in the power set of S,

P(S). This preference order can be obtained as a result of considering priority groups, tie-breaking

rules, and reserved seats.

An assignment is a function µ : S∪C→ S∪C∪{∅} such that (i) µ(s)∈C∪{∅} for every student

s, (ii) µ(c) ⊆ S ∪ {∅} for every school c, and (iii) µ(s) = c if and only if s ∈ µ(c). In words, µ(s)

represents the school where student s is assigned to, and µ(c) represents the set of students assigned

to school c. In another abuse of notation, we denote by µ(f) = (µ(fi))
|f |
i=1 the assignment of the

members of family f , and by µcg = {s∈ S : µ(s) = c, g(s) = g} the subset of students assigned to

grade g in school c.

An assignment µ is feasible if |µcg| ≤ qcg; i.e., no school accepts more than the number of seats

offered in each grade. There are two additional properties that are desirable in any assignment: envy-

freeness and non-wastefulness. Given a feasible assignment µ, we say that a student s belonging

to a family f has justified envy toward another student s′ assigned to school c′ if
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1. g(s) = g(s′),

2.
(
µ(f1), . . . , c

′, . . . , µ(f|f |)
)
�f µ(f), and,

3. (µ(c′) \ {s′})∪{s} �c′ µ(c′).

In words, student s has justified envy toward s′ if both students are in the same grade, the family

f(s) prefers that student s be assigned to school c′ to µ(s) given the assignment of her siblings

µ(f(s) \ {s}), and school c′ prefers to exclude s′ and accept s conditional on the other students

admitted, µ(c′) \ {s′}. If there is no justified envy, we say that µ is envy-free. We say that µ is

non-wasteful if no student claims an empty seat, i.e., there is no pair s ∈ S and c ∈ C such that(
µ(f1), . . . , c, . . . , µ(f|f |)

)
�f(s) µ(f) and |µcg(s)|< qcg(s). We say that a feasible assignment is stable

if it is non-wasteful and there is no student that has justified envy.

As we will later show, these preferences are so general that a stable matching may not exist.

Even if we further restrict our model to account for the special features of the Chilean case, the

problem is still challenging due to the complementarities introduced by families’ preferences and

schools’ priorities.9 For this reason, we make two simplifying assumptions. First, to deal with

families’ complementarities, we assume that each student submits a preference list and that some

families prioritize the assignment of their children in higher grades over the assignment of their

children in lower grades. As a result, we process grades sequentially in decreasing order, updating

schools’ priorities and students’ preferences to account for the assignment in higher grades. Second,

to deal with the complementarities generated by reserves, we assume that each reserve in each

school is an independent sub-school with its own priorities and number of seats available, and that

students have preferences for each sub-school. In Sections 4.1 and 4.2 we describe in detail the

implementation of these assumptions.

4.1. Families

In Proposition 1 we show that a stable matching may not exist if the allocation is based on the

joint preferences reported by families.10

Proposition 1. If families’ preferences are arbitrary and schools’ priorities are over students in

each grade, then an envy-free and non-wasteful assignment may not exist, even with two schools

and four students.

Another issue of allowing families to report preferences over any tuple of schools is that it may

be too complicated, as the number of combinations grows exponentially with the number of schools

and with the number of siblings in a family. For instance, a family with two children where each

of them prefers four schools to the outside option would require that the family apply to 16 pairs

of schools to cover all combinations.
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These issues suggest that we may need some more structure in families’ preferences to guar-

antee the existence of a stable assignment and facilitate the reporting language to elicit families’

preferences. Dur et al. (2019b) analyze a particular case of our model where families prefer having

their siblings unassigned to having them assigned to different schools. By adapting the concept of

justified envy to that setting, the authors show that an assignment satisfying their notion of stabil-

ity always exists, and they propose an algorithm to find it. Although their assumption guarantees

some notion of stability, the requirement that all siblings be assigned to the same school is too

restrictive for our setting. For instance, many schools offer only a subset of grades, considerably

reducing families’ choice sets if we restrict ourselves to the setting in Dur et al. (2019b). In the

next section, we discuss a different assumption on families’ preferences that better fits the Chilean

school choice problem and that guarantees the existence of a stable assignment.

4.1.1. Higher-First. To circumvent the aforementioned difficulties, we make further assump-

tions on families’ preferences. In particular, we assume that families either (i) prioritize the assign-

ment of their children in higher grades to the best possible schools and then prioritize the assign-

ment of their siblings in lower grades to the same school, or (ii) prioritize the individual assignment

of each child based on their individual preferences and not their joint preferences. If the former

holds, we say that the family has higher-first preferences. To capture this, we make two important

considerations. First, we simplify (and consequently restrict) the reporting language. In particular,

we assume that each student s reports a strict preference order �s over schools c ∈ C ∪ {∅}. In

addition, we assume that each family f has the option to state whether their preferences satisfy

higher-first, in which case we say that they submit a family application, or whether they prefer

that the system treats each of their members independently.

Definition 1. Consider a family f = (f1, . . . , f|f |) with preference order �f , and suppose that

g(f1) ≥ g(f2) . . . ≥ g(f|f |). Then, we say that �f satisfies higher-first if there exist individ-

ual preferences {�fi}
|f |
i=1

such that for any ~c,~c ′ ∈ (C ∪{∅})f , ~c �f ~c ′ if and only if, given i =

arg min
{
j : cj 6= c′j, j ∈ {1, . . . , |f |}

}
, one of the following conditions holds:

1. ci �fi c′i, and either (i) ci, c
′
i ∈ {c1, . . . , ci−1} or (ii) ci, c

′
i /∈ {c1, . . . , ci−1}; or

2. ci ∈ {c1, . . . , ci−1} and c′i /∈ {c1, . . . , ci−1}.

Second, we process grades sequentially and in decreasing order. More specifically, if grades{
g1, . . . , g|G|

}
are ordered in decreasing order (i.e., g1 = 12th grade and g|G| = pre-K), we start by

obtaining an assignment for g1 using DA, while considering students’ individual preferences and the

siblings’ priority for students with siblings enrolled in the corresponding school. Before processing

g2, we update schools’ priorities for g2 to account for the siblings’ new priorities that result from

the allocation in grade g1. In addition, we update the individual preferences of students in g2 who
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have siblings assigned in g1 and who are part of a family application, by moving the schools where

their siblings were assigned to the top of their preference list while preserving their original order

(see Example 1). Then, considering the updated students’ preferences and schools’ priorities, we

obtain the allocation for g2, then move to the next grade, and then repeat the process until we

obtain the assignment for grade g|G|. Notice that, when updating students’ preferences and schools’

priorities in grade gi, we consider the allocation of students in grades {g1, . . . , gi−1}, and preserve

the original relative order of students and schools for priorities and preferences, respectively.

We jointly decided with MINEDUC to focus on a mechanism for higher-first preferences for three

reasons. First, this mechanism increases the probability that siblings are assigned together. Second,

it considerably simplifies the reporting language, making it easier to understand and reducing the

complexity for families to build their preferences. Finally, it captures the fact that many families

prioritize quality for their children’s assignment in higher grades. By contrast, they prioritize

convenience for their children’s assignment in lower grades. The reason is that, to apply to most of

the universities in Chile, students undergo a series of standardized national exams whose results

are heavily correlated with the quality of the school that the students attended for their secondary

education. Besides, students in lower grades are more dependent on their parents and older siblings

for their transportation. Hence, families prioritize quality for their older children and convenience

for their younger ones.11

Example 1. Consider a family f = (f1, f2, f3) with three members, and suppose that g(f1) >

g(f2)> g(f3). In addition, suppose that the individual preferences are given by:

f1 : c1 �f1 c2 �f1 c3, f2 : c2 �f2 c3 �f2 c1, f3 : c3 �f3 c1 �f3 c2.

Suppose that f1 is assigned to school c1. Then, if the family submits a family application, the

preference list of f2 is updated and becomes c1 �f2 c2 �f2 c3. Notice that, in addition to this, f2

receives the sibling priority in school c1, which further increases her chances of being assigned to

the same school as f1. If f2 is assigned to c1, then the preference list of f3 becomes c1 �f3 c3 �f3 c2,

and she also receives the sibling priority in school c1. On the other hand, if f2 is assigned to c2,

then the preference list of f3 becomes c1 �f3 c2 �f3 c3, i.e., f3’s preference list is updated to account

for the assignment of f1 and f2 in schools c1 and c2, respectively, but preserves the relative order

between these two options (defined by f3’s original preferences), and f3 receives the sibling priority

in both c1 and12 c2.

