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Abstract

This paper theoretically studies the consequences of heterogeneity on self-governance, coop-

eration, and trust in large communities. I consider a game model where players belong to a large

population and are randomly matched. Players interact with each other infrequently and, when

matched, play a prisoners’ dilemma. There exists an institution that can convey information

on play histories. Players’ payoff functions differ, so that some players have a higher tendency

towards cooperation. This constitutes the main modeling innovation of this work and makes the

model a mixed adverse selection-moral hazard model.

A suitable equilibrium concept is introduced and characterized. Some novel comparative

statics results are obtained, showing, in sharp contrast with previous papers, that more hetero-

geneous societies may sustain more cooperation. Private enforcement mechanisms are explored,

showing conditions under which private for profit intermediation leads to Pareto optimal coop-

eration. We discuss the implications of my results for applied work and show how the disclosure

of credit histories impacts the defection rates of credit relations. JEL classification numbers:

C73, D40, B25
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1 Introduction

This paper studies self-governance through repeated interaction in heterogenous communities. The

focus of this work is on transactions among community members, where each member interacts with

different partners as time passes by. Applications of this setting abound, including credit relations –

where borrowers can borrow from different sources–, and durable goods transactions –where producers

sell to different consumers.

Though the impossibility of establishing long term personal relationships is inherent to the eco-

nomic setting under consideration (which makes the folk theorem, as established by Fudenberg and

Maskin (1986), unapplicable), this does not undermine the feasibility of attaining Pareto efficient

outcomes. Indeed, when the matched players play a prisoners’ dilemma, a consequence of pioneer

works by Milgrom et al. (1990), Kandori (1992), and Okuno-Fujiwara and Postlewaite (1995) is that

cooperation is enforceable if there is an institution that can credible convey play histories (so that

community members can recognize and punish a defector). It has been argued that the role of institu-

tions such as credit bureaus, online feedback systems, clubs, business associations, and even informal

worth-of-mouth is precisely to provide such information. So far, this literature has either ignored the

presence of heterogeneity in large populations, or been silent on the consequences of heterogeneity in

cooperation and welfare.

Recently, economists have given attention to concepts such as social capital and trust, and their

determinants as functions of population fundamentals (see Alesina and La Ferrara (2002) and Durlauf

and Fafchamps (2005) for a survey). While several conceptual questions remain unanswered,1 sur-

prisingly economic theorists have devoted little effort to understanding the link between community

heterogeneity, cooperation and trust.

Once we acknowledge the presence of population heterogeneity, several questions arise. What

are the effects of heterogeneity in cooperation and welfare? What conditions make population het-

erogeneity more attractive from a social perspective? What mechanism may overcome the adverse

selection problem posed by the unobservability of agents’ innate cooperation tendencies? Can the

community delegate that screening problem?

The present paper offers a theoretical study aimed at answering these and other related questions.

Section 2 posits a self-governance model of a community consisting of a continuum of infinitely lived

agents. At each period, each agent is randomly matched to some other community member to play

a prisoners’ dilemma. From a modeling viewpoint, the main innovation of this paper comes from

1As Alesina and La Ferrara (2002) point out: “The theory of what determines trust is sketchy at best.”
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considering agents that enjoy cooperation in different degrees. This cooperation level is called the

agent’s type and belongs to a compact set of types. Once the match is realized, a player does not

know anything about who he is playing with, nor will he be able to recognize his current opponent

later on. All what is known to the matched agents (and is common knowledge) is a pair of marks a-

la-Kandori. The mark of each player at each round can be either G (standing for good past behavior)

or B (standing for bad bad past behavior), and evolves according to the player’s play. The evolution

of a player’s mark creates a link between current and future behavior that may make cooperation

enforceable at least for some matches.

Our game model possesses a variety of untractable strategies consistent with sequential equilibrium

restrictions. It is therefore necessary to add some more structure to equilibrium play. We first restrict

equilibria to be stationary. Crucially, we additionally consider informationally robust equilibria,

namely, equilibria that remain so when some additional signal on a player’s type is available. We

finally impose monotonicity of cooperation, a condition implying that if some agent has a good G

mark (henceforth called a cooperative agent), then so does any agent with a higher innate tendency

towards cooperation. These restrictions allow us to fully characterize any equilibrium exhibiting some

cooperation by the equilibrium lowest cooperative type.

Section 3 fully characterizes the equilibrium set. In particular, it shows that any equilibrium is the

fixed point of a nondecreasing function. Roughly speaking, this function maps the expected number

of cooperative players to the number of players that are willing to cooperate given the expected

cooperative players. It is monotone because of the following network externality mechanism: The

larger the set of agents expected to cooperate, the more the matches in which a player encounters a

cooperative player, so the higher the continuation value of a cooperative player, and the larger the

set of players indeed willing to cooperate.

In Section 4, we employ standard lattice theory techniques to derive some comparative statics

results. It is shown that the Pareto optimal equilibrium can be characterized as the smallest fixed

point of a nondecreasing map. Additionally, it is proven that an increase in the discount factor

leads to an increase in cooperation. It is also shown that given any equilibrium, an increase in

the fraction of types greater than or equal to the lowest cooperative type leads to an increase in

cooperation; so that, in particular, a first order stochastic increase in the distribution of types results

in an expansion in cooperation. Less obviously, it is shown that a second order stochastic increase

of the distribution of types has ambiguous effects on total cooperation and welfare. So, as will be

illustrated, in sharp contrast with recent results by Mobius and Szeidl (2007) and Haag and Lagunoff

(2007), more heterogenous societies may sustain more cooperation and deliver higher welfare to their
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members.2

The analysis so far assumes that at the beginning of the game marks are assigned as if a central

authority could perfectly monitor players’ types. Of course, that needs not be the case for players

may not be willing to reveal their types. Section 5 shows that a simple way to solve this adverse

selection problem is by selling the good marks G at the beginning of the game and then let equilibrium

play transpire. Indeed, by setting the right price a social planner can implement the Pareto optimal

equilibrium. The mechanism is simple enough as to be implemented in practice and is robust to the

existence of a market for names, as studied by Tadelis (2002).

We also explore private intermediation, where the assignment of marks is carried out by a profit-

motivated monopolist. Examples of these profit motivated institutions include credit agencies, private

clubs, and business associations. We fully characterize the monopoly solution, and show that when the

defection payoff is sufficiently high, the monopolist will find optimal to implement the Pareto optimal

equilibrium. So, under reasonable circumstances, the community can delegate the intermediation

problem to a profit maximizing monopolist, and the monopolist will not see challenged its monopolistic

position even in the absence of entry costs; this implies the concentration of markets for clubs and

associations memberships.

Section 6 presents some applications. We discuss the empirical literature linking heterogeneity and

trust and offer some empirical strategies suggested by our results. We also discuss the role of credit

bureaus in credit markets and discuss conditions under which information disclosure of credit histories

is welfare enhancing. Here heterogeneity plays a key role: There will be demand for credit histories

only if population tendencies towards cooperation are heterogenous. In particular, the disclosure of

credit histories plays a role similar to that of intermediaries engaging in punishment activities (Dixit

(2003a), Milgrom et al. (1990)).

Several authors have studied cooperation in large communities. In settings where players may

play against varying opponents, Milgrom et al. (1990), Okuno-Fujiwara and Postlewaite (1995), and

Kandori (1992) show that, by introducing an institution that can credible convey information on past

play, cooperation can be sustained even if there are substantial informational asymmetries between

opponents. A similar study of information intermediaries is presented by Dixit (2003a). The present

work builds on the institutional insights offered by these authors, but studies the consequences of

considering payoff-asymmetric agents.3

2From a modeling perspective, the present work follows more closely the repeated game theories of randomly

matched partners than those authors’.
3When no institution as the one described above is available, cooperation may still be an equilibrium outcome.

Indeed, Kandori (1992) and Ellison (1994) show that cooperation may be enforced by means of contagious defection
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A repeated game model with (almost) random matching and no information flow is posited by

Ghosh and Ray (1996). These authors consider an heterogenous population where the type of a player

cannot be identified in advance and, after any match, players can opt to continue the relation. When

both agents in the match cooperate, they reveal themselves as cooperative and there are mutual gains

at keeping the relation on. While the institutional setting Ghosh and Ray (1996) model is different

from mine, their work seems to be the first one giving an explicit role to heterogeneity in models of

large community enforcement where agents are randomly matched.4

2 The Model

2.1 Games and Assignments

There is a continuum of players alive at each period t ≥ 1. Denote the set of players by I. At each

round t, a matching function Mt(·) is randomly selected so that player i ∈ I interacts with player

Mt(i) at round t.5

Each player is characterized by a parameter θ ∈ R which is its private information. From others’

perspective, the parameter θ of each player is distributed according to F , a probability distribution

with support Θ contained in R+. At each t, the matched players play a two-person stage game

Γ(θi, θj), where θi and θi are the types of the two matched players i and j. We assume that the stage

game is a prisoners’ dilemma, where each player may either cooperate (C) or defect (D), and where

the payoff from cooperation depends on each player’s type. The per period payoff matrix is shown in

the figure below.

C D

C θi θj −l g

D g −l 0 0

Assume that l ≥ 0 and, to make the game a prisoners’ dilemma, assume that for all θ ∈ Θ,

pushed by a single defection. It does not seem clear how the contagious equilibrium analysis may overcome the

difficulties posed by agents’ heterogeneity.
4Repeated games models considering heterogeneous agents typically restrict attention to two type models. For

example, Kreps et al. (1982), Ghosh and Ray (1996), and Dixit (2003a) consider models where some agents are

behavioral (in the sense that they always cooperate or defect) and others are homogenously opportunistically motivated.

