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separable dynamic games with noisy transitions and establish that these widely used models are protocol
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1 Introduction

The timing of decisions is an essential ingredient into modelling many strategic situations. Asynchronous

decisions are a type of commitment, and being able to move first and thus set the stage for rivals can

confer a considerable advantage on a player. Synchronous decisions, in contrast, take away the ability to

commit as players are neither leaders nor followers. From the basically static models in Cournot (1838) and

von Stackelberg (1934) to the genuinely dynamic models in Cyert and DeGroot (1970), Maskin and Tirole

(1987, 1988a, 1988b), Cahuc and Kempf (1997), Noel (2008), and Iskhakov, Rust, and Schjerning (2016) and

the anti-folk theorems in Rubinstein and Wolinsky (1995) and Lagunoff and Matsui (1997, 2001), a long and

distinguished literature has pointed out cases where the protocol of moves matters crucially for equilibrium

behavior.

Our paper provides a counterpoint to this literature. We show that a fairly general and widely used class

of dynamic models is protocol invariant provided that periods are sufficiently short and moves are therefore

sufficiently frequent. Protocol invariance means that the set of equilibria of a model is nearly the same

irrespective of the order in which players are assumed to move within a period, including—and extending

beyond—simultaneous, alternating, and sequential moves.

We focus on infinite-horizon dynamic stochastic games and their stationary Markov perfect equilibria

(henceforth Markov perfect equilibria for short). Dating back to Shapley (1953), dynamic stochastic games

have a long tradition in economics and are central to the analysis of strategic interactions among forward-

looking players in dynamic environments. The main contribution of this paper is to characterize a class of

dynamic stochastic games that we call separable dynamic games with noisy transitions and to establish that

these models are protocol invariant provided that periods are sufficiently short. In addition, we show that

the Markov perfect equilibria of separable dynamic games with noisy transitions have a remarkably simple

structure.

Separability and noisy transitions are assumptions that restrict per-period payoffs and state-to-state

transitions in a dynamic stochastic game. Many models in the literature are amenable to these assumptions.

Examples include investment games (Spence 1979, Fudenberg and Tirole 1983, Hanig 1986, Reynolds 1987,

Reynolds 1991, Dockner 1992), R&D races (Reinganum 1982, Lippman and McCardle 1987), models of

industry dynamics (Ericson and Pakes 1995), and dynamic public contribution games (Marx and Matthews

2000, Compte and Jehiel 2004, Georgiadis 2014). The recent continuous-time stochastic games with moves

at random times (Arcidiacono, Bayer, Blevins, and Ellickson 2015, Ambrus and Lu 2015, Calcagno, Kamada,

Lovo, and Sugaya 2014) also satisfy these assumptions.

A dynamic stochastic game is a dynamic system that can be in different states at different times. The

evolution of the state from one period to the next is governed by a discrete-time Markov process that players

can influence through their actions. Each player strives to maximize the expected net present value of his

stream of payoffs. While per-period payoffs and state-to-state transitions in a general dynamic stochastic game

depend arbitrarily on the state and on players’ actions, in a separable dynamic game per-period payoffs and
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state-to-state transitions depend on players’ actions in an additive manner: to a first-order approximation,

they are built from parts that depend on the actions taken by subsets of players. As a consequence, the

strategic situation that the N players face in a given state of the dynamic system, holding fixed the value

of continued play, is akin to N independent optimization problems. While at first glance this may seem to

trivialize the game, the separability assumption does not restrict how per-period payoffs and state-to-state

transitions depend on the state. Because players are forward looking, this allows strategic interactions to be

channeled through continuation values. Indeed, as the many examples in the literature show, the separability

assumption is not overly onerous.

The assumption of noisy transitions precludes that there is an action that a player can take to guarantee

a change in the state. This assumption reflects the view that models are only an approximation to reality, so

that there typically is at least some residual uncertainty. To impose noisy transitions we model the evolution

of the state by a discrete-time approximation to a continuous-time Markov process in which the time spent in

a state has an exponential distribution with a finite hazard rate, in line with the fact that in many real-world

settings players often take time to finalize their actions (Iijima and Kasahara 2015).

Our first main result, Theorem 1, is that separable dynamic games with noisy transitions are protocol

invariant provided that periods are sufficiently short. To provide intuition, consider a prototypical investment

game between two firms. A firm can undertake a risky investment project to increase its capital stock. A

firm’s per-period payoff increases in its own capital stock and decreases in its rival’s capital stock. The

separability assumption is satisfied, as whether its rival invests affects directly neither the firm’s per-period

payoff nor the probability that the firm succeeds in increasing its capital stock. Moreover, transitions from

one state to another are noisy due to the risky nature of the investment project.

Now contrast two protocols of moves. When firms move alternatingly, a forward-looking firm deciding

whether to invest understands that its rival’s capital stock remains constant for (at least) the period. In

contrast, when firms move simultaneously, the firm has to take into account the probability that its rival’s

capital stock increases over the course of the period. This probability, however, becomes negligible as periods

become short because transitions are noisy. It follows that the protocol of moves is almost immaterial to the

firm’s decision.

The proof of Theorem 1 proceeds from the equilibrium conditions for a separable dynamic game with

noisy transitions. We fix an arbitrary protocol of moves and take the limit as periods become short and we

therefore pass from discrete to continuous time. We observe that the limit conditions are independent of

the protocol of moves used to pass to the limit. Hence, when the limit conditions admit a unique solution,

our protocol-invariance theorem is immediate. However, the limit conditions may admit multiple solutions.

To handle the resulting difficulties, we introduce differential topology tools to study the limit conditions.

Drawing on ideas in Harsanyi (1973a, 1973b) for normal-form games and in Doraszelski and Escobar (2010)

for dynamic stochastic games, we prove that generically the limit conditions have a finite number of solutions

and that all solutions can be approximated by the Markov perfect equilibria of a separable dynamic game
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with noisy transitions and an arbitrary protocol of moves provided that periods are sufficiently short. To

the best of our knowledge, our paper is the first attempt to use differential topology tools to explore the

robustness of a class of dynamic models to the timing of decisions.

We show that the assumptions of separability and noisy transitions are tight in the sense that counterex-

amples to protocol invariance can be constructed if any one of them is relaxed. Moreover, we show that

protocol invariance does not extend beyond Markov perfect equilibria to other equilibrium concepts.

While we mostly treat the limit conditions as a technical device, they are of interest by themselves. The

limit conditions can be interpreted as the equilibrium conditions for a continuous-time stochastic game. We

also provide an equivalence result showing that the limit conditions are identical to the equilibrium conditions

for a dynamic stochastic game in which in any period one player is randomly selected to make a decision. In

this game with random moves, the fact that a player can revise his decision only at random times confers

a kind of commitment power on the player similar to that in the games with alternating moves in Maskin

and Tirole (1988a, 1988b) and Lagunoff and Matsui (1997). Our equivalence result therefore underscores the

richness of the class of separable dynamic games with noisy transitions and clarifies the strategic implications

of these restrictions on per-period payoffs and state-to-state transitions.

Our second main result, Theorem 2, shows that the Markov perfect equilibria of a separable dynamic

game with noisy transitions have a remarkably simple structure provided that periods are sufficiently short.

In particular, we show that the number of actions that a player uses with positive probability in a given

state cannot exceed the number of players in the game. The proof of Theorem 2 capitalizes on the analytic

tractability of the limit conditions and on Theorem 1 to extend the analysis to separable dynamic games with

noisy transitions.