In Proposition 2 we show that a stable assignment always exists if preferences satisfy higher-first

and grade levels are processed sequentially in decreasing order.

Proposition 2. If grade levels are processed sequentially in decreasing order and the preferences

of families satisfy higher-first, then the obtained assignment is stable.
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4.1.2. Tie-Breaking. As discussed in Section 2, the priority groups included in the system

define a partial order over students, and we must use a multiple random tie-breaking rule to obtain

a strict order for each grade in each school. However, the School Inclusion Law does not further

specify how to implement it. Since one of our primary goals is to favor the joint assignment of

siblings, we propose to break ties at the family level in each school—using family lotteries—instead

of breaking ties using student lotteries. Under this new approach, we first break ties between

families and later use lotteries at the student level to break ties within each family. More precisely,

for each school independently, we draw a uniformly random ordering over the families, and then

we draw a uniformly random ordering over the members of each family. As a result, we obtain a

strict ordering of students for each school and each grade.

Example 2. Suppose that there is a school c and three families, f = {f1, f2}, f ′ = {f ′1, f ′2}, and

f(s) = {s} (an only-child student). Then, our procedure first draws an ordering of families uni-

formly at random, say f ′ �c f(s)�c f . Then, we draw an ordering of the members of each family

also uniformly at random, say f1 �c f2 for f and f ′2 �c f ′1 for f ′. The resulting ordering over all

applicants is then f ′2 �c f ′1 �c s�c f1 �c f2. The same procedure is repeated independently for each

school.

If there are no families with two or more applicants in the same grade, family lotteries induce

the same distribution of assignments as the regular multiple tie-breaking rule within each grade.

In Proposition 3 we show that using family lotteries increases the probability that families are

assigned together if no family has two or more members in the same grade. This result implies that

we can use family lotteries to increase the probability that siblings are assigned together without

harming families with an only child participating in the system.

Proposition 3. (Informal statement) Consider a family f = {f1, f2} such that g(f1) > g(f2).

Given (and fixed) the students’ preferences and schools’ priorities, the probability that these siblings

are assigned to the same school is larger under family lotteries than under student lotteries.

To ease exposition we defer the formal statement and proof of the latter proposition to

Appendix A.3. Analyzing the case with siblings in the same grade is technically much more chal-

lenging, but arguably their effect in the system is small, as less than 2% of the applicants have

a sibling applying to the same grade. Notice that the proposition works for a stylized case that

simplifies many of the complexities of our problem. Nevertheless, this result sheds some light on

why using family lotteries works, complementing the empirical analysis provided in Section 5.3.
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4.1.3. Example: Family Applications and Lotteries. To illustrate the benefits of the

family application and the lotteries by family we present the following example. Consider two

schools, c and c′, that have a single seat in grades g1 and g2, where the former is processed first. In

addition, suppose that there is one family f = {f1, f2} and two only-child students, s1, s2, so that

g1 = g(f1) = g(s1)> g(s2) = g(f2) = g2. Finally, suppose that c�s c′ for all s ∈ {f1, f2, s1, s2}; i.e.,

all students prefer school c to c′. To illustrate the impact of the proposed policies, we compute the

probability that the family is assigned together in each of the following four scenarios.

(i) Lotteries by student, no family application. The probability that the siblings are assigned

together is equal to the probability that they are both assigned to either school c or c′. Since the

probability that f1 is assigned to c (or c′) is 1
2

and the probability that f2 is assigned to c (or c′)

is also 1
2
, the overall probability that the siblings are assigned together is 1

2
· 1
2

+ 1
2
· 1
2

= 1
2
.

(ii) Lotteries by family, no family application. There are three possible lottery outcomes for the

family in school c, namely, being ranked first, second, or last. Each outcome has probability 1
3
. If

the family is ranked first in c, f1 and f2 are assigned together in school c. If the family is ranked

last in school c, both f1 and f2 are assigned to school c′. Finally, if the family is ranked second in

school c, one child is assigned to school c and the other to c′. Then, the overall probability that

the siblings are assigned together is 1
3
· 1 + 1

3
· 1 + 1

3
· 0 = 2

3
.

(iii) Lotteries by student, with family application. As in case (i), the probability that the siblings

are assigned together in school c is 1
4
. However, the probability that the family is assigned to school

c′ is now 1
2
. The reason is that, once student f1 is assigned to c′ (which happens with probability

1
2
), we update f2’s preferences so that she now prefers c′, and thus she gets assigned there for sure.

Therefore, the overall probability that the siblings are assigned together is 1
2
· 1
2

+ 1
2
· 1 = 3

4
.

(iv) Lotteries by family, with family application. As in case (ii), the family may be ranked first,

second, or last. Also, we know that the family is assigned together if it is ranked first or last.

When the family is ranked second, either s1 or s2 is ranked first. In the former case, the family is

assigned together because f1 is assigned to school c′ and so we update the preferences of f2 (as in

(iii)). In the latter case, the family is not assigned together because f1 is assigned to school c and

f2 is assigned to c′. As a result, the overall probability that the siblings are assigned together is

1
3
· 1 + 1

3
· 1 + 1

3
· 1
2

= 5
6
.

4.1.4. Incentives In this section we analyze whether families have incentives to report their

preferences truthfully. Certainly, this question is relevant only for families whose preferences are

consistent with the reporting language, i.e., those with higher-first preferences. Recall that, under

higher-first preferences, families report a preference list for each child (individual preferences) and

whether they want to prioritize that their children are assigned together (by submitting a family
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application). The mechanism is not strategy-proof in the general sense. However, as we point out in

the following observations, the range of profitable deviations from reporting truthfully is relatively

limited.

Observation 1. A family f with higher-first preferences cannot improve the assignment of one

of its members s∈ f by misreporting the individual preference of s, given that f submits a family

application. This comes from two facts: (1) if the individual preference of s is reported truthfully,

then the true preference of f over assignments where only s goes to a different school is exactly

the updated preference in the mechanism; and (2) using the updated preferences, the mechanism

runs a student-proposing DA in each grade, which is incentive-compatible for the students.

Observation 2. If a family f = (f1, f2) with higher-first preferences reports the individual pref-

erences of f1 and f2 truthfully, then it is weakly optimal for them to submit a family application.

This is because the only effect of submitting a family application is that the mechanism generates

an updated preference for f2 by moving to the top the school f1 was assigned to, which is the true

preference of f once the assignment of f1 is fixed. Therefore, the same argument as in Observation 1

holds.

Observation 3. Consider a family f = (f1, f2), with g(f1) > g(f2), that has higher-first prefer-

ences. Under certain conditions f may improve the assignment of f2 without changing the assign-

ment of f1 by misreporting the individual preference of f1.

Observation 4. A family f of three or more siblings with higher-first preferences may improve the

assignment of one of its members without changing the assignment of the others by not submitting

a family application, even if all individual preferences are reported truthfully.

Observation 5. In a large market with higher-first preferences our mechanism is essentially

strategy-proof. In general, a stable matching can be characterized by market-clearing cutoffs per

school such that a student is assigned to her most preferred school when she surpasses the cut-

off (Biró 2008). When the market grows large the effect of a single student’s preferences over the

cutoffs vanishes (Abdulkadiroğlu et al. 2015, Azevedo and Leshno 2016). Therefore, the possible

benefit a family gets from misreporting, which comes from manipulating the assignment in a higher

grade to take advantage of the sibling priority in lower grades (as noted in Observations 3 and 4)

also vanishes.

4.2. Quotas

As shown by Kurata et al. (2017), when student types overlap, the general concepts of stability with

soft lower bounds proposed in the literature (Hafalir et al. 2013, Ehlers et al. 2014) are insufficient
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to guarantee the existence of a stable matching. To overcome this difficulty, Kurata et al. (2017)

propose a new model based on matching with contracts (Hatfield and Milgrom 2005). In this model,

schools provide separate reserved seats for each student trait, and assignments are interpreted as

contracts that explicitly state that a student is assigned to a particular reserved seat at a school,

in contrast to previous models where a student is assigned to all the reserved seats for which she

is eligible.