My model encompasses general forms of agents’ heterogeneity, including finite and continuous type set.
5A matching function M must satisfy M(M(i)) = i 6= M(i).
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g > θ ≥ 0. Denote the action set A = {C,D} and let π(ai, aj, θi) be the period payoff function of a

type θi player when it plays ai and its rival plays aj.

Denote at
i the action chosen by player i at round t. Then, given a realization of matching functions

(Mt)t≥1, the total payoff of a type θ player is∑
t≥1

δtπi(a
i
t, a

Mt(i)
t , θ),

where δ ∈]0, 1[ is the community discount factor.

When two players are matched to play the stage game, they cannot distinguish who they are

playing with, nor are they going to be able to identify their current opponent later on. All what

the matched players know about each other is a mark which follows a Markov process. The set

of marks is {G,B}, where G stands for “good”, and B stands for “bad”. There exists a function

η : {G,B} × {G,B} × A→ {G,B} such that when a player has a mark mi, faces an opponent with

mark mj, and plays ai, his next period mark is given by η(mi,mj, ai). Additionally, before the first

period of play, players are assigned a mark according to a function ψ(θ). We call the pair (ψ, η) a

status assignment. All aspects of the game but the idiosyncratic type of each player are common

knowledge.

I assume that η satisfies the following restrictions:

η(B, ·, ·) = B and
(
η(G,G, a) = G iff a = C

)
.

The idea behind the first restriction is that punishments are severe in that a mark B is perfectly

persistent. The second restriction motivates the G-marked players to cooperate when facing another

G-marked player. Many of the results here presented remain valid when alternative restrictions are

imposed.

If a type θ player has a mark mi
t and its rival’s mark is m

Mt(i)
t , then its period t action takes

the form at(m
i
t,m

Mt(i)
t , θ).6 Strategies are restricted to be symmetric in that all players of the same

type follow the same strategy. Several strategies at(m
i
t,m

Mt(i), θ) satisfying sequential rationality and

generating consistent beliefs may lead to a convoluted dynamics that makes the model untractable.

This is the reason we impose additional restrictions on equilibrium play.

6Standard dynamic programming arguments show that given that rivals follow this kind of strategy, there is always

a best response of this type.

6



2.2 Equilibrium Definition

The tuple (ψ, η, a) is stationary if at ≡ at′ for all t, t′, and, on the play-path, the mark of each player

does not change. By this last sentence we mean that if ψ(θ) = G (resp. ψ(θ) = B) then as the game

goes on, the mark of player θ is G (resp. B) as long as the evolution of marks is according to η

and all players conform to the strategy a. From here on we simply write a(mi,mj, θ) to denote the

stationary period strategy of players.

We say that the strategy is informationally robust if, on the play path, a(mi,mj, θ) does not

depend on θ. In particular, by observing the marks of each of the matched players it is possible to

know what the players will choose. The idea behind this restriction is the following. When matched

to other player, a player may know not only the marks given by the status assignment but also some

additional information about its partner (e.g., race, clothe brand, educational level, religion). That

additional information may be correlated to the idiosyncratic parameter θ of its rival. By imposing

robustness we are ruling out the cases in which that additional information is valuable. The presence

of some external signals about the partners may provide information about the partners’ types but

not about how play will unfold.7

Beliefs are history-independent. That is, at each period of play players beliefs about the population

distribution of marks is

P[a player randomly picked has type θ ∈ O and mark G] = P[θ ∈ O, η(θ) = G],

where O ⊆ Θ. On-the-equilibrium path this is a consequence of Bayes rule and the stationarity

assumption. Off-the-equilibrium path this is justified for, as the game goes on, each player will see

at most a finite number of deviations (interpreted as trembles). A finite number of deviations can

never modify the distribution in a continuum.

Stationarity, robustness, and sequential rationality still do not restrict equilibrium outcomes

enough. To restrict the structure of the problem a little further, consider the set of G marked

players

P = {θ ∈ Θ | η(θ) = G}

These players are called cooperative. The evolution of noncooperative players mark does not depend

on actions. So, noncooperative players never cooperate. If a cooperative-cooperative match ended up

in defection, then there would be no difference between cooperative and noncooperative players.8 To

7In the Appendix it is shown that informational robustness is intimately linked to stationary.
8In this case, cooperative players are not willing to cooperate when faced to a noncooperative player for its contin-

uation reward from doing so is negative.
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avoid trivialities, a match of cooperative players is restricted to end up in cooperation. The following

lemma shows that a cooperative agent, when faced to a noncooperative agent, will never cooperate.

Lemma 1 Consider a stationary robust tuple (ψ, η, a) such that a is sequentially rational. Then, for

no type and at no history, the outcome of a match is (C,D).

If (C,D) were the outcome of a cooperative-noncooperative match, then the value of being non-

cooperative would be strictly positive. This in turn makes cooperative players willing to defect when

faced to a noncooperative partner. A consequence of this result is that we may restrict our attention

to assignments η such that η(G,B, a) = C if and only if a = D.

The following monotonicity restriction is finally imposed: If θ ≥ θ′ and θ′ ∈ P , then θ ∈ P . That

is, if some type is cooperative then so is any type with a higher tendency towards cooperation. The

idea behind this restriction is that if we can enforce cooperation of type θ, then enforcing cooperation

of type θ′ ≥ θ is not only feasible but Pareto dominates the situation in which θ′ is noncooperative.

So, there is no reason to exclude θ′ from P .

An immediate corollary of the restriction above is that P must be an interval, which is additionally

restricted to be closed9 (eventually empty). An equilibrium with a nonempty set of cooperative players

is therefore characterized by a type θe ∈ Θ such that

η(θ) =

G if θ ≥ θe,

B if not.

We define the set

Equil =
{
θe ∈ Θ | θe characterizes stationary, informationally robust, monotone,

and sequentially rational strategies with P 6= ∅
}
.

Note that the configuration in which η(θ) = B for all θ ∈ Θ and no player ever cooperates is

an equilibrium which however is not in the set Equil. The focus of this paper is on equilibria

exhibiting some degree of cooperation. From here on, by equilibrium we mean the cutoff parameter

that characterizes a stationary, robust, monotone, and sequentially rational strategy exhibiting some

cooperation.

In the Appendix, we analyze a model where neither stationarity nor informational robustness

are imposed. It is shown that the long run evolution in that more general model looks exactly as a

stationary and informationally robust equilibrium.

9This restriction is a normalization which will prove useful.
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2.3 Observations

Several remarks are in order. In the model, the community problem is twofold. On the one hand,

there is a moral hazard problem in that actions cannot be enforced externally. The second problem,

which at this moment is absent, is an adverse selection problem. So far we have assumed that by

means of some mechanism it is possible to monitor the type θ of each player and assign the marks

according to η(θ) at the outset of play. Of course, when asked its type, a player would pretend to

have a high type. In the next section, we will investigate in detail a price mechanism through which

the adverse selection problem can be solved.

The analysis assumes the presence of some degree of institutional development. Though actions

cannot be enforced, there must be an outsider able to observe, keep record of, and credible convey

transpired societal play. Our preferred way to solve the adverse selection problem consists of allowing

transactions between game agent (buyers) and an outsider (seller). Later on, we will analyze a profit-

maximizing monopoly that can play the seller role. The model therefore seems suited to a somehow

structured community.

A crucial consequence of the robustness assumption is that any equilibrium remains so when all

histories become public. In this case, there is no need for the marks.10 Different applications of the

model will restrict the publicity of information in different ways. I have preferred to work in a setting

with partially public histories (where the mark is the only proxy for histories) to expand and highlight

the informational richness of the analysis.

At a more technical level, there are well known measurability problems when working with random

matching models. While the law of large numbers had been extensively employed in random matching

economic models, these difficulties had been overcome only recently. See Duffie and Sun (2006).

10This result contrasts with the models of cooperation with asymmetrically informed agents living during a finite

number of periods. In those models, the crux to keep cooperation is the ignorance of one agent about the motives of

the other to cooperate.This is the case in the finitely repeated prisoners’ dilemma studied by Kreps et al. (1982). In

that model, cooperation can be enforced for a finite number of period as long as the rationality of one of the parts is

not common knowledge.
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3 Characterization and Existence of Equilibrium

Consider any θe ∈ Equil. Then, for all θ ≥ θe, η(θ) = G and player θ is willing to cooperate when

so does his rival. The total expected continuation payoff of player θ is given by

v(θ, θe) =
θ(1− F (θe−))

1− δ
,

where F (x−) = limy↗x F (y) is the probability of encountering a type greater than or equal to x.

Since type θ is cooperative, it must be the case that

θ + δv(θ, θe) ≥ g. (3.1)

The left hand side in this equation is the payoff that player θ obtains by cooperating, which is the

current payoff θ plus the total discounted payoff when its next period mark is G. The right hand

side in (3.1) is player θ’s payoff when it defects. In this case, it will get g in the current period

plus the payoff when its mark is B (in which case no match in which the player is involved will be

cooperative). In particular, there exists x ≥ 0 such that

θe + δv(θe, θe) = g + x. (3.2)

Define

T x(θe) = min{θ ∈ Θ | θ + δv(θ, θe) ≥ g + x}

Since Θ is compact and θe satisfies equation (3.2), T x(θe) is well defined and T x(θe) = θe.