Our main results facilitate and inform applied work in a number of ways. First and perhaps most

important, determining the protocol of moves that is most realistic and appropriate for the application at

hand may be amongst the most difficult choices a modeler has to make. In empirical work, in particular, the

timing of decisions and the ability to commit is typically not observable to the researcher. Hence, we may

be suspicious of any implication or prediction from a model that is driven by the protocol of moves that the

modeler has chosen to impose, a point that has been made forcefully by Rosenthal (1991) and van Damme

and Hurkens (1996) for normal-form games and by Kalai (2004) for large Bayesian games. Protocol invariance

alleviates this concern and the burden of determining the protocol of moves for the class of separable dynamic

game with noisy transitions by ensuring that equilibrium behavior is independent of the timing of decisions

provided that periods are sufficiently short. Second, our main results caution against the presumption that

imposing asynchronous instead of synchronous decisions on a dynamic stochastic game reduces the number

of equilibria. Third, because the timing of decisions and the ability to commit is typically not observable,

empirical work sometimes averages over different protocols of moves (Einav 2010). This average depends

on the assumed probability distribution over protocols of moves and may be difficult to interpret if it does

not correspond to an equilibrium of any game. Protocol invariance renders averaging unnecessary. Fourth,
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dynamic stochastic games are often not very tractable analytically and thus call for the use of numerical

methods. Doraszelski and Judd (2007) show that the computational burden can vary by orders of magnitude

with the protocol of moves. For the class of separable dynamic game with noisy transitions, protocol invariance

justifies imposing the protocol of moves that is most convenient from a computational perspective.

We apply and extend our main results in three ways. First, we provide a new justification for focusing

on Markov perfect equilibria. Provided that periods are sufficiently short, we show that if a strict finite-

memory equilibrium payoff profile in a separable dynamic game with noisy transitions and simultaneous

moves is protocol invariant, then it is arbitrarily close to a Markov perfect equilibrium payoff profile. In

this sense, Markov perfect equilibria are the only equilibria that are robust to changes in the protocol of

moves. This result adds to the literature providing foundations for Markov perfect equilibria (Maskin and

Tirole 2001, Bhaskar and Vega-Redondo 2002, Bhaskar, Mailath, and Morris 2013, Bohren 2014). Second,

as Doraszelski and Judd (2012) argue, the limit conditions that arise as we pass from discrete to continuous

time are particularly easy to solve numerically. We provide a justification for doing so by showing that

the solutions to the limit conditions almost coincide with the Markov perfect equilibria of separable dynamic

games with noisy transitions and arbitrary protocols of moves provided that periods are sufficiently short. We

also show that restricting attention to games with simultaneous moves, we can dispense with the separability

assumption. Third, we shed light on the numerous examples in the literature in which the protocol of moves

matters crucially for equilibrium behavior. We show that there is a discontinuity in the set of Markov perfect

equilibria as hazard rates become large and moves become frequent. Hence, caution is warranted in working

with games with infinite hazard rates and arbitrarily frequent moves.

Our paper is related to two strands of literature. First, our notion of protocol invariance builds on and

extends the notion of a commitment robust equilibrium in Rosenthal (1991) and van Damme and Hurkens

(1996) from two-player normal-form games to N -player dynamic stochastic games. Rosenthal (1991) defines

a Nash equilibrium of a two-player normal-form game to be commitment robust if it is also a subgame perfect

equilibrium outcome of each of the two extensive-form games in which one of the players moves first, and

provides a series of illustrative examples. In contrast to the notion of a commitment robust equilibrium, our

notion of protocol invariance pertains to the entire set of equilibria of a fairly general class of dynamic models.

Our work is also related to Kalai (2004), who shows that the Nash equilibria of large anonymous Bayesian

games are approximately robust to variations in the extensive-form version of the game. The driving force

behind Kalai’s (2004) result is the vanishing impact that a player’s action has on other players’ payoffs as the

number of players grows large. In our setting, the impact that a player’s action has on other players’ payoffs

vanishes as periods become short. From a more technical perspective, Kalai (2004) allows for ε-equilibria,

while we impose exact equilibrium and establish our results for generic payoffs.

Second, previous attempts to exposit dynamic games where the protocol of moves does not matter for

equilibrium behavior are few and far between and confined to very specific models. Abreu and Gul (2000)

study bilateral bargaining and show that independent of the bargaining protocol the same limit is reached as
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the time between offers becomes short. Caruana and Einav (2008) study a model in which players repeatedly

announce an action but only the final announced action is relevant for payoffs. While players can revise

their announcements, they pay a cost each time they do so; in this way, announcements play the role of

an imperfect commitment device. Caruana and Einav (2008) show that the order in which players make

announcements does not matter as long as the time between announcements is sufficiently short. In contrast

to Abreu and Gul (2000) and Caruana and Einav (2008), we do not presuppose that the limit conditions

admit a unique solution. Because our framework is much less tightly specified, we require differential topology

tools to analyse the limit conditions.

The remainder of this paper is organized as follows. Section 2 introduces separable dynamic games with

noisy transitions. Sections 3 and 4 develop our main results. Section 5 discusses a number of applications and

extensions of our main results and Section 6 concludes. The proofs of our main results are in the Appendix.

An Online Appendix provides further examples and proofs.

2 Separable Dynamic Games with Noisy Transitions

We focus on dynamic stochastic games with finite sets of players, states, and actions. Time t = 0,∆, 2∆, . . .

is discrete and measured in units of ∆ > 0. We refer to ∆ as the length of a period; as ∆→ 0, moves become

frequent. The time horizon is infinite. Let {1, 2, . . . , N} denote the set of players, Ω the set of states, and

Ai(ω) the set of actions of player i in state ω. Each player strives to maximize the expected net present value

of his stream of payoffs and discounts future payoffs using a discount rate ρ > 0. Monitoring is perfect.

The protocol of moves determines which players can take an action at time t and which players cannot.

We allow for a general protocol of moves that encompasses—and goes beyond—simultaneous, alternating,

and sequential moves. To this end, we allow the set of players who have the move to change from one period

to the next. The set of players J t ⊆ {1, 2, . . . , N} who have the move at time t thus becomes part of the

state of the system, and we refer to it as the “protocol” state to distinguish it from the familiar “physical”

state ωt ∈ Ω. In contrast to the physical state, for simplicity we assume that the protocol state evolves

independently of players’ actions. In the Online Appendix, we show that our protocol-invariance theorem

remains valid without this simplifying assumption.

The game proceeds as follows. It starts at time t = 0 from an initial state (ωt=0, J t=0). After observing

(ωt=0, J t=0), the players j ∈ J t=0 who have the move choose their actions at=0
Jt=0 =

(
at=0
j

)
j∈Jt=0 simultaneously

and independently from each other. Now two things happen, depending on the state (ωt=0, J t=0) and the

actions at=0
Jt=0 . First, player i receives a payoff u∆

i (ωt=0, J t=0, at=0
Jt=0). Second, the system transits from state

(ωt=0, J t=0) to state (ωt=∆, J t=∆). Independent of each another, the transition from ωt=0 to ωt=∆ happens

with probability Pr∆
(
ωt=∆|ωt=0, J t=0, at=0

Jt=0

)
and that from J t=0 to J t=∆ with probability Pr

(
J t=∆|J t=0

)
.

While player i receives a payoff irrespective of whether he has the move (i ∈ J t=0) or not (i 6∈ J t=0), the exact

amount depends on the actions at=0
Jt=0 of the players who have the move, as do the state-to-state transitions.
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In the next round at time t = ∆, after observing (ωt=∆, J t=∆), the players j ∈ J t=∆ who have the move

choose their actions at=∆
Jt=∆ . Then player i receives a payoff u∆

i (ωt=∆, J t=∆, at=∆
Jt=∆) and the state changes

again from (ωt=∆, J t=∆) to (ωt=2∆, J t=2∆). The game goes on in this way ad infinitum.

To allow for a general protocol of moves, we partition the set of players {1, 2, . . . , N} and assume that

the set of players J t who have the move at time t evolves according to a Markov process that is defined over

this partition as follows:

Assumption 1 (Protocol of Moves) Let J be a partition of {1, 2, . . . , N} and P = (Pr (J ′|J))J,J ′∈J a

|J | × |J | transition matrix. P is irreducible and its unique stationary distribution is uniform on J .

In stating Assumption 1 and throughout the remainder of the paper we omit the time superscript whenever

possible and use a prime to distinguish future from current values.

We denote the protocol of moves as < J ,P > in what follows. Because J is a partition of {1, 2, . . . , N},
Assumption 1 ensures that player i always has the move in conjunction with the same rivals. By requiring

the transition matrix P to have a unique stationary distribution that is uniform on J , Assumption 1 further

ensures that all players have the move with the same frequency over a sufficiently large number of periods.