Due to its simplicity, we adapt their approach to our setting. First, we update students’ pref-

erences so that each student s has a strict preference order �s over contracts of the form (c, t) ∈

(C ×T ) ∪ {∅}. Second, we assume that each pair (c, t) ∈ C × T—which we refer to as a sub-

school—has a weak priority profile �ct over students in13 S ∪{∅}. Then, a matching is a function

µ : S ∪ (C ×T )→ S ∪ (C ×T )∪{∅} such that:

1. µ(s)∈ {C ×T}∪ {∅} for all s∈ S,

2. µ(c, t)⊆ S for all (c, t)∈C ×T ,

3. µ(s) = (c, t) if and only if s∈ µ(c, t), for all s∈ S and for all (c, t)∈C ×T and

4. |µ(c, t)| ≤ ptc for all (c, t)∈C ×T .

In words, µ(s) represents the contract (or sub-school) to which student s is assigned; µ(c, t) rep-

resents the subset of students assigned to school c using the reserve for trait t. Note that this

definition does not require matching students with trait t to seats reserved for this trait, providing

extra flexibility if the reserves for some traits in some schools are not over-demanded. Another

advantage of this formulation is that, based on the new preferences and priorities, the standard

definition of stability directly applies, i.e., a matching is stable if and only if there is no pair

(s, (c, t))∈ S ∪ (C ×T ) such that, for some s′ ∈ S \ {s},

µ(s′)�s µ(s) and s�ct s′.

In Section 4.2.1 we discuss in detail how we construct the preferences �s and the priorities �ct.

4.2.1. Combining Quotas, Priorities, and Current Students. As discussed in Section 2,

there are three priority groups (sibling, working parent, and returning student) and three quotas

(special needs, academic excellence, and disadvantaged). In addition, the system must guarantee

that students who aim to transfer to a different school have the option to enroll in their current

school if they are not assigned to the other school they prefer. This feature of the problem has been

previously studied in other settings, such as in house allocation (Guillen and Kesten (2012)) and

teachers’ assignment (Combe et al. 2016). Both cases use the same variant of DA to accommodate

this requirement: they modify all houses/schools’ priorities to rank their initial “owners” at the

top of their priorities. In a recent paper, Combe (2018) shows that this variant of DA (called
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Table 1 Weak priorities by type-specific seats. Lower numbers indicate higher priority.

Priority Special Needs Academic Excellence Disadvantaged No Trait

1 Current school Current school Current school Current school
2 Special needs Academic Excellence Siblings Siblings
3 Siblings Siblings Disadvantaged Working parent
4 Working parent Working parent Working parent Returning students
5 Returning students Returning students Returning students No priority
6 No priority No priority No priority

Table 2 Preferences of Students.

Currently
Enrolled

Disadv.
Special
Needs

Siblings Preferences

Yes
Yes

Yes Any Special Needs � Disadvantaged � Regular � Academic Excellence
No Any Disadvantaged � Regular � Academic Excellence � Special Needs

No
Yes Any Special Needs � Regular � Disadvantaged � Academic Excellence
No Any Regular � Disadvantaged � Academic Excellence � Special Needs

No
Yes Any Any Special Needs � Academic Excellence � Disadvantaged � Regular

No
Any Yes Special Needs � Academic Excellence � Regular � Disadvantaged
Any No Special Needs � Academic Excellence � Disadvantaged � Regular

DA∗) is a justified-envy minimal mechanism in the set of individually rational and strategy-proof

mechanisms (Abdulkadiroglu et al. 2017),14 i.e., there is no other algorithm such that its set of

blocking pairs (relative to the original preferences) is a subset of that of DA∗. For this reason, we

adopt a similar approach and make two important changes to adapt it: (1) we rank all students

with current school at the top of their schools’ priorities, and (2) we add their current school to the

bottom of the preference list of each student seeking to transfer to another school that participates

in the system.

Given the treatment of reserves described above, we model each trait as a separate sub-school

with its number of seats (equal to the number of reserved seats for that trait) and its weak priority

order. In Table 1, we describe the sub-schools’ weak priorities over students depending on their

traits. In each sub-school (c, t), students currently enrolled at the school (who aim to transfer) have

the highest priority in all reserves. Students with special needs and academic excellence have the

second-highest priority in the corresponding reserves. The remaining students are ordered according

to the priority groups defined by law (i.e., sibling, working parent, and returning student). Notice

that, as required by law, students with siblings at the school have higher priority than disadvantaged

students, even in seats reserved for that trait. Finally, in Table 2, we describe the preferences of

students, which depend on their set of traits.

5. Results

In this section, we report the implementation results. We start by describing how the system evolved

from 2016 to 2018. Then, we focus on the admissions process of 2018 and report the results of the
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Table 3 Evolution of the System

Main Round Comp. Round

2016 2017 2018 2016 2017 2018

Regions 1 5 15 1 5 15
Schools 63 2,174 6,421 63 2,174 6,421
Students 3,436 76,821 274,990 439 9,507 46,698

1st preference [%] 57.0 56.2 59.2 81.3 81.8 46.7
Other preference [%] 27.4 26.8 23.4 12.5 14.3 19.0
Current school [%] 6.8 8.3 8.6 3.0 1.5 2.7
Not assigned/Distance [%] 8.8 8.7 8.9 3.2 2.4 31.6

main and complementary rounds in Sections 5.1 and 5.2, respectively. In Section 5.3, we study the

impact of the family application and having lotteries at the family level. Finally, in Section 5.4, we

analyze the effect of the quota for disadvantaged students.

In Table 3, we summarize the evolution of the admissions system. For 2016, we considered only

the entry grades of the Magallanes region, located in the extreme south of the country. For 2017,

the system was extended to all grades in Magallanes, and to entry grades in four more regions.

For the 2018 admissions process, all the aforementioned regions’ grades were added, and all the

remaining regions (except for the Metropolitan area) were included in their entry grades. For 2020,

the system was implemented in the entire country and for all grades, i.e., from pre-K to 12th grade.

As the table shows, most of the main round’s relevant performance metrics—fraction of students

assigned to their top choice and unassigned—have remained stable over time.15

5.1. Main Round.

In 2018, 274,990 students and 6,421 schools—divided into 32,198 sections, i.e., school-grade pairs—

participated in the system, with a total of 522,859 available seats (average of 16.2 seats per section).

In Table 4 we classify students based on (1) their gender, (2) whether they have any priority in

the schools they applied to, and (3) whether they are eligible for any quota in the schools of their

choice. Notice that the percentage of disadvantaged students exceeds 50% of the total number

of applicants. As the quota for this group is only 15%, an interesting design question is whether

having a quota has any impact when the targeted population is relatively large. We analyze this

in Section 5.4.

Analyzing the submitted preferences, we observe that students apply on average to 3.18 schools.

Considering that there is no limit on the number of schools that students can include in their

preference list, this number seems relatively low. One potential explanation is that students skip

schools where they believe that their chances of being admitted are close to zero (Larroucau

and Rios 2018). Another potential reason is that students make application mistakes due to lack

of information, poor understanding of the mechanism, and other reasons. Recent literature has
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explored similar application mistakes in other contexts, including college admissions (Artemov

et al. 2017, Shorrer and Sóvagó 2017, Larroucau et al. 2021), the National Residency Match (Rees-

Jones 2018, Rees-Jones and Skowronek 2018), the Israeli Market for Psychologists (Hassidim et al.

2021), among others. Understanding the drivers of this behavior in the school choice context is an

interesting avenue for future research.

Overall, 73.1% of the applications are to public schools and 26.9% to voucher schools, although

only 11% of the total seats available are of the latter type. Out of the 485,905 applications submitted

by disadvantaged students, 22.0% are to voucher schools, which is significantly less than the general

population. These differences are not surprising considering that disadvantaged students have fewer

resources, and therefore their willingness to pay is probably lower.