Inspired by the above analysis, we define the closed set11

Θx = {θ ∈ Θ | θ̄
(
1 +

δ

1− δ
(1− F (θ−))

)
≥ g + x},

with θ̄ = max{θ ∈ Θ} and x ∈ [0, x̄], where x̄ = θ̄
1−δ

− g is assumed positive. Define the map

T x : Θ 7→ Θ by

T x(θe) =

min{θ ∈ Θ | θ + δv(θ, θe) ≥ g + x} if θe ≤ θ̄x,

θ̄ if not,

where θ̄x = max{θ ∈ Θx}. Note that Θx = Θ ∩ [0, θ̄x] and θ̄x is non increasing. Importantly, given

T x|Θx , T x defined on Θ is its smallest nondecreasing extension.

T x(θe) is the smaller type willing to cooperate even if the gain from deviating were g+x provided

all types greater than or equal to θe are being cooperative. The parameter x represents the degree

at which the incentive constraint of the lowest type is satisfied.

11To see that the set is closed, note that (1− F (x−)) is upper semi-continuous in x ∈ R.
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The following lemma will prove useful.

Lemma 2 Suppose that x̄ ≥ 0. For all x ∈ [0, x̄], Θx is nonempty and T x : Θ → Θ is a well defined

nondecreasing function.

Intuitively, the monotonicity property stated in the lemma holds because when more agents are

expected to cooperate (lower θe), an agent will be more willing to be cooperative for it will be matched

more frequently to cooperative agents, which in turn increases the number of agents that indeed want

to cooperate (lower T x(θe)). This complementarity property (leading to the monotonicity of T x) will

be useful when deriving some comparative statics results.12

For each x ∈ [0, x̄], consider the set of fixed points

Bx = {θe ∈ Θ | T x(θe) = θe}.

This set is trivially nonempty as a consequence of Tarski fixed point theorem. Moreover, if Θx 6= Θ,

θ̄ = T x(θ̄).

The following theorem is the main result of this subsection. It characterizes the set Equil and

provides conditions for its non emptiness.

Theorem 3 Characterization:

Equil =
⋃

x∈[0,x̄]

Bx ∩Θx

={θ ∈ Θ | θ
(
1 +

δ

1− δ
(1− F (θ−))

)
≥ g}.

Existence: Define

ḡ(δ) = max{θ
(
1 +

δ

1− δ
(1− F (θ−))

)
| θ ∈ Θ} (3.3)

The following condition is necessary and sufficient for the existence of a cooperative equilibrium:

ḡ(δ) ≥ g.

Under this condition, x̄ ≥ 0

12The logic behind this property is in line with Coleman’s insight on the importance of network closure. In the

present model, and consistent with Coleman’s view, a dense social network –understood as a high fraction of individuals

expected to belong to the set of cooperative players– makes cooperation more attractive. In contrast to Chwe (2000),

where efficient outcomes are attained in dense networks by creating common knowledge, in this model mutually

beneficial cooperation is enhanced through collective punishment. See Sobel (2002) for discussion.
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The first part of the theorem characterizes the equilibrium set as the union of all fixed points of

the nondecreasing map T x that additionally belong to the set Θx. This restriction will in general

be binding for Θx should not be expected to coincide with Θ. It is additionally shown that the

equilibrium set will be equal to a set of types satisfying a simple inequality. Both characterizations

will be employed in the paper.

The condition for existence –which is assumed in the sequel to avoid trivialities– resembles the

standard existence inequality in personal enforcement repeated games with homogenous agents. In

that case, considering θ̄ as the only type, cooperation can be enforced if and only if

θ̄ +
δ

1− δ
θ̄ ≥ g,

which is precisely the condition given in the theorem for the homogenous population case.

In the Appendix, we study in more detail the equilibrium set. It is shown that Equil is closed,

generically continuous, and may or may not be convex. While at the moment we can dispense with

those results, the reader may want to go over that analysis before proceeding.

Example 4 Suppose that F is a uniform distribution on the interval [0, 1] , δ = .9 and g = 2 so that

an equilibrium exists and can be characterized by employing Theorem 3. For all x ∈ [0, 8], we have

that

Θx = [0,
8

9
− x

9
]

and for θe ∈ Θx,

T x(θe) =
2 + x

10− 9θe
.

For all x ∈ [0, 7/9],

Bx ∩Θx =
{10 +

√
28− 36x

18
,
10−

√
28− 36x

18

}
,

and for x > 7
9
, the intersection is empty. As a consequence,

Equil = [
5−

√
7

9
,
5 +

√
7

9
].

Figure 1 illustrates the fixed point characterization.
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Figure 1: The blue line plots T 0, the green line plots T 1/2, and the red line plots T 2. As already

shown, for x > 7
9
, T x has only a trivial fixed point θ̄ = 1 which does not belong to Θx.

4 Pareto Optimality and Comparative Statics

4.1 Results

Let θe and θ̂e belong to Equil and suppose that θe < θ̂e. Then θe Pareto-dominates θ̂e. To see why,

note that types θ ≥ θ̂e cooperates in more encounters under θe than under θ̂e. Types θe ≤ θ < θ̂e

never cooperate under θ̂e but cooperate in some matches under θe. Types θ < θe never cooperate

under either equilibrium. It therefore seems natural to define

θc(F, δ) = arg min{θe | θe ∈ Equil(F, δ)}, (4.1)

where we highlight the equilibrium outcomes dependance on the fundamentals F and δ (when clear

from context, we omit the dependance). The equilibrium θc = θc(F, δ) is the Pareto optimal equilib-

rium for the game defined by F, δ.

The following result provides a simple condition under which equilibrium set comparisons can be

made.13

13Echeñique and Sabarwal (2003) presents results guaranteeing that any old equilibrium is larger than every new
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Proposition 5 Let θe be a fixed point of the map T x(· | F, δ), where x ∈ [0, x̄] and where we explicit

the dependance of the map T x (defined on subsection 3) on F and δ. Consider an alternative model

characterized by a discount factor δ′ and a distribution of types G. Suppose that F and G have the

same support Θ. If for some x′

T x′
(θe | G, δ′) ≤ θe, (4.2)

then, there exists a fixed point θ̂e of T x′
(· | G, δ′) such that θ̂e ≤ θe. Moreover, the last inequality can

be taken strict if so is the inequality in (4.2).

While this result can be seen as a corollary to Theorem 6 in Milgrom and Roberts (1990), here we

provide a simple and illustrative proof. Consider the restriction of T x(· | G, δ′) to A = {θ ∈ Θ | θ ≤
θe}. Since T x′

(· | G, δ′) is nondecreasing and by virtue of (4.2), T x′
(A | G, δ′) ⊆ A. Tarski fixed point

theorem implies the existence of a fixed point θ̂e of T x′
(· | G, δ′) in A. This completes the argument.14

The following two corollaries are immediate consequences to the proposition above.

Corollary 6

θc = min{θ ∈ Θ | T 0(θ) = θ}

Corollary 7 Let θc(F, δ) be the solution of (4.1) and suppose that

T 0(θc(F, δ) | G, δ′) ≤ θc(F, δ).

Then

θc(G, δ′) ≤ θc(F, δ)

If the first inequality is strict, then so is the second one.

The interest of the first corollary is in computing the Pareto optimal equilibrium. It proves that

we only need to search for the Pareto optimal equilibrium among the set of fixed point of the map T 0,

and there is no need to check whether that fixed point belongs to Θ0. The result suggests a simple

way to compute θc: Set x0 = θ and xn = T 0(xn−1). It follows that for all n, xn ∈ Θ0 and xn ↗ θc.15

The second corollary permits to do some comparative statics for the Pareto optimal equilibrium.

Of course, these results will be useful only when there are circumstances under which the Pareto

equilibrium. While imposing more stringent assumptions, those results can be applied in our setting too.
14The same argument shows that when the inequality in (4.2) is reversed, it is possible to ensure the existence of

θ̂e = T x′
(θ̂e | G, δ′) > θe. This result is not so interesting in our framework for whenever Θx 6= Θ, θ̄ = T x(θ̄).

15The algorithm will converge even if there is no equilibrium, provided x̄ ≥ 0.
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optimal equilibrium is a good prediction of equilibrium play. This will be discussed in the next

section.

Finally, the following result summarizes this subsection main findings.

Theorem 8 Suppose that F and G have the same support Θ and δ, δ′ ∈]0, 1[.

(a) θc(F, δ) ≥ θc(G, δ′), provided either of the followings holds:

(i) δ′ ≥ δ, and G � F in the first order stochastic dominance order;

(ii) δ′ ≥ δ, and (1− F (θc(F, δ)−)) ≤ (1−G(θc(F, δ)−)).

(b) θc(F, δ) ≤ θc(G, δ′), provided the following holds:

(iii) δ ≥ δ′, and (1− F (θ−)) ≥ (1−G(θ−)) for all θ ≤ θc(F, δ).

The consequences of condition (i) in part (a) are to be expected. If agents discount less the future

or obtain more utility from cooperation, then it is possible to support more cooperation. Less obvious

is the condition stated in (ii). It says that if the fraction of agents having type grater than or equal to

θc(F, δ) increases, then the new Pareto optimal equilibrium exhibits at least as much cooperation as

the original one. Part (b) states a partial converse to part (a) (ii). As a result, as will be illustrated

soon, a second order stochastic increase of the distribution of types may have an ambiguous impact

on cooperation.

Theorem 8 provides cooperative statics results for the set P . Yet, it says nothing about whether

the proportion of cooperative players increases or decreases when the distributions are modified. The

following corollary provides such results.

Corollary 9 Suppose that F and G have the same support Θ and δ, δ′ ∈]0, 1[.

(a) Under either (i) or (ii) above, the proportion of cooperative players is bigger under G than under

F ; in other words, (
1−G(θc(G, δ′)−)

)
≥

(
1− F (θc(F, δ)−)

)
.