Assumption 1 accommodates synchronous and asynchronous decisions and thus encompasses most dy-

namic stochastic games in the literature, including games with simultaneous moves (Shapley 1953, Ericson

and Pakes 1995), games with alternating moves, (Maskin and Tirole 1987, Maskin and Tirole 1988b, Maskin

and Tirole 1988a, Lagunoff and Matsui 1997), and games with random moves (Doraszelski and Judd 2007).

In games with simultaneous moves, the partition is J = {{1, . . . , N}} with the trivial 1× 1 transition matrix

P; in games with alternating moves the partition is J = {{1}, . . . , {N}} with the N ×N transition matrix

P with entries Pr({ mod N (i+ 1)}|{i}) = 1.1 In games with asynchronous moves, J = {{1}, . . . , {N}}
and the identity of the player who has the move in a given period may follow a deterministic sequence as in

games with alternating moves or it may be stochastic. Games with random moves are another special case of

games with asynchronous moves. In these games, the probability that a player has the move in a given period

is uniform across players and periods. Finally, Assumption 1 accommodates more than one—but less than

all—players having the move in a given period and thus settings where decisions are partially synchronous.

In the Online Appendix, we show that Assumption 1 can be relaxed in several ways. First, we show that our

protocol-invariance theorem remains valid if the evolution of the protocol state J depends on players’ actions

aJ and the physical state ω. Second, we show that the uniform stationary distribution in Assumption 1

can be replaced by a non-uniform stationary distribution. Third, we provide a partial extension of our

protocol-invariance theorem that does not require J to be a partition of the set of players.

We model the evolution of the physical state by a discrete-time approximation to a continuous-time

Markov process in order to impose that transitions are noisy:

Assumption 2 (Noisy Transitions) The transition probability Pr∆ (ω′|ω, J, aJ) is differentiable in ∆ and

1The notation mod N (x) refers to the modulo N congruence.
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can be written as

Pr∆ (ω′|ω, J, aJ) =

 1− qJ(ω, aJ)∆ +O(∆2) if ω′ = ω,

qJ(ω, aJ)pJ(ω′|ω, aJ)∆ +O(∆2) if ω′ 6= ω,

where qJ : {(ω, (aj)j∈J) | aj ∈ Aj(ω)} → R+ ∪ {0}, pJ : {(ω, (aj)j∈J) | aj ∈ Aj(ω)} → P(Ω), and P(Ω) is the

set of probability distributions over Ω. We normalize pJ(ω | ω, aJ) = 0.

Without loss of generality, we decompose the transition probability Pr∆ (ω′|ω, J, aJ) into a probability

that the state changes in a given period—or that a jump occurs in the lingo of stochastic processes—and a

probability distribution over successor states conditional on the state changing. The probability that the state

changes is qJ(ω, aJ)∆ in proportion to the length of a period ∆ and, conditional on the state changing, the

probability that it changes from ω to ω′ is pJ(ω′|ω, aJ). Normalizing pJ(ω|ω, aJ) = 0 amounts to ignoring

a jump from a state to itself and adjusting the hazard rate qJ(ω, aJ) of a jump occurring accordingly.

Importantly, Assumption 2 restricts the model to have a finite hazard rate in a given state so that there is

no action that a player can take to guarantee a change in the state.

We finally assume that per-period payoffs and state-to-state transitions have an additively separable

structure:

Assumption 3 (Separability) The per-period payoff u∆
i (ω, J, aJ) is differentiable in ∆ and can be written

as

u∆
i (ω, J, aJ) = |J |

∑
j∈J

ui,j(ω, aj)∆ +O(∆2),

where ui,j : {(ω, aj) | aj ∈ Aj(ω)} → R. The hazard rate qJ(ω, aJ) and transition probability pJ(ω′ | ω, aJ)

can be written as

qJ(ω, aJ) = |J |
∑
j∈J

qj(ω, aj)

and

qJ(ω, aJ)pJ(ω′ | ω, aJ) = |J |
∑
j∈J

qj(ω, aj)pj(ω
′ | ω, aj),

where qj : {(ω, aj) | aj ∈ Aj(ω)} → R+ ∪ {0} and pj : {(ω, aj) | aj ∈ Aj(ω)} → P(Ω).

To a first-order approximation, Assumption 3 builds up the per-period payoff u∆
i (ω, J, aJ) of player i

from the flow payoff ui,j(ω, aj) by summing over the players j ∈ J who have the move. By taking action

aj in state ω, player j “contributes” |J |ui,j(ω, aj)∆ to the per-period payoff of player i in proportion to the

length of a period ∆. This restricts complementarities between players’ actions and other non-separabilities

to the higher-order term O(∆2).2 We discuss below our reason for scaling by the number of elements of the

partition J .

2More explicitly, we assume that there exists c̄ > 0 and ∆̄ > 0 such that ‖u∆
i (ω, J, aJ) − |J |

∑
j∈J ui,j(ω, aj)∆‖ ≤ c̄∆2 for all

∆ < ∆̄.
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Assumption 3, in conjunction with Assumption 2, also builds up the components of the transition proba-

bility Pr∆ (ω′|ω, J, aJ) from the player-specific hazard rate qj(ω, aj) and the transition probability pj(ω
′|ω, aj)

by summing over the players j ∈ J who have the move. Because it imposes a competing hazards model on

the transition probability, a change in the state is with high probability due to the action taken by one of the

players having the move.

In what follows, we denote the above game by Γ =< ∆,J ,P, u, p, q, ρ >. We view the function

ui,j : {(ω, aj) | aj ∈ Aj(ω)} → R as a vector ui,j ∈ R
∑
ω∈Ω|Aj(ω)| and denote ui = (ui,j)

N
j=1 ∈ R

∑N
j=1

∑
ω∈Ω|Aj(ω)|

and u = (ui)
N
i=1 ∈ RN

∑N
j=1

∑
ω∈Ω|Aj(ω)|. We further denote the collection of hazard rates and transition prob-

abilities q = (qj(ω, aj))ω∈Ω,j=1,...,N,aj∈Aj(ω) and p = (pj(ω
′|ω, aj))ω∈Ω,j=1,...,N,aj∈Aj(ω).

A stationary Markovian strategy for player i is a function σi : Ω→ ∪ω∈ΩP(Ai(ω)) with σi(ω) ∈ P(Ai(ω))

for all ω, where P(Ai(ω)) is the set of probability distributions over Ai(ω). Because J is a partition of

{1, 2, . . . , N}, Assumption 1 ensures that player i always has the move in conjunction with the same rivals.

Hence, while the state of the system comprises both the physical state ω and the protocol state J , it suffices

to consider Ω as the domain of σi. We use σi(ai | ω) to denote the probability that action ai ∈ Ai(ω) is

played in state ω.

From hereon, we denote by Σi the set of stationary Markovian strategies for player i and Σ =
∏N
i=1 Σi

the set of strategy profiles. To account for mixed strategies, we extend the flow payoff ui,j(ω, σj(ω)) =∑
aj∈Aj(ω) ui,j(ω, aj)σj(aj | ω) and transition probability

Pr∆ (ω′|ω, J, σJ(ω)) =
∑

aJ∈
∏
j∈J Aj(ω)

(
Pr∆ (ω′|ω, J, aJ)

∏
j∈J

σj(aj | ω)
)
.

A profile of stationary Markovian strategies σ = (σi)
N
i=1 is a stationary Markov perfect equilibrium if it is a

subgame perfect equilibrium of the game Γ. The set of Markov perfect equilibria of the game Γ is denoted

Equil(Γ). This set is nonempty (Shapley 1953).3

Our main interest is to compare equilibrium behavior under different protocols of moves. Assumption 1

lets us compare two models Γ =< ∆,J ,P, u, p, q, ρ > and Γ =< ∆,J ,P, u, p, q, ρ > that differ only in

the protocol of moves by ensuring that all players move with the same frequency. The scale factor |J | in

Assumption 3 further ensures that a player’s action brings about the same payoffs and chances of changing

the state in the two models. To see this, contrast a game with simultaneous moves Γ with a game with

alternating moves Γ. In the game with simultaneous moves Γ, player j takes an action aj every ∆ units

of time, yielding the payoff ui,j(ω, aj)∆ and the hazard rate qj(ω, aj)∆ (neglecting the higher-order term

O(∆2)). Over a stretch of N∆ units of time, the action aj thus yields the payoff ui,j(ω, aj)N∆ and the

hazard rate qj(ω, aj)N∆. In the game with alternating moves Γ, in contrast, player j has the move only

once every N∆ units of time. According to Assumption 3, if player j takes an action aj , then this yields the

3Shapley (1953) establishes existence for dynamic stochastic games with simultaneous moves. To apply his result, we view the
game Γ as a dynamic stochastic game with simultaneous moves in which the players that do not have the move have no impact on
per-period payoffs and state-to-state transitions.
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payoff |J |ui,j(ω, aj)∆ = Nui,j(ω, aj)∆ and the hazard rate |J |qj(ω, aj)∆ = Nqj(ω, aj)∆. Hence, per-period

payoffs and state-to-state transitions in the game with alternating moves Γ are are comparable to those in

the game with simultaneous moves Γ.4

2.1 Examples

In the remainder of this section we discuss how prominent examples of dynamic stochastic games from the

literature can be cast as special cases of our model.