Table 4 Characterization of Applicants

Main Round Comp. Round

N % N %

Gender
Female 134,973 49.1 23,063 49.4
Male 140,016 50.9 23,635 50.6

Priority
Siblings 66,743 24.3 5,443 11.7
Working parent 3,700 1.3 328 0.7
Returning students 9,165 3.3 2,441 5.2

Quota
Special needs 1,631 0.6 - -
Academic excellence 6,534 2.4 - -
Disadvantaged 150,287 54.7 23,414 50.1

In Figure 2a we present the distribution of assignments by preference. We observe that 59.2% and

12.8% of the applicants are assigned to their first and second preference, respectively. In addition,

8.6% are assigned to their current school, and 8.9% are left unassigned (recall that these students—

the unassigned—have the chance to participate in the complementary process, whose results are

described in Section 5.2).

5.2. Complementary Round.

Overall, 46,698 students participated in the complementary round, including new applicants, unas-

signed students from the main round, and students who rejected their assignment from the main

round. In Table 4 we characterize these students based on their gender, priority type, and eligi-

bility for the disadvantaged quota, as the other quotas are not considered in the complementary

round. In general, we observe that there are no significant differences relative to the main round.

In Figure 2b we present the distribution of preferences of assignment in the complementary round.

We observe that the results are not as good as in the main round, as 47% are assigned to their top

choice, 28% are assigned by distance, and 3.6% are left unassigned.
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Figure 2 Distribution of Preference of Assignment
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Recall that the unassigned students from the complementary round are assigned to the nearest

public school (within 17 km) with remaining open seats—referred to as a distance assignment.

Indeed, 13,064 students were assigned by distance. The average distance for these students was

2.17 km, compared to 2.19 km for those assigned to one of their preferences in the complementary

process and 3.35km for those assigned to their current school. Finally, only 1,691 students—0.6%

of the total number of applicants in both rounds—were unassigned and were manually allocated

by MINEDUC.

In Appendix B.5 we report the results of the enrollment process. Overall, 72.7% (214,209) of

the students who applied to the system enrolled in the school they were assigned to (either in the

main or in the complementary round). Among the remaining 60,139 students, 8.6% (5,192) did not

enroll in any school, 20.1% (12,076) enrolled in a school that did not participate in the centralized

system, and 71.3% (42,871) enrolled in a school that participated. The latter includes students who

enrolled in the closest school with remaining seats after the complementary round, students who

remained in their current school, and students who directly contacted a school to request a seat.

5.3. Assignment of Families.

Besides finding a fair allocation as required by law, one of our primary goals is to favor the joint

allocation of siblings. In 2018, a total of 21,424 students were part of 10,301 family applications

in the main round, with 2,869 (27.9%) having students belonging to the same grade and 7,432

(72.1%) having at least two students in different grades.16 Out of these family applications, 6,725

(65.3%) were fully successful—i.e., all siblings that were part of these were assigned to the same

school—and 307 (3%) were partially successful—i.e., a subset of the siblings (among families with

3 or more applicants) were assigned to the same school.

As discussed in previous sections, we make three important decisions to favor the joint assignment

of siblings:
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1. Update preferences of younger siblings to accommodate the assignment of older siblings.

2. Use lotteries at the family level as opposed to the student level.

3. Process grades sequentially in decreasing order, i.e., starting from 12th grade and finishing

with pre-K.

To assess the impact of these decisions, in Table 5 we compare the fraction of family applications

that are fully and partially successful obtained from (i) updating/not updating the preferences of

younger siblings, and (2) using lotteries at the family/student level. For simplicity, we focus on the

main round, and for each combination we report the mean and standard deviation (in parentheses)

obtained from 10,000 simulations.17

Table 5 Effect of Lotteries and Updating of Preferences in Family Application: Simulation

Updating No Updating

By Family By Student By Family By Student

Fully Successful [%] 65.50 61.56 57.34 52.87
(0.21) (0.23) (0.25) (0.27)

Partially Successful [%] 2.94 3.00 3.34 3.40
(0.07) (0.07) (0.08) (0.08)

First, we observe that using lotteries at the family level increases the number of successful family

applications by 3.9% when combined with updating preferences. The improvement is 4.4% when no

updating of preferences occurs. On the other hand, the number of partially successful applications

remains almost the same when a family lottery is combined with updating of preferences, while it

increases by 0.06% when no updating is in place. These results suggest that using family lotteries

can largely increase the number of successful family applications. Second, comparing the results

of updating/not updating preferences (for a fixed type of lottery), we observe that our proposed

mechanism significantly increases the fraction of fully successful family applications (by 8.2% and

8.7% for family and student lotteries, respectively). At the same time, it slightly decreases the

number of partially successful family applications (by 0.44% and 0.4% for family and student

lotteries, respectively).

To assess whether the order in which grades are processed matters, we also ran simulations where

we sequentially process grades in increasing order, i.e., from pre-K to 12th grade. We do not find

a significant effect, as this results in 65.48% and 2.82% fully and partially successful applications,

respectively. Overall, these results suggest that updating preferences of younger siblings and using

lotteries at the family level explain the improvement obtained from our mechanism, and that the

former explains a higher fraction of the improvement.

Although the School Inclusion Law requires that each school has its own lottery to break ties

(i.e., it enforces the use of a Multiple Tie-Breaking (MTB) rule), in Table 6 we compare this to
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using a Single Tie-Breaking (STB) rule combined with updating preferences and holding lotteries

at the family and student levels.

Table 6 Effect of Lotteries and Tie-Breaking Rule in Family Application: Simulation

MTB STB

By Family By Student By Family By Student

1st preference [%] 59.21 59.12 62.05 62.05
(0.04) (0.04) (0.03) (0.03)

Other preference [%] 23.31 23.40 20.14 20.14
(0.05) (0.05) (0.04) (0.04)

Current school [%] 8.57 8.57 8.51 8.51
(0.02) (0.02) (0.02) (0.02)

Not assigned [%] 8.91 8.90 9.31 9.30
(0.02) (0.02) (0.02) (0.02)

Fully Successful [%] 65.50 61.56 65.47 61.94
(0.21) (0.23) (0.21) (0.23)

Partially Successful [%] 2.94 3.00 2.93 3.00
(0.07) (0.07) (0.07) (0.07)

Similar to previous findings in the literature, we observe that STB leads to more students assigned

to their top choice, while MTB leads to fewer unassigned applicants. In addition, given a fixed

tie-breaking rule (MTB or STB), we observe no significant effect of using lotteries by family on the

outcomes of interest that are not related to family applications (i.e., on the distribution of prefer-

ences of assignment). This suggests that using lotteries at the family level significantly increases the

number of siblings assigned to the same schools without having a major effect on other aggregate

outcomes of interest. Finally, we observe that using lotteries at the family level increases the rate

of success of family applications regardless of the tie-breaking rule considered (STB or MTB).

5.4. Quotas.

As discussed in previous sections, another requirement by law is the inclusion of a quota for

disadvantaged students. If the goal is to benefit the group that is targeted by the quota, previous

literature suggests that preferences should be updated to process it after the “regular” seats (see

Dur et al. (2016b), Hassidim et al. (2018), Rios et al. (2020)). All these papers focus on settings

where the quota serves a minority of students, and thus the goal is to increase their admission

chances. However, in our setting the quota serves the majority of students—disadvantaged students

represent 54.7% of the participants in the system—and the goal is to reduce school segregation

and increase diversity within schools. For this reason, we decided to process the quota first.

To assess the effect of this decision and the overall impact of including the quota, we compare

three policies:
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1. Quota First: this policy corresponds to the actual implementation described in Section 4.2,

i.e., assigning first the quota seats and then the regular seats in the applicants’ preference lists.

2. No Quota: this policy assumes that there is no quota.

3. Quota Last: this policy simulates the opposite case, i.e., assigning first the regular seats and

then the quota in the applicants’ preference lists.

In Table 7, we report the results obtained from 10,000 simulations of each policy, where we

consider only the main round of the process for simplicity.18 For each policy, we report the average

and the standard deviation of the percentage of students (1) assigned to their top choice, (2) to

a lower preference, (3) to their current school, and (4) not assigned. Also, for each policy, we

compute a measure of school diversity given by the percentage of disadvantaged classmates that

each student has in her school and grade (see Appendix B.3 for more details).