(b) Under (iii) above, the proportion of cooperative players is bigger under F than under G; in

other words, (
1−G(θc(G, δ′)−)

)
≤

(
1− F (θc(F, δ)−)

)
.
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4.2 Examples

The following example illustrates some of our comparative statics results.

Example 10 (Heterogeneity: Second order stochastic dominance) Consider a four type model

Θ = {θ1, θ2, θ3, θ4} where all types are equally likely: F (θi) = i/4. The discount factor is δ = 0.9 and

g = 1. The model is constructed so that the only equilibrium is θc = θ4. Note that the necessary and

sufficient conditions for Equil = {θ4} are

θ4

(
1 +

δ

1− δ

1

4

)
≥ g

and, for i = 1, 2, 3,

θi

(
1 +

δ

1− δ

5− i

4

)
< g.

These conditions can be equivalently stated as

θ4 ≥
4

13
, θ3 <

2

11
, θ2 <

4

31
, θ1 <

1

10
.

While not necessary, restrict attention to the case θ4 = 1
3
, θ3 = 1

6
, θ2 = 1

8
, θ1 = 1

12
.

Define α = 1
6

so that θ2 = αθ4 + (1 − α)θ1. For β > 0, consider the following mean preserving

spread of F :

P
β(θ = θi) =



1
4

+ β(1− α) if i = 1,

1
4
− β if i = 2,

1
4

if i = 3,

1
4

+ βα if i = 4,

where β < 1/4.16

It is possible to find β such that the best equilibrium under F β is θ3. To see that, note that

θ3

(
1 +

δ

1− δ
(1− F β(θ3−))

)
≥ g

if and only if β ≥
2
11
−θ3

9α
= 1

99
. Moreover, it is relatively simple to see that this is the Pareto

optimal equilibrium. This proves that a second order stochastic decrease may lead to an increase in

cooperation and total welfare. From here on, set β̄ = 1
99

.

16 We can interpret probability P β as follows. Draw θ according to F . If θ = θ2, set θ̃ = θ2 with probability (1−4β),

θ̃ = θ1 with probability 4β(1− α), and θ̃ = θ4 with probability 4βα. If θ 6= θ2, then set θ̃ = θ. Pβ is the distribution

of θ̃.
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Now, define γ = 1
3

so that θ3 = γθ4 + (1− γ)θ1. Consider a mean preserving spread of F β̄:

P λ(θi) =



1
4

+ β̄(1− α) + λ(1− γ) if i = 1,

1
4
− β̄ if i = 2,

1
4
− λ if i = 3,

1
4

+ β̄α + λγ if i = 4,

where λ < 1
4
. Now, I argue that we can pick λ < 1

4
so that the only equilibrium under the distribution

P λ is θ4. It is sufficient to impose the conditions.

1− F λ(θ3−) =
1

2
+ β̄α− λ(1− γ) <

1

2
.

This condition holds for λ > β̄α
1−γ

> 1
99

. This proves that a second order stochastic decrease may lead

to a decrease in cooperation.

In this example, a second order stochastic decrease in the distribution of types (which holds by

setting β̄ = 1
99

) implies that more agents have types above the cooperation threshold θ4 and so, the

new equilibrium exhibits more cooperation (Theorem 8 (ii)). Once the distribution F β̄ is fixed by

setting β̄ = 1
99

, a new second order stochastic decrease was implemented. This new distribution puts

more weight on the set {θ1, θ2} so that those types as well as type θ3 players become less willing to

cooperate. As a consequence (Theorem 8 (iii)), the new equilibrium exhibits less cooperation.

This analysis contrasts with that by Haag and Lagunoff (2007). These authors posit a dynamic

game model where a set of agents play repeatedly a stage game against the same opponents so that

long term cooperation is sustained through personal enforcement. Haag and Lagunoff (2007) show

that a second order increase in the distribution of types unambiguously leads to an increase in average

cooperation (a definition which is not related to welfare in that model). The difference arises in the

varying opponent aspect of my model. In this model, an increase in the fraction of cooperative players

may push some formerly noncooperative players to cooperate for the value of cooperation increases.

This increase in the fraction of cooperative players is consistent with a second order stochastic decrease

in the distribution of types. In the Haag-Lagunoff model, players play against the same opponent

always which makes the above discussed effect absent.17

In the next example, we draw a more detailed parallel between my result and Haag and Lagunoff

(2007)’s. This example also exhibits the no-monotonicity property of our previous example.

17Mobius and Szeidl (2007) propose a social network model, where aggregate trust (understanding trust as the

amount of money that one agent can lend from another) is decreasing in heterogeneity.
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Example 11 Consider first an homogenous model, where the only type in population is θ = θf . The

necessary and sufficient condition for cooperation is

θf ≥ g(1− δ).

We can also consider the following personal enforcement model. There are two agents, who play a

prisoners’ dilemma repeatedly. So the only difference between the personal enforcement model and

the main model discussed in the text is that in the former each of the two agents interact with the

same partner. In the personal enforcement model, if types are homogenous θ = θf , cooperation takes

place if and only if

θ ≥ g(1− δ).

Therefore, the random matching model and a continuum of personal enforcement models are undis-

tinguishable from a behavioral perspective. This is so because given homogeneity, in each round a

player in the random matching model is facing an opponent which is identical in all respects to the

ones previously faced and all relevant information is public. From here on, we set θf = g(1− δ).

Now, add heterogeneity to the models. To do that, consider two types θ = θf −α and θ̄ = θf +α,

where α ∈]0, θf ]. In the personal enforcement model, suppose that each of the two players has a

different type. For all α > 0, no cooperation can take place. Indeed, the lower type player will never

find optimal to cooperate for θ = θf − α < g(1− δ), and as a consequence, the hight type will never

cooperate.

In the random matching model, suppose that half of the population is of type θf − α and the

other half is of type θf + α. We may think of α as parameterizing the distribution of types, so that

an increase in α is equivalent to a second order stochastic decrease in the distribution of types. In

the random matching model, low type players will never cooperate. The high type players may or

may not cooperate depending on α. To see that, note that a high type player will cooperate when

matched to a high type opponent if and only if

θ̄
(
1 +

δ

1− δ

1

2

)
≥ g.

This condition holds whenever

α ≥ δ(1− δ)

2− δ
g.

Since θf > δ(1−δ)
2−δ

g, this condition can be met.

A more general personal enforcement model is studied by Haag and Lagunoff (2007). Two are

the main differences between the personal enforcement model here studied and the one studied by
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them. First, Haag and Lagunoff (2007) allow players to play and monitor mixed strategies. So, in

principle, the low type players could cooperate with some positive probability. Second, in the work

by Haag and Lagunoff (2007), there is heterogeneity in players discount factors but not in the gains

from cooperation. Neither of these differences seems relevant to either their results or our purposes.

5 Adverse Selection and Pricing Strategies

So far our analysis has been not fully comprehensive in that we have not described the way in which

players will be sorted out by the function ψ at the onset of the game. We may be interested, for

example, in implementing the Pareto optimal equilibrium θc. One imaginable mechanism is to ask

the players about their types. A player gets a mark G if and only if it claims to have a type θ ≥ θc.

Of course, under this arrangement players have an incentive to misreport and claim to have a high

type. It seems therefore important to look at mechanisms that may solve this problem in a simple

way.

We propose a simple mechanism where, at the beginning of the game, marks G are sold at a price

p ∈ R (to be defined). That is, instead of assigning marks according to ψ, a seller offers an unlimited

amount of marks G at a price p. Those agents who do not buy a mark G get a mark B. Once the

marks are assigned, each agent’s mark evolves according to the assignment η previously described.

We can interpret the price p as a club membership fee. (We go over this interpretation in more detail

later on.) We consider two cases; in the first one, the seller is a social planner, while in the second

one the seller is a monopolist.

5.1 Social Planner Pricing

Suppose that we can implement the Pareto optimal equilibrium by setting a price p. Consider the

equilibrium cutoff type θc and all types above θc. At the beginning of the game, a type θ ≥ θc has

total expected payoff equal to

πc(θ) =
θ(1− F (θc−))

1− δ

if it is assigned a G mark, and 0 if its mark is B. So, a type θ ≥ θc will be willing to buy a mark G

if and only if

πc(θc) ≥ p,
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Now, a type θ < θc has a slightly different payoff for if it gets a mark G, then it will defect always

and, in particular, whenever its rival is a good type. So, its payoff is

πc(θ,G) =
(1− F (θc−))g

1− δF (θc−)
.

So, for a type θ < θc not to buy a mark G, this quantity has to be less than or equal to p.

The following proposition proves that it is possible to set a price so that the proposed assignment

implements the Pareto optimal equilibrium.

Proposition 12 The set of prices over which a seller can implement the optimal equilibrium is

nonempty.

This result provides a simple mechanism through which a social planer may implement the optimal

equilibrium θc. Note that this price mechanism, which can also be implemented by charging a mem-

bership fee each period, is robust to several variations. It is robust to a secondary club membership

market, where club members may sell their membership to nonmembers. This secondary membership

market resembles the market for names, as studied by Tadelis (2002). So, the sorting mechanism is

robust to a market for names. Moreover, in the continuous distribution case, incentives are strict for

all but a negligible population fraction. Indeed, only the cutoff type is indifferent between buying

and not buying a membership. In particular, had we solved its indifference in a different way, it

would not have changed the incentives of the rest of the agents. These are also features of the price

mechanisms discussed below.