Example 1 (Entry Games and R&D Races) Consider N = 2 firms that may enter a new market. To

enter the market, firm i must complete K steps. For example, to build a cement plant and enter the market,

a firm needs to find a location, design the plant, obtain environmental permits, negotiate with contractors,

etc. Alternatively, consider an R&D race in which a firm gradually discovers an invention and obtains a

patent through a series of intermediate steps (Fudenberg, Gilbert, Stiglitz, and Tirole 1983, Grossman and

Shapiro 1987, Harris and Vickers 1987).

Let K ≥ 1 be the number of required steps and ωi ∈ Ωi = {0, 1, . . . ,K} the number of steps that firm i has

already completed. The state of the game is ω = (ω1, ω2) ∈ Ω1 × Ω2 = Ω. To take the next step, firm i can

make an investment, denoted by ai = 1, at cost ci > 0. Action ai ∈ Ai(ω) = {0, 1} induces the hazard rate

qi(ω, ai) =

 ai if ωi ≤ K − 1,

0 if ωi = K.

The transition probability is5

pi(ω
′ | ω, ai) =


1 if ω′i = ωi + 1, ω′−i = ω−i, ωi ≤ K − 1,

1 if ω′i = 0, ω′−i = ω−i, ωi = K,

0 otherwise.

Once firm i has completed all steps it enters the new market (or obtains the patent) and, depending on whether

its rival has also completed all steps, obtains the monopoly profit Bi > 0 or the duopoly profit bi with bi < Bi.

Its flow payoff is

ui,i(ω, ai) =


Bi − ciai if ωi = K,ω−i ≤ K − 1,

bi − ciai if ωi = ω−i = K,

−ciai otherwise

and ui,j(ω, aj) = 0 if j 6= i. Assumptions 2 and 3 are satisfied.

4Instead of scaling by the number of elements of the partition J in Assumption 3, we can assume that interactions occur at
time t = 0,∆/|J |, 2∆/|J |, . . . . This alternative formulation ensures that a player has the move on average once every ∆ units of
time. Our results immediately carry over.

5Note that conditional on a jump occurring we specify a transition from ωi = K to ω′i = 0 with probability one. This is
immaterial, however, because no jump occurs as qi(ω, ai) = 0 if ωi = K.
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Lippman and McCardle (1987) study the continuous-time limit of this game as ∆ → 0. Under suitable

parameter restrictions, the equilibrium is generically unique and equilibrium behavior exhibits a pattern of

increasing dominance. In standard entry games, in contrast, multiple equilibria often arise and potentially

complicate empirical research (Bresnahan and Reiss 1990, Berry 1992, Quint and Einav 2005).

Example 2 (Industry Dynamics) Ericson and Pakes (1995) develop a discrete-time model of industry

dynamics. In their model and the large literature following it (see Doraszelski and Pakes (2007) for a survey),

incumbent firms decide on investment and exit and compete in the product market; potential entrants decide

on entry. Depending on the application, firm i’s state variable ωi ∈ Ωi encodes its current product quality,

production capacity, marginal cost, etc. It further encodes whether firm i is currently an incumbent firm

that competes in the product market or a potential entrant. The state of the game is ω = (ω1, ω2, . . . , ωN ) ∈∏N
i=1 Ωi = Ω.

Incumbent firm i earns a profit πi(ω) from competing in the product market (price or quantity competition,

depending on the application) that, following the literature, we treat as a reduced-form input into the model.

While πi(ω) depends on the current state of the game ω, it does not depend on the current investment and

exit decisions. The cost of investment ci(ω, ai) as well as any cost or benefit pertaining to exit are simply

added to πi(ω). As a result, per-period payoffs are separable in the sense of Assumption 3.

In many applications of the Ericson and Pakes (1995) model, firm i has exclusive control over the evolution

of ωi through its investment, exit, and entry decisions (e.g., Besanko and Doraszelski 2004, Chen 2009,

Doraszelski and Markovich 2007). Because the decisions of firm i affect its own state variable but not its rivals’

state variables, the transition probabilities are separable in the sense of Assumption 3. In other applications,

there is in addition a common shock such as an increase in the quality of the outside good or an industry-

wide depreciation shock (e.g., Berry and Pakes 1993, Gowrisankaran 1999, Fershtman and Pakes 2000, de

Roos 2004, Markovich 2008). Assumption 3 accommodates a common shock because transitions effected by

“nature” can be subsumed into those effected by one of the players.6

Because investment may or may not result in a favorable outcome, transitions due to investment decisions

are noisy as required by Assumption 2. Transitions due to entry and exit decisions present a difficulty because

in the Ericson and Pakes (1995) model, an incumbent firm can exit the industry for sure and a potential

entrant can enter the industry for sure. Doraszelski and Judd (2012) show how to formulate exit and entry

with finite hazard rates either by way of exit and entry intensities or by way of randomly drawn, privately

observed scrap values and setup costs (as in Doraszelski and Satterthwaite 2010). Their formulation satisfies

Assumption 2.

Example 3 (Continuous-Time Stochastic Games with Moves at Random Times) Arcidiacono, Bayer,

Blevins, and Ellickson (2015) develop a continuous-time stochastic game in which a player is given the move

at random times. Decisions are asynchronous as the probability that more than one player has the move at

6One may alternatively represent nature by an extra player 0.
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a given time is zero. Ambrus and Lu (2015), Ambrus and Ishii (2015), and Calcagno, Kamada, Lovo, and

Sugaya (2014) develop closely related continuous-time stochastic games with moves at random times.

Arcidiacono, Bayer, Blevins, and Ellickson (2015) endow player i with a Poisson process with a constant

hazard rate λ. The time between jumps in this process is therefore exponentially distributed. If process i is

the first of the N processes to jump, then player i is given the move and chooses an action ai. The state of

the game then changes from ω to ω′ with probability li(ω
′ | ω, ai), with li(· | ω, ai) ∈ P(Ω).

We can formulate this process in our framework by defining the hazard rate

qi(ω, ai) = λ(1− li(ω | ω, ai))

and the transition probability7

pi(ω
′ | ω, ai) =

 1
(1−li(ω|ω,ai)) li(ω

′ | ω, ai) if ω′ 6= ω,

0 if ω′ = ω.

Finally, the flow payoff of player i is

ui,j(ω, aj) =

 si(ω) + λπi(ω, ai) if i = j,

0 if i 6= j,

where si(ω) is a baseline payoff and πi(ω, ai) an additional payoff that player i receives if he is given the

move. To account for the likelihood that player i is given the move, πi(ω, ai) is multiplied by λ in the flow

payoff. The flow payoff and transition probability in Arcidiacono, Bayer, Blevins, and Ellickson (2015) clearly

conform to Assumptions 2 and 3.

Example 4 (Dynamic Public Contribution Games) Consider N players that contribute towards com-

pleting a public project (Marx and Matthews 2000, Compte and Jehiel 2004, Georgiadis 2014). Completing

the project requires K steps and ω ∈ Ω = {0, 1, . . . ,K} indicates the number of steps that have been completed.