First, comparing the actual implementation with the case with no quotas (i.e., Quota First vs.

No Quota), we observe that disadvantaged students perform better when there is a quota, but the

differences are relatively small. One possible reason is that, by processing the quota first, disadvan-

taged students with high priority fill the quota. However, these students would also be admitted

under the regular admissions process, and thus other disadvantaged students would benefit by

processing the quota last. This becomes clear when comparing the results of our implementation

with those in the last two columns in Table 7 (i.e., Quota First vs. Quota Last). We observe that

disadvantaged students are significantly better off when the quota is processed last. For instance,

the fraction of disadvantaged students assigned to their top choice increases by 2.5%, while the

fraction that is unassigned decreases by 1.3%. Finally, we observe that processing the quota first

helps improve the diversity of schools, which is the main objective of having the quota in our

setting. Specifically, Quota First has a diversity of 0.566 (similar to No Quota) while Quota Last

has a diversity of 0.574, where a number close to 0.54 would be optimal.19 But we also observe

that processing the quota last reduces the variance in the fraction of disadvantaged classmates,

which is also desirable. These results confirm that the order in which quotas are processed mat-

ters. Processing the quota last helps the group of students targeted by this policy, even when they

represent most of the process participants, but can diminish the diversity of the schools.

6. Conclusions

Centralized procedures to assign students to schools are becoming the norm in many countries.

This trend highlights the need to study these systems beyond the stylized models in the literature,

as specific practical nuances can play a critical role. In this paper, we describe the design and

implementation of the new school choice system in Chile, which expands previous applications by

focusing on increasing the chances that siblings are assigned to the same school. In particular,
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Table 7 Sensitivity to Different Variants of Socioeconomic Quota: Simulations

Quota First No Quota Quota Last

Disadv. Non-Disadv. Disadv. Non-Disadv. Disadv. Non-Disadv.

1st preference [%] 66.02 51.01 65.82 51.24 68.50 48.73
(0.06) (0.07) (0.06) (0.07) (0.06) (0.07)

Other preference [%] 21.03 26.05 20.98 26.14 20.00 26.26
(0.06) (0.08) (0.06) (0.08) (0.06) (0.07)

Current school [%] 7.30 10.10 7.38 10.01 7.06 10.41
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03)

Not assigned [%] 5.65 12.84 5.82 12.60 4.44 14.60
(0.03) (0.05) (0.04) (0.05) (0.03) (0.05)

Diversity of schools

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Fraction of
0.566 0.217 0.565 0.220 0.574 0.211

disadv. classmates

we propose using two lotteries, one to order families and the other to break ties among siblings.

Also, our mechanism updates students’ preferences to prioritize siblings getting assigned to the

same school if they are part of a family application. Our results show that these features improve

the fraction of siblings assigned to the same school by 13% compared to the standard approach

of breaking ties at the student level. Apart from facilitating the joint allocation of siblings, our

solution accounts for all the other requirements that are part of the system, including different

priorities, quotas, and the assignment of students currently enrolled.

The experience of implementing a large-scale nationwide system stresses the importance of having

a continuous collaboration with policy makers, and the need of implementing changes in small steps.

Having a gradual implementation allows us to learn from the experience, continuously improve the

system, and gives time to the general public—and final users of the system—to get information,

learn, and understand the new system’s benefits. Overall, we will continue working to improve the

system, increasing its efficiency and fairness to give all students equal opportunities, regardless of

their background.
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Delacrétaz D (2020) Processing reserves simultaneously. Working paper.

Dubins LE, Freedman DA (1981) Machiavelli and the Gale-Shapley algorithm. The American Mathematical

Monthly 88(7):485–494.

Dur U, Duke S, Parag K, Pathak PA, Sönmez T (2016a) Reserve design: Unintended consequences and the

demise of Boston’s walk zones. Journal of Political Economy 126(6):2457–2479.

Dur U, Pathak PA, Sönmez T (2016b) Explicit vs. statistical preferential treatment in affirmative action:

Theory and evidence from Chicago’s exam schools. NBER working paper.

Dur U, Morrill T and Phan W (2019) Family ties: School assignment with siblings. SSRN Working paper.

Dur U, and Wiseman T (2019) School choice with neighbors. Journal of Mathematical Economics 83:101–109.

Ehlers L (2010) School choice with control. CIREQ Working paper 13-2010.

Ehlers L, Hafalir IE, Yenmez MB, Yildirim MA (2014) School choice with controlled choice constraints: Hard

bounds versus soft bounds. Journal of Economic Theory 153:648–683.

Gale D, Shapley LS (1962) College admissions and the stability of marriage. The American Mathematical

Monthly 69(1):9–15.

Gautier PA, De Haan M, Van Der Klaauw B, Oosterbeek H (2016) Eerste analyse matching en loting

voortgezet onderwijs amsterdam 2016. Working paper.

Gonczarowski YA, Nisan N, Kovalio L and Romm A (2019) Matching for the Israeli ”Mechinot” gap-year

programs. SSRN Working paper.

Guillen P and Kesten O (2012) Matching markets with mixed ownership: The case for a real-life assignment

mechanism. International Economic Review 53(3):1027–1046.



29

Hafalir IE, Yenmez MB, Yildirim MA (2013) Effective affirmative action in school choice. Theoretical Eco-

nomics 8(2):325–363.

Hatfield JW, Milgrom PR (2005) Matching with contracts. American Economic Review 95(4):913–935.

Hassidim, A, Romm, A, Shorrer, R (2018) Need vs. merit: The large core of college admissions markets.

Working paper.

Hassidim A, Romm A, Shorrer R. (2021) The limits of incentives in economic matching procedures. Man-

agement Science 67(2) (2021): 951–963.

Kamada Y, Kojima F (2015) Efficient matching under distributional constraints: Theory and applications.

American Economic Review 105(1):67–99.

Kojima F (2012) School choice: Impossibilities for affirmative action. Games and Economic Behavior

75(2):685–693.

Kojima F, Pathak PA, Roth AE (2013) Matching with couples: Stability and incentives in large markets.

Quarterly Journal of Economics 128(4):1585–1632.

Kurata R, Hamada N, Iwasaki A, Yokoo M (2017) Controlled school choice with soft bounds and overlapping

types. Journal of Artificial Intelligence Research 58:153–184.

Kwon H, Shorrer R. (2020) Justified-envy minimal mechanisms in school choice. Working paper.

Larroucau T, Rios I (2018) Do “short-list” students report truthfully? Strategic behavior in the Chilean

college admissions problem. Working paper.

Larroucau T, Martinez M, Neilson C, Rios I (2021) Non-obvious mistakes and the role of information in

college admissions. Working paper.

Manjunath, Vikram and Turhan, Bertan (2016) Two school systems, one district: What to do when a unified

admissions process is impossible. Games and Economic Behavior 95:25–40.

MINEDUC (2018) Estadisticas de la educacion 2017. Report available at https://centroestudios.

mineduc.cl/wp-content/uploads/sites/100/2018/12/ANUARIO-MINEDUC_VERSION-BAJA.pdf.

Pycia M, Yenmez M (2015) Matching with Externalities. Working paper.

Rees-Jones A (2018) Suboptimal behavior in strategy-proof mechanisms: Evidence from the residency match.

Games and Economic Behavior 108: 317–330.

Rees-Jones A, Skowronek S (2015) An experimental investigation of preference misrepresentation in the

residency match. Proceedings of the National Academy of Sciences 115(45): 11471–11476.

Rios I, Larroucau T, Parra G, Cominetti R (2020) Improving the Chilean college admissions system. Oper-

ations Research (forthcoming).