The price mechanism here studied may be seen as providing a theory of network formation. The

coalition can be interpreted as a club and the agent in charge of the club (that is, in charge of selling

the memberships and providing the marks as play histories unfold) may be seen as an information

intermediary. The club membership fee is p and an agent stays in the club so long as he complies

with the club’s norms.The “law merchants” in medieval France (Milgrom et al. (1990)) and Sicilian

mafia in southern Italy (Dixit (2003a)) may be seen as chief examples of institutions providing the

information intermediation activities here studied.18

As noted by Milgrom et al. (1990) and Dixit (2003a), some information intermediary institutions

also engaged in enforcement activities by directly punishing defectors. Formally speaking, in our

18More generally, several other organizations may be seen as providing information dissemination after charging

a membership fee. While not their main service, clubs aimed at resolving the problem of provision of public goods

(Buchanan (1965), Ellickson et al. (1999)) do facilitate the spread of information. In the absence of altruistic motives,

charity and rotary clubs may also be seen as providing such a flow of information.
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model such punishment implies a decrease in g which, as a consequence of our previous analysis,

leads to a decrease in θc and, in turn, to an increase in aggregate cooperation. We will show later on

in the paper how the presence of heterogeneity among community members allows the information

intermediary to engage in punishing activities in a much more subtle and indirect way.

5.2 Monopoly Intermediation

As noted by Dixit (2003a), in the absence of a legal system or a social planner able to perform the

information intermediation activities previously explored, private for-profit intermediation may be an

equilibrium outcome. In this subsection I study how a monopolist will price club’s memberships. I

will abstract from extortion and double-crossing practices by simply focusing on the quantity-price

tradeoff faced by a monopolist (who can credible commit to convey play histories) when setting the

membership fee.19

Consider first any equilibrium θe ∈ Equil. The same argument we employed to ensure the

implementability of θc allows us to show that θe can be implemented by setting a price p ∈ R+.

Moreover, the monopoly will optimally set the highest of those prices. It is not hard to see that such

highest price is given by

p(θe) = θe 1− F (θe−)

1− δ

so that the monopoly extracts all the rent of the cutoff type θe. The monopoly problem is therefore

defined as

max{p(θe)(1− F (θe−)) | θe ∈ Equil},

a problem which has always a solution.20 In a departure from the standard monopoly problem, the

tradeoff faced by our monopolist is not clear-cut. To see that, note that an increase in θe implies

a decrease in total quantity (1 − F (θ−)). But this decrease in the total memberships may not lead

to an increase in the price p(θe). Indeed, even when the type of the marginal type θe increases, its

19The for-profit intermediary may extort agents with a clean history (by threatening to assert they cheated in the

past) or double-cross some agents (by allowing some players to cheat while keeping their history clean). Dixit (2003a)

shows how these moral hazard problems on the intermediary side restrict the intermediary pricing problem. Those

constraints could be considered in this model too.
20 In particular, we are restricting the monopoly to implement outcomes that are consistent with our equilibrium

notion. This is somehow similar to the mechanism design literature methodology, where the modeler restricts the

mechanism designer to implement mechanism that possess an equilibrium. In our model, the monopolist (mechanism

designer) set prices (mechanisms) such that the game (mechanism) played after the price (mechanism) is set has an

equilibrium.
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willingness to pay may decrease as a result of the decrease in the number of cooperative encounters.

So, p(θe) may be decreasing in θe.

To see how the mechanism above may work, suppose that for some x ∈ [0, x̄], θe and θe′ are two

cooperative equilibria such that θe, θe′ ∈ Bx ∪ Θx. For simplicity, suppose that F is continuous. So,

both θe and θe′ solve the equation

θ
(
1 +

δ

1− δ
(1− F (θ))

)
= g + x.

This equation can be equivalently written as

θ + δp(θ) = g + x.

An increase in θ implies a decrease in p(θ). This means that by rising the marginal type the monopolist

is not only selling less marks but also at a lower price per unit. The monopolist will therefore prefer

min{θe, θe′} over max{θe, θe′}.

The above discussion seems promising in terms of the incentives of the monopolist to implement

the optimal equilibrium θc. It happens, however, that the ability of the monopolist to pick the

slackness of the incentive constraint may make profitable to implement some other equilibrium.

From here on, assume that F is continuously differentiable with support [a, b], where 0 ≤ a < b.

Denote its derivative by f(θ), and assume that f(θ) > 0 for all θ ∈ [a, b]. Define the function

Φ(θ) = 2θ − 1− F (θ)

f(θ)
.

The following assumption is key in our analysis.

Monotonicity: Φ(θ) is increasing on [a, b].

This assumption is less demanding than the monotone likelihood ratio condition usually employed in

mechanism design; see for example Myerson (1981). In this sense, we do not regard the monotonicity

assumption as particularly stringent.

We define

g(δ) = θ∗
(
1 +

δ

1− δ
(1− F (θ∗))

)
,

where

θ∗ = min{θ ∈ [a, b] | Φ(θ) = 0}.

It is easy to see that g(δ) < ḡ(δ), where ḡ(δ) is defined by Equation (3.3), and both of these functions

are nondecreasing in δ.

22



Proposition 13 Under Monotonicity, the following assertions hold:

(i) If g ∈ [g(δ), ḡ(δ)], then the monopoly problem has θm = θc as solution.

(ii) If g ∈]b, g(δ)[, then the monopoly problem has solution θm > θc.

(iii) Defining θ1 as the only solution to

θ1 =
1− F (θ1)

f(θ1)
,

it follows that

lim
δ→1

ḡ(δ)−max{b, g(δ)}
ḡ(δ)− b

= 1− θ∗(1− F (θ∗))

θ1(1− F (θ1))
. (5.1)

The first two statements characterize the monopoly problem solutions. The logic behind these

results is the following. When g is sufficiently big, less players are willing to cooperate, and therefore

the equilibrium set Equil is small. It is then proven that when Equil is sufficiently small, the whole

equilibrium set belongs to the decreasing portion of the monopolist objective function. So, the best

the monopolist can do is to set θm = θc.

To interpret Equation (5.1), note that ḡ(δ) − b is the Lebesgue measure of those g for which all

the period games are prisoners’ dilemma having an equilibrium exists. On the other hand ḡ(δ) −
max{b, g(δ)} is the Lebesgue measure of the set of g under which the model has an equilibrium

and the monopoly problem has the Pareto optimal equilibrium as its solution. Therefore, viewing

g as randomly draw from a uniform distribution, the quotient in the right hand side of (5.1) can

be interpreted as the probability of getting a model under which the Pareto optimal problem can

be solved by giving to a monopolist the right to sell the marks, conditional on the model having an

equilibrium. The formula gives us the asymptotic value of this probability, showing in particular that

it will be strictly less than 1.

The monopoly could achieve the same payoff by charging a per period membership fee. When

the monopolist acquires a club with an efficient level of cooperation, Proposition 13 shows that the

monopolist is willing to exclude some members from the club. Of course, a straightforward way to

do it is by rising the membership fee. However, for the monopolist this may be hard to implement if

club’s members have some influence on the monopolist’s decisions and may not be willing to accept

the exclusion of some members. Indeed, rising the membership fee and excluding some agents can

only harm club’s members. A subtler way to do it is by misreporting play histories, so that when the

membership fee is raised, no member drops out of the club.21

21Some evidence suggests that the fraction of errors in credit histories in the US is substantial (Hunt (2002)). The
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When the monopolist implements the Pareto optimal equilibrium, its monopoly position cannot

be challenged. When it does not, depending on the strength of the competitive forces and the way in

which agents coordinate, competition may lead to implement the Pareto optimal outcome through a

single club. We leave for future research the exploration of these possibilities.

Purely informational private intermediation is studied by Lizzeri (1999) and Biglaiser (1993).

Those authors deal with the problem of quality-certification in an adverse selection static setting.

The certification process in the present model is much simpler, in part because players’s payoffs do

not depend on their partners’ types but only on their actions.

The following example illustrates the monopoly pricing schemes in our model.

Example 14 Suppose that F (θ) = θ. So the monotonicity assumption is satisfied. Moreover θ∗ = 1
3

and

g(δ) =
1

3
+

δ

1− δ

2

9
.

The threshold ḡ(δ) can be analytically derived. Indeed,

ḡ(θ) =

 1
4δ(1−δ)

if δ ≥ 1
2
,

1 if δ < 1
2
.

There exists a cooperative equilibrium only if δ ≥ 1
2
. The following table shows the values of g for

which there exists a cooperative equilibrium and the monopoly finds optimal to implement the Pareto

optimal equilibrium.

δ g(δ) ḡ(δ)
ḡ(δ)−max{1,g(δ)}

ḡ(δ)−1

0.6 0.66 1.04 1

0.75 1 1.33 1

0.8 1.22 1.56 0.60

0.9 2.33 2.77 0.25

0.99 22.33 25.25 0.12

Given that we assume that the prisoners’ dilemma is actually a dilemma for all matches, we assume

that g > 1. The table shows that for all δ ≤ 3/4, provided an equilibrium exists, the monopoly will

mechanism here explored offers an alternative explanation to the conventional views: By misreporting, credit bureaus

are shrinking the credit demand but at the same time this pushes away smaller creditors. After rising the membership

fees, no creditor is expelled. It may be possible that credit bureaus act in behave of large and efficient creditors, and

that misreporting credit histories allow large creditors to exploit a less competitive position.
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always end up picking θc. For δ = 0.9, the monopoly will pick θc only if g ≥ 2.33, quite a stringent

condition given that for equilibrium existence we require g ≤ 2.77. When g fails to be in the region

[g(δ), ḡ(δ)], the monopoly will unambiguously set θm = 1
3
.

This example suggests that the higher the agents’ patience, the less likely the monopolist will

implement the Pareto optimal equilibrium. Intuitively, this should be so because the higher the

discount factor, the larger the equilibrium set, and so the more the alternatives the monopolist have

to improve upon θc. However, I have not been able to provide a general statement of this result.