Player i’s contribution ai ∈ Ai(ω) ⊆ R induces a hazard rate qi(ω, ai) which is strictly increasing in ai if

ω 6= K, while qi(ω, ai) = 0 if ω = K. The transition probability is

pi(ω
′ | ω, ai) =


1 if ω′ = ω + 1, ω ≤ K − 1,

1 if ω′ = 0, ω = K,

0 otherwise.

The public project is completed once state ω = K is reached and results in flow payoffs Bi for player i. The

7If li(ω | ω, ai) = 1, then pi(· | ω, ai) can be defined arbitrarily.
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cost of contribution is ci(ω, ai) for player i. We therefore specify its flow payoff as

ui,i(ω, ai) =

 Bi − ci(ω, ai) if ω = K,

−ci(ω, ai) otherwise,

and ui,j(ω, aj) = 0 if j 6= i. Assumptions 2 and 3 are satisfied.

Example 5 (Asynchronously Repeated Games) Maskin and Tirole (1988a) and Lagunoff and Matsui

(1997) study discrete-time repeated games with asynchronous moves. Restricting Example 3 by setting N = 2,

Ω = Ω1 × Ω2, Ai(ω) = Ωi,

li(ω
′ | ω, ai) = 1 if and only if ai = ω′i,

and ui,j(ω, aj) = si(ω), we obtain a game in which the state ωi of player i is simply a record of the last chosen

action. This game is similar to the discrete-time repeated games in Maskin and Tirole (1988a) and Lagunoff

and Matsui (1997) in that changes in the payoff-relevant state do not occur at the same time. One difference

is that in Maskin and Tirole (1988a) and Lagunoff and Matsui (1997) the player who has the move is sure

that his rival has the next move, whereas in our model a player may have consecutive chances of changing

the payoff-relevant state. Yet, as Lagunoff and Matsui (1997) point out, what matters for their results is that

moves are asynchronous, “rather than the specific structure of asynchronous choice” (p. 1473).

3 Protocol-Invariance Theorem

Consider the separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >. We are interested in

exploring how the set of Markov perfect equilibria Equil(Γ) of the game Γ changes as we change the protocol

of moves < J ,P >.

We endow the set of all flow payoffs u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)| with the Lebesgue measure and say that a

property is generic if it does not hold at most on a closed subset of measure zero. In this case we say that

the property holds for almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|.

The first main result of the paper is a protocol-invariance theorem:

Theorem 1 (Protocol-Invariance Theorem) Fix p, q, and ρ. For almost all u, all < J ,P > and

< J ,P >, and all ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄ and σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >),

there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) such that ‖σ − σ‖ < ε.

In words, for any Markov perfect equilibrium σ of a game with a protocol of moves < J ,P >, the game

with another protocol < J ,P > has a Markov perfect equilibrium σ that is arbitrarily close to σ provided

that periods are sufficiently short. Theorem 1 thus shows that the set of Markov perfect equilibria of separable

dynamic games with noisy transitions is generically almost independent of the protocol of moves.

The intuition for Theorem 1 is best seen by contrasting two protocols of moves. In a game with alternating

moves, if player i has the move, then to choose an action ai he must consider the contribution ui,i(ω, ai)∆

13



to his per-period payoff that his action yields and the impact his action has on state-to-state transitions

through qi(ω, ai)pi(ω
′|ω, ai)∆ (neglecting the higher-order term O(∆2)). In the game with simultaneous

moves, two additional considerations arise. First, player i must consider how his rivals’ actions change the

contribution to his per-period payoff that his action yields and the impact his action has on state-to-state

transitions. However, because complementarities between players’ actions and other non-separabilities in per-

period payoffs and state-to-state transitions are restricted to the higher-order term O(∆2), player i can neglect

his rivals’ actions if the period length ∆ is sufficiently small. Second, player i must consider the possibility

that his rivals’ actions further change the state of the game. The probability that two or more players cause

the state to change is, however, negligible if the period length ∆ is sufficiently small. Assumption 1 finally

ensures that irrespective of the protocol of moves all players move with the same frequency over a sufficiently

large number of periods. Thus, player i faces the same tradeoff between current and future payoffs. As a

result, provided that periods are sufficiently short, the protocol of moves ceases to matter for equilibrium

behavior.

To establish Theorem 1, consider a Markov perfect equilibrium σ∆ = (σ∆
i )Ni=1 of the separable dynamic

game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >. Let V ∆
i (ω, J) be the continuation value of player i if

players J ∈ J have the move and the state is ω ∈ Ω. The discrete-time Bellman equation is

V ∆
i (ω, J) = u∆

i (ω, J, σ∆
J (ω)) + exp(−ρ∆)

∑
ω′∈Ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr (J ′|J) Pr∆

(
ω′|ω, J, σ∆

J (ω)
)
,

where the player discounts payoffs accruing in the subsequent period by exp(−ρ∆) and σ∆
J (ω) =

(
σ∆
j (ω)

)
j∈J .

Under Assumptions 2 and 3 this becomes

V ∆
i (ω, J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))∆ + exp(−ρ∆)

{ ∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)

1− |J |
∑
j∈J

qj(ω, σ
∆
j (ω))∆


+
∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)

|J |∑
j∈J

ϕj(ω
′|ω, σ∆

j (ω))∆

}+O(∆2), (3.1)

where we use the shorthand notation ϕj(ω
′ | ω, aj) = qj(ω, aj)pj(ω

′|ω, aj) and ϕj(ω
′ | ω, σj(ω)) =

∑
aj∈Aj(ω) ϕ(ω′ |

ω, aj)σj(aj | ω).

Let V ∆ =
(
V ∆
i

)N
i=1

be the profile of value functions corresponding to the Markov perfect equilibrium

σ∆. Consider a sequence (σ∆, V ∆) indexed by the period length ∆. Assuming that (σ∆, V ∆) → (σ0, V 0)

(where convergence is possibly through a subsequence ∆n) and taking the limit of equation (3.1) as ∆→ 0,

we deduce that

V 0
i (ω, J) =

∑
J′∈J

V 0
i (ω, J ′)Pr(J ′|J).

Stacking this equation for all J ∈ J yields the system of linear equations Px = x, where x is a |J |-dimensional
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column vector with entries V 0
i (ω, J). Assumption 1 implies that V 0

i (ω, J) = V 0
i (ω, J ′) for all J, J ′ ∈ J .8

This means that in equilibrium the continuation value of player i is almost independent of the identity of the

players who have the move and equals V 0
i (ω): having the move does not imply a higher or lower payoff. From

hereon, let V 0
i : Ω → R be the value function of player i and V 0 = (V 0

i )Ni=1 be the profile of value functions

in the limit as ∆→ 0.

Equation (3.1) can equivalently be written as

1

∆
V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
j∈J

∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)ϕj(ω

′|ω, σ∆
j (ω))−

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)qj(ω, σ

∆
j (ω))

+O(∆).

Summing this equation for all J ∈ J yields

1− exp (−ρ∆)

∆

∑
J∈J

V ∆
i (ω, J) = |J |

∑
J∈J

∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
J∈J

∑
j∈J

∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)ϕj(ω

′|ω, σ∆
j (ω))−

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)qj(ω, σ

∆
j (ω))

+O(∆2),

where we use the fact that, under Assumption 1,
∑
J∈J Pr(J ′|J) = 1.9 Taking the limit as ∆→ 0 yields the

continuous-time Bellman equation

ρV 0
i (ω) =

∑
J∈J

∑
j∈J

ui,j(ω, σ
0
j (ω)) +

∑
J∈J

∑
j∈J

∑
ω′ 6=ω

V 0
i (ω′)ϕj(ω

′|ω, σ0
j (ω))− V 0

i (ω)qj(ω, σ
0
j (ω))


=

N∑
j=1

ui,j(ω, σ
0
j (ω)) +

N∑
j=1

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕj(ω

′|ω, σ0
j (ω)), (3.2)

where the last inequality uses that, under Assumption 1, there exists a unique J ∈ J such that j ∈ J and

the fact that
∑
ω′ 6=ω pj(ω

′|ω, ai) = 1. Importantly, condition (3.2) is independent of the protocol of moves

< J ,P > used to pass from discrete to continuous time.