Roth AE (1984) The Evolution of the labor market for medical interns and residents: A case study in game

theory. Journal of Political Economy 92(6):991–1016.

https://centroestudios.mineduc.cl/wp-content/uploads/sites/100/2018/12/ANUARIO-MINEDUC_VERSION-BAJA.pdf
https://centroestudios.mineduc.cl/wp-content/uploads/sites/100/2018/12/ANUARIO-MINEDUC_VERSION-BAJA.pdf


30

Roth AE, Peranson E (1984) The redesign of the matching market for American physicians: Some engineering

aspects of economic design. American Economic Review 89:748–780.
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Appendix A: Proofs

A.1. Proof of Proposition 1

Consider an instance with two schools and two grades, C = {c1, c2}, G= {g1, g2}, where g1 is the

higher grade; and two families f = (f1, f2) and f ′ = (f ′1, f
′
2), where the sub-index denotes the grade

the student belongs to. Suppose each school has exactly one seat in each grade. Suppose also that

both schools’ priorities are simply rankings over students in each grade, and that both prefer f2

to f ′2 in grade g2, and both prefer f ′1 to f1 in grade g1. Moreover, suppose the preferences of the

families are

f : (c1, c2)�f (c2, c1)�f (c1, c1)�f (c2, c2)

f ′ : (c1, c1)�f ′ (c2, c2)�f ′ (c2, c1)�f ′ (c1, c2).

Assume µ is a stable assignment. Since there are enough seats, every student should be assigned

to one of the two schools in µ. We consider two possible cases:

1. If µ(f ′2) = c1, then f ′1 should be assigned also to school c1, because family f ′ prefers (c1, c1)

to (c1, c2), and f ′1 has priority over f1 in both schools. Then, f2 and f1 are in school c2, but

(c1, c2)�f (c2, c2) and f2 has priority in grade g2, so µ cannot be envy-free.

2. If µ(f ′2) = c2, then f ′1 should be assigned to school c2, because (c2, c2)�f ′ (c2, c1) and f ′1 has

priority over f1 in both schools. But then both f2 and f1 are in school c1. Student f2 has priority

in grade g2 and (c2, c1)�f (c1, c1), so µ cannot be envy-free. �

A.2. Proof of Proposition 2

We show that the updated preference over schools that the algorithm uses for a student is exactly

the one implied by their family’s preference if it is higher-first, and therefore, the grade level

stability implies overall stability.

Let µ be the resulting assignment from running the algorithm. Denote by �s,ALG the ranking

over schools that the DA algorithm uses for student s in grade g(s) and �s the individual preference

of student s in the definition of higher-first preferences. For a pair of schools c, c′ ∈C we show that

c�s,ALG c′ if and only if (c,µ(f(s)\{s}))�f(s) (c′, µ(f(s)\{s})). In fact, note that the latter holds

if either

1. {c, c′}∩µ({s′ ∈ f(s) : g(s′)> g(s)}) = {c}, or

2. |{c, c′}∩µ({s′ ∈ f(s) : g(s′)> g(s)})| ∈ {0,2} and c�s c′.

For �s,ALG, in the first case the algorithm before processing grade g(s) moves c to the beginning

of the ranking of s because it assigned a sibling of s in a higher grade to c. In the second case, s

has a sibling in a higher grade in both c and c′ or in neither, in which case the algorithm respects
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the originally reported preference of s. Thus, the ranking implied by the family preference and the

one used by the algorithm are equal.

On the other hand, the priority in each school that the algorithm uses in grade g, �c,ALG,g, is

fixed once the assignment in grades g′ > g is fixed and is by definition the real priority in the school

within grade g. Therefore, since DA produces a stable assignment within each grade g according

to {�s,ALG}s∈Sg and {�c,ALG,g}c∈C , and in general seats can be claimed and there can be justified

envy only within grades, µ is stable in general. �

A.3. Proof of Proposition 3

In this section we formally state and prove Proposition 3. Consider a family with two children, f1

and f2 applying to grades g1 and g2, respectively. As usual, the set of schools is C (|C|=m). School

c ∈C has qcg1 , qcg2 available seats in grades g1 and g2, respectively. Without loss of generality, we

assume there are no specific quotas or priorities.

Let Sg be the set of students applying to grade g ∈ {g1, g2}. Each student s ∈ Sg1 ∪ Sg2 has a

preference profile over a subset Cs ⊆ C denoted by ≺s. For ease of presentation, the priorities of

a student s in schools in C is given by a vector us = (usc)c∈C ∈ [0,1]C so that the higher usc, the

higher the priority of student s in school c (in the random priority model these numbers can be

thought to be i.i.d. U [0,1] random variables, and in the following analysis we can obviate the null

set where two students applying to the same grade get equal lottery numbers in the same school).

The following result concerns only grade g1 and is related to Lemma 4 of Abdulkadiroğlu et al.

(2015).

Lemma 1. Given ≺s and us for all s∈ Sg1 \ {f1} there exists a vector of cutoffs (τc)c∈C such that

for all preference profiles ≺f1 and all vectors uf1, if µ(f1) denotes the assigned school of f1 in the

DA mechanism, then µ(f1) = c if and only if uf1c′ < τc′ for all c≺f1 c′ and uf1c > τc.

Proof. Recall that as proved by Dubins and Freedman (1981) the DA mechanism is truthful in

the following sense: given the preferences of all students but f1 and all priorities, for all pairs of

preference profiles ≺f1 and ≺′f1 , if we denote as µ and µ′ the assignments when student f1 declares

≺f1 and ≺′f1 respectively, then µ′(f1)�f1 µ(f1).

As is also known from the standard literature on Deferred Acceptance, the student-optimal

assignment is unique and therefore independent of the order in which the student proposals are

processed. Thus we may assume that an initial stable assignment has been reached without the

participation of f1, who is then assigned her corresponding lottery number and inserted to allow

the process to run to completion.

For each c ∈C we define τc as the minimum value that uf1c can take to get f1 accepted to c if

she were to apply to it as her first preference (note that these are well defined since the acceptance
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or rejection to c as a first preference does not depend on the next ones). In this case it is clear that

any value of uf1c higher than τc would also result in acceptance to c, and a priority number lower

than τc would result in rejection by construction.

We will now show that this same vector (τc)c∈C also works for an arbitrary preference profile

≺f1 .

First we claim that if uf1c < τc, then f1 cannot be accepted to c. Indeed, suppose by contradiction

that uf1c < τc and f1 is accepted to c. Noting that the definitions of the τc’s do not depend on ≺f1
we can assume that the altered profile ≺′f1 , given by restricting ≺f1 to start from school c, was the

real preference profile and that ≺f1 is a deviation from the truth. By definition of τc, f1 will be

rejected from c if she applies with profile ≺′f1 , but accepted with profile ≺f1 by hypothesis, which

contradicts the truthfulness of the mechanism.

Returning to the proof of the lemma, to prove the right-hand implication suppose that f1 is

assigned to c. The inequality uf1,c > τc follows from the previous claim. If uf1c′ > τc′ for some

c≺f1 c′, then once again f1 could alter her preference profile to start from c′ and by definition be

accepted to her more preferred option c′, contradicting the truthfulness of the mechanism.

For the left-hand implication suppose by contradiction that the inequalities hold and there is

a school c′ 6= c such that f1 would be assigned to c′ instead. From the claim and the inequalities

uf1c′ < τc′ we get that it is not possible that c≺f1 c′. Also, if c′ ≺f1 c we can once again consider

the restricted preference profile starting from c and the inequality uf1c > τc to contradict the

truthfulness of the mechanism. �

With this lemma in hand we want to compare the probability that f1 and f2 get assigned to the

same school if on the one hand we draw uf1 and uf2 as vectors of i.i.d. uniform random variables

U [0,1], or on the other hand we draw uf1 as a vector of i.i.d. random variables U [0,1] and set

uf2c = uf1c. To this end we denote by PS the probability measure induced by the former situation

(student lottery) and by PF the one for the latter situation (family lottery).

Proposition 3. (Formal statement) Given ≺s and us for all s ∈ Sg1 ∪ Sg2 \ {f1, f2} then

PS (µ(f1) = µ(f2))≤ PF (µ(f1) = µ(f2)).

Proof. We proceed by partitioning the event µ(f1) = µ(f2) over the possible common school

assignment c ∈C. From Lemma 1 we know that the event µ(f1) = c is equivalent to uf1c′ < τc′ for

all c≺f1 c′ and uf1c > τc. Therefore, since uf1 is a vector of uniform i.i.d. random variables in [0,1],

conditional on the event µ(f1) = c, we have that uf1 is a vector of independent random variables

but with uf1c ∼U [τc,1], uf1c′ ∼U [0, τc′ ] for c′ �f1 c, and uf1c′ ∼U [0,1] for c′ ≺f1 c.