6 Discussion and Applications

6.1 Trust, Social Capital, and Community Heterogeneity

Recently, economists have given considerable attention to concepts such as social capital and trust,

and their impact on output and growth. While many conceptual questions need to be responded

–among others, what exactly we mean by social capital – the analysis here presented contributes to

this discussion.

An empirical work by Alesina and La Ferrara (2002) shows that in more racially and economically

heterogenous communities, people are less likely to trust others. While how people interpret ‘trust’

when asked whether they trust others is an open question, community agents in our model would

interpret it as whether they are expected to meet someone willing to cooperate during a round

encounter. In this sense, the probability of meeting a cooperative type may be seen as a good

measure of trust in our model.

Our theoretical results identifies the impact of heterogeneity on trust and cooperation. In par-

ticular, it shows that more heterogenous communities need not exhibit lower levels of trust. This is

so because more heterogeneous societies may have a higher fraction of people with high tendencies

towards cooperation, an aspect that facilitates cooperation.

It seems important to mention that in our model, heterogeneity is non observable (payoff struc-

ture), while in most of empirical studies heterogeneity is observable (race, income). This is an

explanation for why our results might differ from the empirical results by Alesina and La Ferrara

(2002): It is possible that more racially diverse communities have lesser payoff relevant asymmetries.

Durlauf and Fafchamps (2005) provide an exhaustive survey of the literature on social capital and

economic performance. They show that the relationship between social capital and aggregate output
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is by no means empirically established. Simple OLS regressions fail to capture this relation because

social capital is likely an endogenous variable.22 The present work suggests that a way to settle this

issue is to look at different measures of heterogeneity,23 and exploit the mechanisms here studied as

an answer for why we observe differences in social capital and output.

6.2 Credit Markets and Credit Bureaus: Information Disclosure

Two somehow disconnected literatures have emerged to model credit bureaus and their importance on

solving the intrinsical information asymmetry in credit markets. On the one hand, Klein (1992) and

Kandori (1992) focus on the moral hazard aspect involving credit transactions in that borrowers may

renege on their payments. On the other hand, Pagano and Jappelli (1993) stress the importance of

credit bureaus as a means to solve the adverse selection in that each consumer’s repayment probability

is his private information. I will argue below that both problems seem important in practice.

The fact that financial market outsiders are willing to spend resources to obtain the financial

market histories of prospective partners suggests that some form of adverse selection is present.

Indeed, if it were otherwise (or in other words, if there were no payoff relevant difference between

defector and cooperative agents), even if agents were to use different strategies in the new relation,

outsiders (such as landlords and employers) could renegotiate and prompt financial market defectors

to use the strategies followed by non defectors in the new relation.24 This new contract is optimal for

both the outsider and the defector because the contract would be voluntarily signed by the outsider

and a non defector. Therefore, an outsider wishes to contract both a defector and a non defector and,

as a consequence, is not willing to spend resources to know the financial situation of a prospective

partner. This contradicts the evidence.25

By restricting the model so that some agents repay with some exogenous probability, it is being

assumed that the legal system works so that, at least for some population members, actions can be

enforced ex-post (Pagano and Jappelli (1993)). In other words, this line of modeling works under

the assumption that there is a working legal system with some capability to enforce contracts. The

alternative enforcement mechanism is self-governance and is the focus of this paper. After all, even in

22Some attempts to run IV regressions have been made. As discussed by Durlauf and Fafchamps (2005), the IV

variables up to now considered do not seem exogenous.
23Of course, what forms of observable heterogeneity are important for our model is an empirical question.
24The argument assumes that the cooperative strategies are feasible for a defector. This need not be so. For example,

financial market defectors may be credit constrained and that may impair them to honor housing market contracts.

This example does not seem so relevant for the labor relation.
25The presence of adverse selection in credit relations has also been suggested by Ausubel (1999).
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countries with a well functioning legal system, economic agents need to consider that if they defect,

they not only will be legally sanctioned but also will be credit constrained and eventually expelled

from the financial system.

A natural question to ask is whether the disclosure of information is a Pareto improvement upon

a nondisclosure policy. For the question to be under consideration, it is necessary to have outsiders

interested in such each agent’s type. We assume that those outsiders exist and are interested in

establishing relationship only with agents having a sufficiently high type θ. This is consistent with

the practice among financial market outsiders above discussed. It turns out that disclosing information

decreases the defection payoff g (pretty much in the same way as studied by Milgrom et al. (1990),

and Dixit (2003a)) because outsiders will be less willing to establish relationships with B marked

agents. In other words, by disclosing information about play histories, the information intermediary

is punishing defectors de facto.

We assume that Θ = [0, 1] and F has no atom. Suppose that there is a secondary market (e.g.

the labor market), where agents in our model may participate.26 In the secondary market, there is a

continuum of outsiders (prospective employers) who, by trading with a type θ agent at a round t, get

a payoff V (θ), where V is nondecreasing. To make the problem interesting, we assume that for an

outsider it is not always optimal to trade so that P[V (θ) < 0] > 0. If an agent trades, then he gets

a payoff W ≥ 0, so for an agent trade is always beneficial. We assume that, at each t, trade in the

secondary market takes place right after the randomly matched agents play the prisoners’ dilemmas.

Two designs are possible: To disclose agents’ marks or to not disclose those marks.

In the disclosure model where outsiders only trade with G marked agents (a situation we deem

as a good description of reality), an equilibrium in the main game is a fixed point of the map

T x,W (θe) = min{θ | (θ +W )
(
1 +

δ

1− δ
(1− F (θe))

)
≥ g + x},

so defined whenever the feasible set is nonempty. An outsider will indeed be willing to hire only G

marked players if E[V (θ)|θ ≥ θe] ≥ 0 and E[V (θ)|θ ≤ θe] ≤ 0. So, the Pareto optimal equilibrium in

this class is characterized by

θc
W = min{θe | θe = T 0,W (θe), E[V (θ)|θ ≥ θe] ≥ 0, E[V (θ)|θ ≤ θe] ≤ 0}.

Now, in the model with no disclosure, the equilibrium is θc = min{θ | θ = T 0(θ)} and is assumed

to be strictly positive. We assume that in the no disclosure model, secondary market transactions

take place, or in other words, E[V (θ)] ≥ 0. Disclosure will increase cooperation if and only if θc
W ≤ θc.

26We stick to the random matching model previously presented. While the moral hazard problem in credit relations

may be better modeled as a one-sided prisoner’s dilemma, the results we develop can be easily adapted to that setting.
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Proposition 15 (i) If E[V (θ)|θ ≤ θc] ≤ 0, then for all W > 0, θc
W < θc.

(ii) If E[V (θ)|θ ≤ θc] > 0, then there exists W̄ > 0 such that for all W ≤ W̄ , θc
W = θc and

employers ignore agents’ marks. For W > W̄ , then θc
W ≤ θc.

The argument behind this proposition is the following. Suppose that information is not being

disclosed so that the equilibrium of the model is characterized by θc. Now, suppose that agents’

marks are disclosed. In (i), outsiders find profitable only to hire agents having a G mark (or a type

θ ≥ θc). So, the original equilibrium is also an equilibrium of the disclosure model and consequently

the disclosure model cannot have a Pareto dominated equilibrium. In (ii), however, once marks are

disclosed, outsiders will still find optimal to hire B marked agents. When W is small, even if outsiders

were not to trade with defectors, that would only slightly decrease θc so that, by continuity, outsiders

must be willing to trade with everyone. When W small, therefore, it is not possible to improve upon

the no disclosure situation. For W sufficiently large, however, outsiders are indeed willing to trade

only with G marked players and so θc
W < θc.

The mechanism above somehow resembles the multimarket interaction model studied by Bernheim

and Whinston (1990). The main difference is that in my model agents punishing defectors in the

secondary market may not be part of the primary game model. Agents in the secondary market

punish defectors not because of some relational force but because defecting is a bad signal on the

defector agents’ intrinsic cooperation tendency.

The result shows that information disclosure cannot decrease cooperation. However, the result

does not say anything about whether efficiency in the secondary market is improved. By assuming

that the outsider’s payoff function takes the form V (θ) = u(θ) −W , a transaction involving a type

θ agent is efficient if and only if u(θ) ≥ 0. So, if for all θ ∈ [0, 1], u(θ) ≥ 0, then marks disclosure

cannot improve efficiency in the secondary market.27 If, on the other hand, with positive probability

u(θ) < 0, then information disclosure may improve information in the secondary market.28

27Two are the key assumptions that open the possibility for efficiency reduction in the secondary market. First,

we are assuming that E[V (θ)] > 0, so that in the no disclosure case outsiders are willing to trade with game agents.

Second, we are assuming that the price W is exogenous, and in particular, is not affected by the quality of the expected

agent. These two assumptions are made for tractability and to clarify the role of information disclosure on cooperation

in the main game.
28Information disclosure in adverse selection environments has ambiguous effects. See Levin (2001) for examples and

results.
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7 Concluding Remarks

I have argued that heterogeneity is important when studying game models of large communities.

Based on this observation, this paper offers a repeated game model of a large community with

heterogeneous agents. The existence and characterization of equilibrium strategies have been studied

and novel comparative statics results have been presented. Contrary to previous results, it has been

shown that more heterogeneous communities may sustain more cooperation. Conditions under which

the intermediation problem can be efficiently delegated to a for-profit monopoly who will not see

challenged its monopolistic position have been derived.