The discrete-time optimality condition for a period length of ∆ is

σ∆(ai | ω) > 0⇒

ai ∈ arg max
ãi∈Ai(ω)

u∆
i (ω, J, ãi, σ

∆
J\{i}(ω)) + exp(−ρ∆)

∑
ω′∈Ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr (J ′|J) Pr∆

(
ω′|ω, J, ãi, σ∆

J\{i}(ω)
)
.

8The vector y = (1, . . . , 1)′ is always a right eigenvector since P is stochastic. Since P is irreducible, the Perron-Frobenious
theorem implies that both the left and right eigenvectors associated to the eigenvalue 1 are unique, up to scalar multiplication. It
follows that for any solution to the system Px = x, xi = xj for all i and j.

9Recall that if the transition matrix P is irreducible and its unique stationary distribution is uniform on J , then P is doubly
stochastic.
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Since σ∆ → σ0, σ0
i (ai | ω) > 0 implies σ∆

i (ai | ω) > 0 if the period length ∆ is sufficiently small. Dividing by

∆, rearranging terms, and taking the limit as ∆ → 0 (as we did in the previous paragraph) thus yields the

continuous-time optimality condition

σ0
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (3.3)

Condition (3.3) is again independent of the protocol of moves. It formalizes the intuition that player i faces

the same tradeoff between current and future payoffs under any protocol of moves < J ,P > and that this

tradeoff is not directly affected by his rivals’ actions. Holding fixed the value of continued play, the strategic

situation that the N players face in a given state is thus akin to N independent optimization problems.

Conditions (3.2) and (3.3) are the limit as ∆→ 0 of the equilibrium conditions for the separable dynamic

game with noisy transitions Γ. We provide economic interpretations of these conditions in Section 3.1.

Here we merely observe that they impose restrictions on the limit strategy and continuation value profiles

(σ0, V 0). Noting that the limit conditions (3.2) and (3.3) may admit multiple solutions and that V 0 is entirely

determined by σ0 using condition (3.2), we denote the set of strategy profiles σ0 ∈ Σ satisfying condition

(3.3) as Equil0(< u, p, q, ρ >). This set does not depend on the protocol of moves < J ,P > used to pass to

the limit.

We summarize the above discussion in a lemma:

Lemma 1 Consider a sequence
(
σ∆
)

with σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >). If σ∆ → σ0, then σ0 ∈
Equil0(< u, p, q, ρ >).

Unfortunately, Theorem 1 cannot be established by simply taking the limit of the equilibrium conditions

as ∆ → 0 because conditions (3.2) and (3.3) may admit multiple solutions. In other words, Theorem 1

is not implied by Lemma 1 when the limit system has several solutions. To overcome this difficulty, we

use tools from differential topology to analyze the limit conditions. We first restrict attention to solutions

σ0 ∈ Equil0(< u, p, q, ρ >) that are regular. The formal definition of regularity is in the Appendix; here

we just note that σ0 is regular if it is strict, i.e., if the maximization problem in condition (3.3) admits a

unique solution. Intuitively, a regular solution σ0 can be approximated by a Markov perfect equilibrium of

a separable dynamic game with noisy transitions and an arbitrary protocol of moves if the period length ∆

is sufficiently small. The key technical point is that for almost all flow payoffs u, the restriction to regular

solutions is without loss of generality.

Lemma 2 Fix p, q, and ρ. For almost all u, all σ0 ∈ Equil0(< u, p, q, ρ >), all < J ,P >, and all ε > 0, there

exists ∆̄ > 0 such that for all ∆ < ∆̄, there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) such that ||σ − σ0|| < ε.

The proof of Lemma 2 draws on ideas in Harsanyi (1973a, 1973b) and Doraszelski and Escobar (2010).

We note that the results in Doraszelski and Escobar (2010) do not directly apply because separable dynamic

games with noisy transitions restrict per-period payoffs and state-to-state transitions and are therefore a
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subset of measure zero of the dynamic stochastic games considered in Doraszelski and Escobar (2010).

Lemmas 1 and 2 combine to yield Theorem 1. Our proofs also show that Equil0(< u, p, q, ρ >) consists of

a finite number of isolated solutions. This generalizes results on the generic finiteness of the set of Markov

perfect equilibria in Haller and Lagunoff (2000) and Doraszelski and Escobar (2010) to continuous-time

stochastic games.

3.1 Interpretations of Limit Conditions

We offer two economic interpretations of the limit conditions (3.2) and (3.3). First, they can be interpreted

as the equilibrium conditions for a continuous-time stochastic game along the lines of Doraszelski and Judd

(2012). In this game, the state follows a continuous-time Markov process that players can influence through

their actions. Properly defining mixed strategies in continuous time is, however, subtle because it requires

working with a continuum of independent and identically distributed random variables that satisfy a law of

large numbers. As in Bolton and Harris (1999), we can use time to “purify” these strategies and avoid the

continuum of independent and identically distributed random variables. Beyond this observation, we follow

the literature and alert the reader that a rigorous foundation for mixed strategies in continuous time is an

open problem (Bolton and Harris 1999, Faingold and Sannikov 2011).

Second, the limit conditions (3.2) and (3.3) can be interpreted as the equilibrium conditions for a dynamic

stochastic game with random moves. The following construction, known as uniformization (Serfozo 1979),

is adapted from single-agent decision problems. Fix any B > N maxj=1,...,N,ω∈Ω,aj∈Aj(ω) qj(ω, aj). Define

the per-period payoff ũi,j(ω, aj) = N
ρ+Bui,j(ω, aj), the discount factor β = B

ρ+B < 1, and the transition

probability

ϕ̃j(ω
′ | ω, aj) =

 N
Bϕj(ω

′ | ω, aj) if ω′ 6= ω,

1− N
B qj(ω, aj) if ω′ = ω.

Note that ϕ̃j(· | ω, aj) ∈ P(Ω) by construction of B. Now formulate a dynamic stochastic game with random

moves in which in any period one player j ∈ {1, . . . , N} is randomly and uniformly selected to make a decision

aj ∈ Aj(ω). Each player strives to maximize the expected net present value of his stream of payoffs and

discounts future payoffs using the discount factor β. Denote by EquilR(ũ, ϕ̃, β) the set of Markov perfect

equilibria of this game.

The following proposition shows that the Markov perfect equilibria of the dynamic stochastic game with

random moves constructed above are the solutions of the limit conditions (3.2) and (3.3):

Proposition 1 EquilR (< ũ, ϕ̃, β >) = Equil0 (< u, p, q, ρ >).

The proof of Proposition 1 is simple and illustrative. The equilibrium conditions for σ ∈ EquilR(<

ũ, ϕ̃, β >) are

Vi(ω) =

N∑
j=1

1

N

(
ũi,j(ω, σj(ω)) + β

∑
ω′∈Ω

Vi(ω)ϕ̃j(ω
′ | ω, σj(ω))

)
(3.4)
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and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

ũi,i(ω, ãi) + β
∑
ω′∈Ω

Vi(ω
′)ϕ̃i(ω

′ | ω, ãi). (3.5)

These conditions can be equivalently written as

Vi(ω) =

N∑
j=1

1

N

 N

ρ+B
ui,j(ω, σj(ω)) +

B

ρ+B

∑
ω′ 6=ω

Vi(ω
′)
N

B
ϕj(ω

′ | ω, σj(ω)) + (1− N

B
qj(ω, σj(ω))Vi(w))


and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

N

ρ+B
ui,i(ω, ãi)+

B

ρ+B

∑
ω′ 6=ω

Vi(ω
′)
N

B
ϕi(ω

′ | ω, ãi) + (1− N

B
qi(ω, ãi)Vi(w))

 .

Rearranging terms, the limit conditions (3.2) and (3.3) are therefore identical to the equilibrium conditions

(3.4) and (3.5) for the dynamic stochastic game with random moves constructed above.

While dynamic stochastic games with random moves are sparsely used, several important papers study

repeated games with alternating moves. For example, Maskin and Tirole (1988a) explore a repeated Bertrand

game with alternating moves and show how Edgeworth cycles can arise. Lagunoff and Matsui (1997) show

how players can coordinate on the efficient outcome in a dynamic coordination game with alternating moves.

These results are driven by the fact that a player remains committed to his previously chosen action over

a stretch of time. The dynamic stochastic game with random moves constructed above shares this feature.