If we apply Lemma 1 to grade g2, we get certain cutoffs (τ̄c)c∈C such that µ(f2) = c if and only if

uf2c′ < τ̄c′ for all c′ ≺f2 c and uf2c > τ̄c. Now, since under family lotteries uf1c′ = uf2c′ for all c′ ∈C,
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we have that PF (uf2c′ < τ̄c′ |µ(f1) = c)≥ PS(uf2c′ < τ̄c′ |µ(f1) = c) = PS(uf2c′ < τ̄c′) for all c′ 6= c and

PF (uf2c > τ̄c|µ(f1) = c)≥ PS(uf2c > τ̄c|µ(f1) = c) = PS(uf2c < τ̄c). Then, because the variables in the

vector uf2 are independent, we can multiply the inequalities and to obtain that

PF (µ(f2) = c|µ(f1) = c)≥ PS(µ(f2) = c).

Note that for a given school c∈C, the marginal probabilities PF (µ(f1) = c) and PS(µ(f1) = c) are

equal since they concern grade g1 only. Hence, we can multiply by PF (µ(f1) = c) on both sides of

the previous inequality and sum over all c∈C to obtain that

∑
c∈C

PF (µ(f2) = c,µ(f1) = c)≥
∑
c∈C

PS (µ(f2) = c,µ(f1) = c) ,

and therefore, PF (µ(f1) = µ(f2))≥ P(µ(f1) = µ(f2)). �

A.4. Examples of Section 4.1.4

Example of Observation 3. Consider an instance with two grades G= {g1, g2}, where g1 is the

higher grade and g2 the lower. We have three families f = (f1, f2), f
′ = (f ′1, f

′
2), and s1 (an only-child

family applying to grade g1) and three schools c1, c2 and c3. Schools c1 and c2 have one available

seat in each grade and c3 only has a seat in grade g1. The families have higher-first preferences

given by the following individual preferences:

f1 : c1 � c2 � ∅, f2 : c2 � c1,

f ′1 : c3 � c1 � c2, f ′2 : c1 � c2,

s1 : c2 � c1 � ∅.

The tie-breaking rules in each school are given by:

c1 : s1 � f ′ � f,

c2 : f � f ′ � s1,

c3 : f � f ′ � s1.

If everyone reports truthfully, each student goes to her most preferred school in g1 and there are

no conflicts. If we denote the assignment by µ, we have that µ(f1) = c1, µ(f ′1) = c3, and µ(s1) = c2.

However, in g2 the mechanism updates the preference of f2 to be c1 � c2 because her sibling was

assigned to c1. Therefore, in the DA algorithm both f2 and f ′2 propose to c1. Since f1 was assigned to

c1 in g1, f2 has now sibling priority, and so f ′2 is rejected and the resulting assignment is µ(f2) = c1

and µ(f ′2) = c2.
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We now consider the situation where all individual preferences are reported truthfully, except

for f ′1, whose reported preference is c1 � c3 � c2. Denote the new assignment by µ′. In grade g1, in

the DA algorithm, f1 proposes to c1, f
′
1 to c1, and s1 to c2. The proposal of f1 is rejected, so she

proposes to c2. Then the proposal of s1 is rejected, so she proposes to c1. Finally, the proposal of

f ′1 is rejected, and so she proposes to c3. Thus, the resulting assignment is µ′(f1) = c2, µ
′(f ′1) = c3,

and µ′(s1) = c1. Note that the assignment of f ′1 is the same as in the case where her individual

preference is reported truthfully. In g2 the updated preference of f2 is the same as her original

individual preference, and so the assignment is µ′(f2) = c2 and µ′(f ′2) = c1.

Example of Observation 4. Consider the same instance as in Observation 3, but add a higher

level g0, a family s0 (which is an only-child family applying to g0), and a new member of f ′, f ′0, so

that we get f ′ = (f ′0, f
′
1, f
′
2). In g0 schools c1 and c3 have one available seat and c2 has no available

seats. The individual preferences of the new students are given by

f ′0 : c3 � c1

s0 : c3 � c1,

and s0 has higher priority in all schools.

Assume all individual preferences are reported truthfully and that f submits a family applica-

tion. In g0 the assignment is µ(f ′0) = c1 and µ(s0) = c3, regardless of whether f ′ submits a family

application. However, if f ′ submits a family application, the mechanism updates the preference of

f ′1 to be c1 � c3 � c2, and we obtain the same situation as in the example of Observation 3.

Appendix B: Results

B.1. Main Round

B.1.1. Relation between Outcome and Number of Submitted Preferences. Figure 3

shows the fraction of students who (1) are assigned to one of their preferences, (2) are assigned to

their current school, and (3) are left unassigned, conditional on the number of reported preferences.

We observe that when the number of declared preferences increases so does the probability of being

assigned, but the average preference of assignment also increases. Moreover, we find that students

who are unassigned apply on average to fewer schools (3.36, with std. dev. 1.49) than those who

are assigned (3.42, with std. dev. 1.83). Applicants assigned to their current school usually submit

even fewer preferences (3.05, with std. dev. 1.49), which is expected as they have a secured option.

B.1.2. Relation between Number of Siblings and Success of Family Application. Fig-

ure 4 shows that larger families are less likely to be successful, which is intuitive as they require

more students to be allocated to the same school. We refer to Appendix B.4 for results on family

applications based on on the number of same schools a family declares.
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Figure 3 Assignment Distribution and Average Rank Distribution by Number of Declared Preferences: Main

Round

Figure 4 Number of Successful and Partially Successful Families by Size: Main Round

B.2. Other Quotas

Recall that students can belong to three quotas: (1) special needs, (2) academic excellence, and

(3) disadvantaged. Students are indifferent between being assigned by any quota and by none of

them and schools only declare their total available seats and the mechanism calculates seats for

the different types of quotas that are allowed by the system. In Table 8 we show the distribution

of the 524,178 declared seats for the 2018 process.

Figure 5 shows the results for students belonging to different quotas (recall that a student may

belong to more than one quota). It is clear to see that students belonging to the special needs

and disadvantaged quotas outperform students belonging to the academic excellence quota and
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Table 8 Total Seats Declared by Schools: Main Round

Quota # seats % of total

Special needs 15,324 2.9%
Disadvantaged 43,336 8.3%
Academic Excellence 2,591 0.5%
No trait 462,927 88.3%

Figure 5 Results by quota - Main Round

- copia.PNG

students that do not belong to any quota in both percentage of students assigned to their first

choice and percentage of unassigned students. The low performance of the academic excellence

quota compared to the other two quotas could be explained by the fact that academic excellence

students apply to a subset of very over-demanded schools.

B.3. Diversity Simulations

From the point of view of schools, MINEDUC seeks to have balanced and diverse schools with

respect to the socioeconomic composition. In this sense, we analyze in both scenarios (with and

without the quota) the balance of disadvantaged students in schools. To this end, we consider the

following measure of diversity: among all the students in the first round that get an assignment,

we pick a student uniformly at random and count the fraction of disadvantaged students that are

assigned to her grade. This defines a random variable that depends both on the lottery used for

the tie-breaking rule and on the selected student.

Let Sdis be the set of disadvantaged students that participate in the first round. Given an

assignment µ, let S(µ) := {s∈ S : µ(s) 6= ∅} be the set of all students that get an assignment in µ,
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and, similarly, let Sdis(µ) := S(µ) ∩ Sdis be the set of all the disadvantaged students that get an

assignment in µ.

For a fixed lottery, let µlottery be the assignment obtained from its induced tie-breaking and s be

a student chosen at random from among all the students that get an assignment in µlottery. For a

school c∈C with µ(c) 6= ∅, let f lottery(c) := |µlottery(c)∩Sdis|
|µlottery(c)| be the fraction of disadvantaged students

assigned to c in µ. Then, our random variable can be expressed as f lottery(µlottery(s)). Its conditional

expectation given the lottery turns out to be the ratio of all the disadvantaged students assigned

in µlottery to all the students assigned in µlottery, since

E
[
f lottery(µlottery(s)) | lottery

]
=

1

|S(µlottery)|
∑

t∈S(µlottery)

f lottery(µlottery(t))

=
1

|S(µlottery)|
∑

c∈C:µlottery(c) 6=∅

f lottery(c)|µlottery(c)|

=
|Sdis(µ

lottery)|
|S(µlottery)|

.