Many economic situation can be thought of as quasi random matching models. In those models,

there are two large populations and, at each round, a population member is randomly matched to

some member in the other population. For example, firms (the first group) produce high or low

quality goods and consumers (the second group) demand goods but may renege on payment. As

discussed by Dixit (2003a), in practice cooperation among firms and consumers may be sustained by

spreading information about the quality of the goods produced by each firm (e.g. media and online

feedback systems) and by creating networks that allow firms to exchange information (e.g. credit

bureaus and business associations). Our methods can be exploited to analyze this class of models

too.

Several research questions remain open. While considerable progress has been made describing the

institutional environments that facilitate cooperation among community members, agents’ incentives

to provide such information have not been fully understood. Why do people participate in online

feedback systems and not just free-ride from others’ reports? It seems reasonable to think that at

some degree people enjoy writing a negative report after being cheated, but much more (empirical

and experimental) evidence needs to be analyzed before reaching a conclusive answer.

Extensions of the main framework are also possible. It is clear that the studied equilibrium

strategies do not carry over to the finite population game. To see why, note that after a defection

the total number of cooperative players change. As a consequence, the incentives off-the-equilibrium

path are altered and so are therefore the on-the-equilibrium path conditions. By employing the

empirical distribution of types (that is, assuming that a central authority may observe the type of

each player and assign marks accordingly), one could use finite but sufficiently large punishments after

a defection. This would require to expand the mark set, unless we consider 1-period punishment.

The finite punishment equilibrium is sequential for, after a finite number of periods, cooperation is

restored and the long run distribution of play does not depend on current period play.29

29This argument is set forth by Kandori (1992). One needs to guarantee not only cooperation among cooperative
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8 Appendix

8.1 More General Equilibrium Notions

8.1.1 Nonstationary Equilibrium

Consider the model introduced in Subsection 2.1, but now let us work with a weaker equilibrium no-

tion. We drop the stationarity and informational robustness restrictions and stick to the monotonicity

and closeness restrictions we worked with in the main text. We assume that F is continuous.30

Let Pt be the set of G marked players at the outset of period t. We restrict our attention to

equilibria such that, on the play path, Pt is closed and if θ ∈ Pt is cooperating at round t when faced

to a partner in Pt, then so is any player in Pt with a type θ′ ≥ θ.

Consider ψ such that ψ(θ) = G if and only if θ ≥ θ0, where θ0 ∈ R is fixed. Define P1 = [θ0,∞[∩Θ.

Given the sequence of matching functions (Mt)t≥1, for all t ≥ 1

Pt+1 =
(
Pt ∩

{
i ∈ I | θi ∈ [θt+1,∞[

})
∪Nt

where θt is the smallest type willing to cooperate in round t given that its partner has a mark G

and Nt ⊆ Pt \ [θt,∞[ is the set of players who would have defected had their partners had a G mark

but they keep their good records because their partners had a B mark. It is evident that Pt+1 ⊆ Pt,

and (θt)t≥1 is a nondecreasing sequence which converges, say, to θ∗ ∈ Θ. The random matching

assumption implies that, almost sure in the sequence (Mt)t, P[i ∈ Nt] → 0 for with probability 1 an

agent encounters a player willing to cooperate at some t. This implies that in the long run, players’

strategies become increasingly robust and, almost sure, P[Pt+1] = (1−F (θt))+P[Nt] → (1−F (θ∗)).

Since equilibrium strategies are asymptotically informationally robust, θ∗ must satisfy the conditions

characterizing a stationary informationally robust equilibrium.

8.1.2 Nonmonotonic Equilibrium

We consider equilibria where the set of cooperative agents P may not be a closed interval but any

closed subset of Θ. For each closed set P ⊆ Θ, define the set valued map

T x(P e) = {P ⊆ Θ | For all θ ∈ P, θ +
δ

1− δ
P(P e) ≥ g + x},

players but also the off-the-equilibrium restriction that a cooperative defector is willing to incur the cost of becoming

cooperative. See Theorem 2 in Kandori (1992).
30It is also assumed that the matching functions (Mt)t≥1 are not observed. In the stationary model analyzed in the

main text, whether or not agents observe the matching functions does not change the analysis.
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whenever the right hand side is nonempty. Consider the equivalence relation R: A,B ⊂ Θ, ARB if

and only if P[A] = P[B]. Define C as the set of all equivalence classes of R, and endow it with the

partial order A ≥ B if and only if P[A] ≥ P[B]. So defined, T x : C → 2C is nondecreasing, and so

following the main text analysis it is possible to characterize the equilibrium set.

8.2 The Structure of the Equilibrium Set

8.2.1 Preliminary Results

Proposition 16 The equilibrium set Equil is closed in R.

Proof: It is immediate from the characterization given in Theorem 3 and the lower semi-continuity

of F (θ−). 2

In the rest of this subsubsection, we assume that F is continuous differentiable and its derivative

f(θ) is (strictly) positive on [a, b]

Proposition 17 Under Monotonicity, Equil is convex.

Proof: Immediate from Theorem 3.2

By means of an example, we show that the equilibrium set may not be convex.

Example 18 Suppose that Θ = [0, 1] and

F (θ) =



0 if θ < 1/3,

6(θ − 1/3) if θ ∈ [1/3, 1/2[,

1/2 if θ ∈ [1/2, 3/4[,

2(θ − 3/4) + 1/2; if θ ∈ [3/4, 1],

with δ = 0.9, g = 3. By using Theorem 3, it is easy to see that the equilibrium set is

Equil = [0.3, 0.37] ∪ [0.54, 0.86]

The equilibrium set is depicted in Figure 2. The solid line shows the function

θ
(
1 +

δ

1− δ
(1− F (θ))

)
,
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Figure 2: The equilibrium set may not be convex.

while the dashed line is at the level g = 3.

It should be clear that the nonconvexity could also be obtained with a differentiable distribution

function whose density is strictly positive on.

8.2.2 Equilibrium Set Cardinality

Now, we investigate generic properties concerning the cardinality of the equilibrium set.

To do that, parameterize each model according to its discount factor δ ∈]0, 1[ (so, we fix g, F ,

and l). As shown in the text, a necessary and sufficient condition for equilibrium existence is given

by Equation (??). So, consider the closed set of models for which an equilibrium exists:

∆ = {δ ∈]0, 1[| ḡ(δ) ≥ g}.

It is easy to see that ∆ must be an interval. Endow ∆ with the Lebesgue measure.

Theorem 19 Suppose that F is continuous. Then, generically in ∆, the set of equilibria is a con-

tinuum.
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It is useful to state the following lemma.

Lemma 20 Suppose that ḡ(δ) > g. Then, the set of equilibria is a continuum.

Proof: The function θ
(
1 + δ

1−δ
(1 − F (θ))

)
is continuous in θ. Therefore, there exists an interval

[θ1, θ2], where θ1 < θ2, such that for all θ ∈ [θ1, θ2], θ
(
1 + δ

1−δ
(1 − F (θ))

)
> g. So, [θ1, θ2] ⊆ Equil

and so Equil must be a continuum.2

Proof of Theorem 19: It follows by noting that ḡ(δ) is continuous. Indeed, θ
(
1+ δ

1−δ
(1−F (θ))

)
is

continuous in (θ, δ) and so we can apply the maximum theorem. Moreover, ḡ(·) is strictly increasing

on ∆. The result follows.2

8.3 Additional Related Results

8.3.1 More General Heterogeneity

It is possible that agents not only differ in the gains that obtain from cooperation, but, more generally,

in their whole payoff profiles. To study this possibility, suppose that the payoff matrix in the stage

game takes the form:

C D

C c(θ1) c(θ2) −l(θ1) g(θ2)

D g(θ1) −l(θ2) 0 0

where c(·), g(·), l(·) are functions of the type. Each player’s discount factor is considered as a function

its type δ(θ) ∈ [0, 1[. The following prisoners’ dilemma restrictions are imposed: For all θ ∈ Θ,

g(θ) > c(θ) ≥ 0 and l(θ) ≥ 0. Additionally, we assume that higher type players are more cooperative

than lower type players. Formally,

Increasing cooperation attitudes (ICA): The functions c(θ), c(θ) − g(θ), and δ(θ) are nonde-

creasing in θ.

33



We restrict our attention to stationary robust and monotone equilibria, which can be shown to

be characterized by a cutoff point θe satisfying

c(θe)
(
1 +

δ(θe)

1− δ(θe)
(1− F (θe−))

)
≥ g(θe).

Define the map

T̄ x(θe) = min{θ ∈ Θ | c(θ)
(
1 +

δ(θ)

1− δ(θ)
(1− F (θe−))

)
≥ g(θ) + x}

whenever the set over which the minimum is taken is nonempty. The map T x is nondecreasing, and

any equilibrium is a fixed point of T̄ x for some x. The characterization and comparative statics results

can be proven following the arguments of Section ??.

The decentralization result also holds in this more general model: By setting the right price, a

social planer can implement the Pareto optimal equilibrium. The presence of other forms of het-

erogeneity may make more likely for the monopolist to implement the optimal equilibrium. Two

particular cases are considered.

Case 1: The only source of heterogeneity is g. In other words, c(θ) = c̄ and δ(θ) = δ̄ are

constant functions of θ. Then, by implementing θe ∈ Equil, the monopolist obtains

c̄

1− δ̄
(1− F (θe−))2

an expression which is decreasing in θe. Consequently the monopolist optimally sets the Pareto

optimal equilibrium: θm = θc.

Case 2: The only source of heterogeneity is δ. In other words, c(θ) = c̄ and g(θ) = ḡ are

constant functions of θ. By implementing θe ∈ Equil, the monopolist gets

c̄

1− δ(θ)
(1− F (θe))2.

Just for simplicity, suppose that δ(θ) = θ. The objective function is decreasing in θ whenever

R(θ) = 2(1 − θ) − 1−F (θ)
f(θ)

≥ 0. Since R(1) = 0, the last condition will be met whenever R(θ) is

decreasing (a condition that holds, for example, when F is uniform).