Similarly rich dynamic phenomena thus appear in the continuous-time stochastic game that we obtain as

we pass to the limit and, by Theorem 1, in separable dynamic games with noisy transitions and arbitrary

protocols of moves provided that periods are sufficiently short.

3.2 Discussion of Assumptions

To illustrate the tightness of our assumptions, we provide a series of examples showing that protocol invariance

may fail if any one of them is relaxed.

Example 6 (Separability) The literature provides a number of examples in which complementarities be-

tween players’ actions and other non-separabilities in per-period payoffs preclude protocol invariance. Our

example with non-separable per-period payoffs is inspired by Lagunoff and Matsui (1997) and Wen (2002).

In the Online Appendix we present a closely related example with non-separable state-to-state transitions.

Consider a coordination game with the following payoff matrix:

E O

E 2, 2 0, 0

O 0, 0 1, 1

Denote by b(a) = (b1(a), b2(a)) the payoff profile given the action profile a = (a1, a2) ∈ {E,O}2.
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We construct a dynamic stochastic game with a trivial state space |Ω| = 1 (that we omit along with

specifying the transition probability) and contrast the set of Markov perfect equilibria under simultaneous and

alternating moves. In the game with simultaneous moves, the per-period payoff of player i is u∆
i (ω, {1, 2}, a) =

bi(a)∆. Irrespective of the period length ∆, there are two Markov perfect equilibria, namely σ1(E) = σ2(E) = 1

and σ̃1(O) = σ2(O) = 1.

In the game with alternating moves, in violation of Assumption 3 the per-period payoff of player i is

u∆
i (ω, {1}, a1) = 0 and u∆

i (ω, {2}, a) = bi(a)∆, meaning that payoffs “materialize” after player 2 moves.

Since player 1’s action a1 is payoff relevant for player 2, a Markovian strategy for player 2 includes a1 as a

state variable. Irrespective of the period length ∆, the unique Markov perfect equilibrium is σ1(E) = 1 and

σ2(a1 | a1) = 1 for a1 ∈ {E,O}.

Example 7 (Noisy Transitions) Consider the entry game in Example 1 with K = 1. We further restrict

bi < 0 so that a duopolist incurs a loss.

We change Example 1 by assuming that if firm i takes action ai = 1, then its state changes for sure from

ωi = 0 to ω′i = 1. Irrespective of the protocol of moves, given a set of players J ⊆ {1, 2} who have the move,

the transition probability takes the form

Pr∆(ω′ | ω, J, aJ) =


1 if ω′J = aJ , ω = (0, 0),

1 if ω′ = ω, ωi = 1 for some i,

0 otherwise,

and does not satisfy Assumption 2. In the game with alternating moves, if ∆ is sufficiently small, then the

unique Markov perfect equilibrium outcome is that the firm that moves first enters whereas its rival never

enters. In contrast, in the game with simultaneous moves, there exists a Markov perfect equilibrium in which

both firms enter with positive probability.10

Finally, we show that protocol invariance does not extend beyond Markov perfect equilibria to more general

equilibrium concepts. For a separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >, we

say that a strategy σTi for player i has finite memory T ≥ 0 if σTi (h) = σTi (h̃) for any two histories h and h̃

(perhaps of different length) that coincide in the current state and the outcomes of the previous T rounds of

interactions between players. If T = 0, then we recover the definition of a stationary Markovian strategy in

Section 2.

10Iskhakov, Rust, and Schjerning (2016) study an investment game that satisfies Assumption 3. Contrary to Assumption 2,
however, by investing a firm can guarantee increasing its capital stock by exactly one unit. Iskhakov, Rust, and Schjerning (2016)
show that their game with alternating moves has a unique Markov perfect equilibrium whereas they find an enormous number of
equilibria in the game with simultaneous moves. There is also a well-known literature drawing subtle connections between discrete-
and continuous-time stochastic games with infinite hazard rates (Fudenberg and Tirole 1985, Simon and Stinchcombe 1989).
Fudenberg and Tirole (1985), in particular, show that passing to the limit is non-trivial in games with infinite hazard rates even if
strategies are restricted to be Markovian.
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Example 8 (Markov Perfect Equilibrium) Consider a partnership game and construct a separable dy-

namic game with noisy transitions and a trivial state space (that we again omit). There are N = 2 players.

The set of actions of player i is Ai = {0, 1}, his flow payoff is

ui,j(aj) =

 −aj if j = i,

2aj if j 6= i,

and the discount rate is ρ. Irrespective of the protocol of moves < J ,P > and the period length ∆, the unique

Markov perfect equilibrium of this game is σ1(0) = σ2(0) = 1 and has players repeating (0, 0).

We show that this not the case for strict subgame perfect equilibria in finite memory strategies. In the

game with simultaneous moves, consider a finite memory strategy σTi with T ≥ 1 for player i such that player

i chooses ati = 1 in period t if t = 0 or if the players have chosen the same action over the last min{T, t}
rounds: at̃1 = at̃2 for all t̃ ∈ {t− 1, . . . , t−min{t, T}}. The strategy profile σT = (σT1 , σ

T
2 ) is a strict subgame

perfect equilibrium if 1−e−ρ∆T
1−e−ρ∆ > eρ∆. This condition holds if T ≥ 2 and the period length ∆ is sufficiently

small. Hence, there exists a strict subgame perfect equilibrium in finite memory strategies in which players

repeatedly play (1, 1).

Turning to the game with alternating moves, consider a finite memory strategy σTi with T ≥ 1 for player

i. We argue that for any strategy profile σT to be a strict subgame perfect equilibrium it must be a Markov

perfect equilibrium. Hence, the unique strict subgame perfect equilibrium in finite memory strategies is the

Markov perfect equilibrium in which players repeat (0, 0).

To complete the argument, suppose player i moves in round t. Because player −i moves after player i and

conditions his decision on the previous T periods of interactions, the continuation value of player i depends

on ati and the previous T −1 periods of interactions. The current payoff of player i moreover depends only on

ati. Since σT is a strict subgame perfect equilibrium, the maximization problem of player i admits a unique

solution which depends, at most, on the previous T − 1 rounds of interactions. This means that σTi actually

conditions on the previous T − 1 periods of interactions. Continuing iteratively, we deduce that the strategy

profile σT cannot condition on any previous interactions.

4 Complexity Theorem

The limit conditions (3.2) and (3.3) are analytically more tractable than the equilibrium conditions for the

separable dynamic game with noisy transitions from which they are derived. This allows us to characterize

the solutions to the limit conditions in more detail and to use Theorem 1 to extend this characterization to

separable dynamic games with noisy transitions and frequent moves.

The following lemma shows that the solutions to the limit conditions (3.2) and (3.3) have a remarkably

simple structure.
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Lemma 3 Fix p, q, and ρ. For almost all u, all σ ∈ Equil0(< u, p, q, ρ >), all i, and all ω, σi(· | ω) puts

positive probability on at most N actions.

The proof of Lemma 3 adapts and extends some results for so-called additive-reward, additive-transition

dynamic stochastic games (Raghavan, Tijs, and Vrieze 1985). While Lemma 3 bounds the complexity of

mixed strategies, in the Online Appendix we provide an example showing that the limit conditions (3.2) and

(3.3) in general may not admit a solution in pure strategies.

The proof of Lemma 3 proceeds by contradiction. Note that a player’s strategy determines his rivals’

expected continuation values in a given state as a convex combination of the finite number of the continuation

values associated with the actions that the player chooses with positive probability. Because of Assumption 3,

some actions can be dispensed with if the player randomizes over more than N actions without affecting his

rivals’ expected continuation values. We can therefore construct a new solution to the limit conditions (3.2)

and (3.3) which puts positive probability on a smaller number of actions. But this new solution cannot be

regular because at least one player uses some but not all of his best replies. Lemma 3 follows by noting that

generically all solutions are regular, as established in Section 3.

Lemma 3 and Theorem 1 combine to yield the second main result of the paper:

Theorem 2 (Complexity Theorem) Fix p, q, and ρ. For almost all u, there exists ∆̄ > 0 such that for

all ∆ < ∆̄, for any σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >), all i, and all ω, σ∆
i (· | ω) puts positive probability on

at most N actions.