Its second moment, on the other hand, is given by

E
[(
f lottery(µlottery(s))

)2 | lottery
]

=
1

|S(µlottery)|
∑

t∈S(µlottery)

(
(
f lottery(µlottery(t))

)2
=

1

|S(µlottery)|
∑

c∈C:µlottery(c) 6=∅

(
f lottery(c)

)2 |µlottery(c)|

=
1

|S(µlottery)|
∑

c∈C:µlottery(c) 6=∅

|µlottery(c)∩Sdis|2

|µlottery(c)|
.

We estimate E [f lottery(µlottery(s))] by computing the average of E [f lottery(µlottery(s)) | lottery]

over the results of the 10,000 simulations. Similarly, we estimate Var [f lottery(µlottery(s))] =

E
[
(f lottery(µlottery(s)))

2
]
− E [f lottery(µlottery(s))]

2
by averaging E

[
(f lottery(µlottery(s)))

2 | lottery
]

over the 10,000 simulations and then subtracting the square of the estimator for

E [f lottery(µlottery(s))]. Finally, we calculate the standard deviation as the square root of the variance.

B.4. Family Application

We measure the success of family applications of size two as a function of the number of schools their

students declare in common in their preference lists. Table 9 shows, as expected, that the success

rate increases with the number of common preferences, having its greatest increment when the

number of common schools grows from one to two. Furthermore, in both rounds, blocks (families)

of size two of the same grade were more successful in percentage than those of different grades.

Indeed, the main round has 2,832 blocks of size two of the same grade and 6,719 of different grades,

with success rates of 77,8% and 62.2%, respectively. For the complementary round, there are 362

blocks of size two of the same grade, with a success rate of 82.3%, and 1,059 of different grades,

with a success rate of 70.7%.
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Table 9 Results of Family Applications for Blocks of Size 2 by Number of Schools in Common

Main round Complementary round

# schools in common # blocks % of success # blocks % of success

1 1,291 38.5% 497 67.7%
2 3,216 69.8% 2,245 76.6%
3 2,441 71.7% 1,750 77.8%
≥4 2,603 72.6% 1,889 80.5%

Total 9,551 1,421

B.5. Enrollment

Notice that the assignment only grants the right to enroll in the school of assignment. However,

families are free to look for better options of enrollment, e.g., by directly visiting schools with

remaining seats after the complementary round or enroll in private schools. The School Inclusion

Law did not change any aspect of the admissions process to private schools, so these are free to

use any mechanism they were using in the past, i.e., interviews, entrance exams, etc. Also, many

private schools carry out their admissions process all year around, while other (in general more

selective) private schools run their admissions at the beginning of the academic year (i.e., between

March and April) to decide admissions of students that start in the next academic year.

In Table 10 we provide summary statistics of the number of students that participate in each

part of the process. Applied and Assigned represent the number of students that applied to at

least one school and that were assigned to one of their reported preferences, respectively. Finally,

Enrolled represents the number of students that enrolled in the school they were assigned to in the

corresponding round.

Table 10 Summary Statistics: Process Funnel

Main Complementary

2016 2017 2018 2016 2017 2018

Applied 3,436 76,821 274,990 439 9,507 46,698
Assigned 3,133 70,145 250,469 424 9,285 31,962
Enrolled 2,071 47,248 194,003 268 5,720 21,212

From now on we will focus on the admissions process of 2018. First, we observe that 250,469

(91.1%) applicants in the main round are assigned to one of their preferences, and 194,003 (77.5%)

of these students enrolled in the school they were assigned to. Out of the students that were assigned

but did not enroll in their main-round assignment, only 10,605 participate in the complementary

round, while the remaining 45,507 students look for other options outside the centralized system.

Specifically, 4,061 students do not enroll in any school, 9,720 enroll in schools that are not part
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of the centralized system (including private schools and other special cases), and 31,726 enroll in

schools that are part of it. Most of the cases in the latter group are students assigned by distance

(23,544 students are not assigned to any of their preferences and are automatically assigned to the

closest school with remaining seats), but it is also possible that some families directly contacted

schools to check whether there were seats available after the complementary round. Similarly, out

of the students that apply and are assigned in the complementary round (31,962), 917 end up not

enrolling in any school, 21,212 enroll in the school they were assigned to, and 9,833 enroll in a

different school. Among the latter, 1,560 enroll in schools that do not participate in the centralized

system, while 8,273 enroll in schools that are part of it.

Overall, 294,768 students apply in at least one of the rounds of the system, 274,348 get assigned,

and 214,209 enroll in their assignment (either in the main or in the complementary round). Out

of the remaining students, 5,192 do not enroll in any school, 12,076 enroll in schools that are not

part of the centralized system, and 42,871 enroll in schools that are part of it. Among the latter, a

total of 24,797 students are assigned to their current schools, and 13,064 are assigned to the closest

school with remaining seats.

Endnotes

1. The Law also radically changed the way in which families apply and are assigned to schools,

which made the transmission of information essential to the implementation.

2. This 3% corresponds to 307 partially successful family applications. However, only 750 family

applications were of size 3 or more, and therefore this represents 41% of the possibly successful

ones.

3. The use of entrance exams is only a temporary policy. Once the system reaches its full imple-

mentation, no entrance exams are allowed. Instead, all students that are in the top 20% of their

grade will be eligible for the academic excellence quota.

4. The law explicitly states that each school must use a different random order to break ties,

forbidding the use of STB. This is because authorities were concerned that a single tie-breaker

would be unfair, as a low lottery number would harm students in all their applications. Nevertheless,

the law allows the use of the same random tie-breaker for all the members of the same family

within each school, and later breaks ties between siblings in the same grade randomly.

5. In case that there are no schools with available seats within 17 km, students remain unassigned

and MINEDUC finds a solution for them.

6. If more than one older sibling is assigned or enrolled, then the preferences of the younger

siblings are updated by moving those schools (if present) to the top of their preference list while
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keeping their original order. By contrast, if a family with multiple children does not submit a family

application, the preferences of younger siblings are not updated.

7. In 2018, there were 111,931 students with no trait; 133,198 disadvantaged students; 122,203

students of academic excellence; 530 students with special needs; 16,027 students of academic

excellence and disadvantaged; 985 students with special needs and disadvantaged; 39 students of

academic excellence and with special needs; and 77 students with all three traits.

8. Where τ(s) = {∅} means s is a regular student with no trait.

9. For example, since the sibling priority applies to students with siblings currently enrolled and

for students whose siblings are applying to the system and are tentatively assigned, the priority

that a student gets depends on other students’ allocations. Similar complementarities between

students are introduced by the existence of multiple reserves with overlapping types.

10. All proofs are deferred to the Appendix.

11. In Section 5.3 we compare the results with processing grades sequentially in increasing order.

12. If f3 had not applied to c2, then the updated preferences of f3 would be c1 �f3 c3 even if f2

was assigned to c2.

13. A strict priority order is obtained by combining these weak priority orders with the random

tie-breaking rule discussed in Section 4.1.2.

14. Kwon and Shorrer (2020) analyze the class of Pareto-efficient mechanisms, and show that

Efficiency-Adjusted DA (EADA) is justified-envy minimal.

15. The only major difference is found in the complementary process of 2018. That year, there

was a shortage of seats in pre-K in one region, which significantly worsened overall results. This is

solvable by letting MINEDUC assign students to daycare institutions (not in the system) instead

of schools, where there are available seats.

16. Family applications with siblings applying to the same grade are over-represented mostly

because (i) families can decide whether or not to apply as a family, and (ii) only pre-K, K, 1st,

7th, and 9th grade are considered in the system, making it more likely to have siblings in the same

grade.

17. We keep all the other elements of the algorithm fixed; i.e., we keep the same priorities and

quotas, we solve the allocation sequentially in decreasing order starting from 12th grade, and we

use different lotteries at each school.

18. For each policy and each simulation, we randomly drew the vector of family lotteries used to

break ties in each school, and we solved for the main-round assignment.

19. The fraction of disadvantaged students in the entire population is 0.54. Deviations from this

number imply that some group is over-represented in some schools.
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