8.3.2 Expanding the Mark Set

Consider the model introduced in Section 2 but now expand the mark set to M = {m1, . . . ,mM}.
Assume that each player’s mark evolves according to η : M×M×A→M . At the outset of the game,
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marks are assigned according to ψ(θ) ∈ M . The following result shows that there are no benefits

from expanding the mark set.

Proposition 21 Let θc be the Pareto optimal equilibrium defined by Equation (4.1). Then, no sta-

tionary informationally robust equilibrium of the model with mark set M can Pareto dominate θc.

This result, whose logic is quite simple, shows us that adding more marks cannot lead to a Pareto

improvement upon the Pareto optimal equilibrium. The following example shows that it is possible

that expanding the mark set may lead to an increase in total welfare.

Example 22 Consider a two-type model Θ = {θ, θ̄} where both types are equally likely. Suppose

that

0 < θ < (1− δ)g

so that types θ are not willing to cooperate always. We also suppose that θ̄ is sufficiently large so

that those types cooperate when matched. In other terms,

(1− δ)θ̄ + δ
1

2
θ̄ ≥ (1− δ)g

Consequently, there is a single equilibrium θc = θ̄ and the expected payoffs of types θ and θ̄ are 0

and 1
2
θ̄ respectively.

Consider now a three mark model, where the mark set is {Ḡ, G,B}. We construct an equilibrium

so that that when a type θ is matched to a type θ̄, then the former defects and the latter cooperates;

when a type θ is matched to some other type θ, they cooperate. Marks are assigned so that Ḡ (resp.

G) is the mark for type θ̄ (resp. θ) that conforms to the equilibrium play, and B is the mark of any

player off-the-equilibrium path.

The continuation values are

v(θ̄) =
1

2(1− δ)
(θ̄ − l)

and

v(θ) =
1

2(1− δ)
(θ + g).

This profile is enforceable whenever −l + δv(θ̄) ≥ 0 and θ + δv(θ) > g. These conditions can be

equivalently stated as

g ≤ 2− δ

1− δ
θ, l ≤ δ

2− δ
θ̄

The expected payoffs of players θ and θ̄ are θ+g
2

and θ̄−l
2

, respectively.
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Our proposed profile cannot Pareto dominates the Pareto optimal equilibrium of the two type

model. However, if l < θ + g − θ̄, it produces higher total welfare. To see that all these inequalities

may be satisfied, set g = 2, θ̄ = 1, θ = 1/2, δ = 3/4 and l ≤ 3/5.

8.4 Proofs

Proof of Lemma 1. Let p be the probability mass of P . The only interesting case is p > 0. If (C,D)

is the outcome of a cooperative-noncooperative match, then the stationary equilibrium restrictions

imply that

−l + δvG(θ) ≥ 0 + δvB,

where vG(θ) = pθ−l(1−p)
1−δ

is the total expected payoff when type θ is cooperative and and vB = pg
1−δ

is what a player would obtain if marked as noncooperative. Note that in this case, it must be the

case that η(G,B,C) = G for otherwise either the stationarity restriction or the incentive restriction

would be violated. In other words,

−l
(
(1− δ) + δ(1− p)

)
≥ δp(g − θ)

which is a contradiction for θ < g and l ≥ 0. 2

Proof of Lemma 2. Note that for x ∈ [0, x̄], θ ∈ Θx. Indeed, 1− F (θ−) = P[θ ≥ θ] = 1 so

θ̄
(
1 +

δ

1− δ
(1− F (θ−))

)
=

θ̄

1− δ
≥ g + x.

So, Θx is nonempty. Moreover, for θe ∈ Θx,

θ̄
(
1 +

δ

1− δ
(1− F (θe−))

)
≥ g + x,

so that the optimization problem defining T x is nonempty. Additionally, note that the function

θ + δv(θ, θe) is continuous in θ. Therefore T x(θe) = min{θ ∈ Θ | θ + δv(θ, θe) ≥ g + x} ∈ Θ, and

T x(θe) is well defined.

Now, let us prove that T x is nondecreasing. The restriction of T x to Θx, T x|Θx , is nondecreasing.

Indeed, by increasing θe the feasible set in the minimization problem defining T x(θe) (weakly) shrinks.

So, the increase of θe leads to a weak increase in T x(θe). It is further clear that for any θe > θ̄x,

T x(θe) = θ̄ ≥ T x(θ̄x). This completes the proof. 2

Proof of Theorem 3. To see the characterization part, note that any equilibrium θe is a fixed

point of T x, for some x, and additionally belongs to Θx for

θ̄
(
1 +

δ

1− δ
(1− F (θe−))

)
≥ θe

(
1 +

δ

1− δ
(1− F (θe−))

)
= g + x.
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To see the converse inclusion note that for any θe ∈ Bx ∩Θx, it must be the case that

θe
(
1 +

δ

1− δ
(1− F (θe−))

)
= g + x.

This implies that all types greater than or equal to θe are willing to cooperate when so does θe.

Let us now prove the second characterization. Suppose that θe ∈ Equil. Then from the first

characterization, it must exist a fixed point θe of T x, for some x, which in turn satisfies

θe
(
1 +

δ

1− δ
(1− F (θe−))

)
≥ g.

Now, suppose that there is a point satisfying the condition above. Then, for some x ≥ 0

θe
(
1 +

δ

1− δ
(1− F (θe−))

)
≥ g + x.

It readily follows that T x(θe) = θe and θe ∈ Θx. The result follows.

The existence part is immediate.2

Proof of Corollary 6. Suppose that θe ∈ Bx ∩ Θx for x ≥ 0. Note that T 0(θ) ≤ T x(θ) for all θ.

Then, from Proposition 5 there must be a fixed point θ ≤ θe of the map T 0. But Θx ≤ Θ0 (in the

strong set order) and Θx ⊆ Θ0. So θ ∈ Θ0. We have proven that for any equilibrium θe we can find

a fixed point θ of T 0 (which happens to be equilibrium) and such that θ ≤ θe. Therefore,

min{θe ∈ Θ | θe ∈ Equil} ≥ min{θ ∈ Θ | T 0(θ) = θ},

which completes the proof.2

Proof of Corollary 7. It is immediate from Proposition 5. 2

Proof of Proposition 12. We need to prove that

θc(1− F (θc−))

1− δ
− (1− F (θc−))g

1− δF (θc−)
≥ 0

A little of algebra shows that the condition above is less stringent than

θc
(
1 +

δ

1− δ
(1− F (θc−))

)
≥ g,

a condition that is met. Note that this condition is also sufficient for, by fixing any price as the one

described above, it is easy to see that the incentive constraints are satisfied.2
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Proof of Proposition 13: The monopoly problem can be written as

max{θe(1− F (θe))2 | ϕ(θe) ≥ g}

where

ϕ(θe) = θe
(
1 +

δ

1− δ
(1− F (θe))

)
.

Note that

ϕ′(θe) = 1− δ

1− δ
f(θe)(Φ(θe)− θe)

is non-increasing. Moreover, the objective function of the monopoly problem has derivative

1

θe
− 2f(θe)

1− F (θe)

which is negative if and only if Φ(θe) = 2θe − 1−F (θe)
f(θe)

is positive. Since Φ(θe) is nondecreasing as a

consequence of Monotonicity, θc is the monopoly problem solution if and only if

Φ(θc) ≥ 0.

Define θ̂ as the biggest solution to

max{ϕ(θ) | θ ∈ [0, 1]}.

Let us prove that θ∗ ≤ θ̂. To do that, it is enough to prove that the function

(α, θ) → α log(θ
(
1 +

δ

1− δ
(1− F (θ))

)
) + (1− α) log(θ(1− F (θ))2)

is supermodular. But the derivative of this function with respect to α is

log(1 +
δ

1− δ
(1− F (θ)))− 2 log((1− F (θ))),

so the result will obtain if the derivative of this function with respect to F (θ) is positive. But this

derivative equals

2

1− F (θ)
−

δ
1−δ

1 + δ
1−δ

(1− F (θ))

which is positive whenever

2 +
δ

1− δ
(1− F (θ)) ≥ 0.

It follows that for any g ∈ [g(δ), ḡ(δ)], the monopoly solution is θm = θc. If not, θc < θm.

Let us now prove the result

lim
δ→1

ḡ(δ)− g(δ)

ḡ(δ)− 1
= 1− θ∗(1− F (θ∗))

θ1(1− F (θ1))
,
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where we employ the fact that limδ→1 g(δ) = ∞. Consider θδ as the only solution to

max
θ∈[a,b]

θ
(
1 +

δ

1− δ
(1− F (θ))

)
This problem is concave and so θδ is the only solution to the necessary and sufficient first order

condition
1− δ

δ
= Φ(θδ).

It is therefore clear that any converging sequence θδn must converge to θ1, where Φ(δ1) = 0. This

proves that

lim
δ→1

θδ = θ1.

Therefore

ḡ(δ)− g(δ)

ḡ(δ)− 1
=
θδ

(
1 + δ

1−δ
(1− F (θδ))

)
− θ∗

(
1 + δ

1−δ
(1− F (θ∗))

)
θδ

(
1 + δ

1−δ
(1− F (θδ))

)
− 1

=
θδ − θ∗ + δ

1−δ
(θδ(1− F (θδ))− θ∗(1− F (θ∗)))

θδ − 1 + δ
1−δ

θδ(1− F (θδ))

→ θ1(1− F (θ1)− θ∗(1− F (θ∗)))

θ1(1− F (θ1))
.

This completes the proof. 2
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