We note that Theorem 2 applies although the separable dynamic game with noisy transitions< ∆,J ,P, u, p, q, ρ >
may admit complementarities between players’ actions and other non-separabilities in the higher-order term

O(∆2) that make a direct proof difficult. This again shows the usefulness of the limit conditions (3.2) and

(3.3).

Theorem 2 may be contrasted with a result for discrete-time repeated games with alternating moves in

Haller and Lagunoff (2010). Haller and Lagunoff (2010) show that these games generically do not possess

completely mixed Markov perfect equilibria. As Example 5 shows, asynchronously repeated games are a

special case of our model. When |Ai(ω)| ≥ 3 for all i and all ω, our Theorem 2 is sharper than Haller and

Lagunoff’s (2010) result because it shows that for a broader class of two-player dynamic models, irrespective

of the protocol of moves, all Markov perfect equilibria are not completely mixed and put (strictly) positive

weight on at most two actions per state.11

11To be clear, the Haller and Lagunoff’s (2010) result is not a corollary to Theorem 2 because of the differences between the
models discussed in Example 5.
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5 Applications and Extensions

5.1 Justification of Markov Perfect Equilibria

We apply our main results to provide a new justification for focusing on Markov perfect equilibria in a class

of dynamic stochastic games. Provided that periods are sufficiently short and a robustness requirement is

imposed, we show that the set of Markov perfect equilibrium payoffs in separable dynamic games with noisy

transitions and simultaneous moves almost coincides with the set of payoffs that can be attained under more

general equilibrium concepts.

We focus on strict subgame perfect equilibria in finite memory strategies. By definition, a strict equilibrium

involves only pure strategies. Strictness is a natural robustness requirement. In repeated public monitoring

games only strict subgame perfect equilibria in finite memory strategies are robust to private monitoring

(Mailath and Morris 2002, Mailath and Samuelson 2006, Bhaskar, Mailath, and Morris 2013). Equilibria

that fail to be strict are also fragile to perturbations of payoffs and information (Harsanyi 1973a, Harsanyi

1973b, Doraszelski and Escobar 2010).

As we change the protocol of moves < J ,P > of a separable dynamic game with noisy transitions

Γ =< ∆,J ,P, u, p, q, ρ >, the sets of histories change and are therefore difficult to compare. To circumvent

this difficulty, we explore how the set of payoff profiles PayoffsF (Γ) ⊆ RN associated with strict subgame

perfect equilibria in finite memory strategies changes as we change the protocol of moves. We also define the

set of payoff profiles PayoffsM (Γ) ⊆ RN corresponding to the set of Markovian perfect equilibria Equil(Γ).

Let Γsim =< ∆,J sim,Psim, u, p, q, ρ > denote a separable dynamic game with noisy transitions un-

der a protocol of simultaneous moves < J sim,Psim >, with J sim = {{1, . . . , N}}. We say that the

payoff profile v ∈ PayoffsF (Γsim) is approachable if for all ε > 0 there exists some protocol of asyn-

chronous moves < J asy,Pasy >, with J asy = {{1}, {2}, . . . , {N}}, and a payoff profile w ∈ PayoffsF (<

∆,J asy,Pasy, u, p, q, ρ >) such that ‖v − w‖ < ε. In words, focusing on strict subgame perfect equilibria in

finite memory strategies, an equilibrium payoff profile of the game with simultaneous moves is approachable

if there exists a nearby equilibrium payoff profile of the game for some asynchronous protocol of moves. An

approachable equilibrium payoff profile can therefore be obtained as a limit of equilibrium payoffs of games

with asynchronous moves.

The following proposition shows that an approachable equilibrium payoff profile of the game with simul-

taneous moves almost coincides with a payoff profile corresponding to a Markov perfect equilibrium provided

that periods are sufficiently short:

Proposition 2 Fix p, q, and ρ. For almost all u, and all ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄,

if v ∈ PayoffsF (Γsim) is approachable, then there exists w ∈ PayoffsM (Γsim) such that ‖v − w‖ < ε.

Proposition 2 shows that generically any approachable equilibrium payoff profile of a separable dynamic

game with noisy transition and simultaneous moves can be approximated by Markov perfect equilibrium payoff

profile provide that periods are sufficiently short. This means that there is virtually no loss in restricting
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attention to Markov perfect equilibria and thus Proposition 2 provides a rationale for focusing on Markov

perfect equilibria in separable dynamic games with noisy transitions and simultaneous moves.

To prove Proposition 2, we build on related results for dynamic stochastic games with asynchronous

moves by Bhaskar and Vega-Redondo (2002) and Bhaskar, Mailath, and Morris (2009) and combine them

with our Theorem 1. The proof of Proposition 2 draws on the insight from Example 8 that while some payoff

profiles can be attained with strict subgame perfect equilibria in finite memory strategies when moves are

simultaneous, these payoff profiles cannot be attained when moves are alternating.

Proposition 2 complements several arguments in favor of Markov perfect equilibria given for a variety of

dynamic models (Maskin and Tirole 2001, Bhaskar and Vega-Redondo 2002, Bhaskar, Mailath, and Morris

2013, Bohren 2014). Our approachability restriction is conceptually similar to the purifiability restriction

in Bhaskar, Mailath, and Morris (2013) in that both are robustness requirements: approachability says

that equilibrium payoffs should survive changes in the protocol of moves, whereas purifiability says that

equilibrium strategies should survive the introduction of private information. We show that only Markov

perfect equilibria are approachable in our separable dynamic games with noisy transitions and simultaneous

moves, whereas Bhaskar, Mailath, and Morris (2013) show that only Markov perfect equilibria are purifiable

in dynamic stochastic games with asynchronous moves.

Proposition 2 also puts limits on possible extensions of Theorem 1. Indeed, by showing that an equilibrium

payoff that is robust to alternative specifications of the protocol of moves must be a Markov perfect equilibrium

payoff, Proposition 2 implies that restricting to Markov perfect equilibria is not only sufficient (as shown in

Theorem 1) but also necessary for a protocol-invariance theorem.12

5.2 Computation of Markov Perfect Equilibria

Dynamic stochastic games are often not very tractable analytically and thus call for the use of numerical

methods. Our main results have a number of implications for computing Markov perfect equilibria.

First, Doraszelski and Judd (2007) show that the computational burden can vary by orders of magnitude

with the protocol of moves. For separable dynamic games with noisy transitions and frequent moves, protocol

invariance justifies imposing the protocol of moves that is most convenient from a computational perspective.

Second, Assumption 3 facilitates numerically solving the limit conditions (3.2) and (3.3) that arise as we

pass from discrete to continuous time. Recall that holding fixed the value of continued play, the strategic

situation that the N players face in a given state is akin to N independent optimization problems. Without

Assumption 3, the strategic situation is, in contrast, akin to a normal-form game with N players that is

harder to solve than N independent optimization problems (see McKelvey and McLennan (1996) and the

12Note, however, that Proposition 2 applies only when strategies have finite memory. In the tightly specified model in Example
8, under arbitrary protocols of moves there exists a subgame perfect equilibrium with unbounded memory in which ati = 1 for all
i and after all on-path histories. Without restrictions on strategies, the properties of the set of equilibrium payoffs as ∆ → 0 are
generally not well understood in the literature. The existing results consider either the limit ∆→ 0 with simultaneous moves (Peski
and Wiseman 2015) or the limit ρ→ 0 (Dutta 1995, Yoon 2001, Hörner, Sugaya, Takahashi, and Vieille 2011).
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references therein). Our main results justify solving the limit conditions (3.2) and (3.3) by showing that

their solutions almost coincide with the Markov perfect equilibria of separable dynamic games with noisy

transitions and arbitrary protocols of moves provided that periods are sufficiently short.

Third, Doraszelski and Judd (2012) contrast the burden of computing Markov perfect equilibria in discrete-

and continuous-time stochastic games with simultaneous moves. They argue that, under widely used laws of

motion for the evolution of the state, computing the expectation over successor states ω′ in a continuous-time

stochastic game does not suffer from the curse of dimensionality that plagues the discrete-time stochastic

game, and that this can reduce the computational burden by orders of magnitude. Even without Assump-

tion 3, the techniques we develop allow us to clarify the relationship between discrete- and continuous-time

stochastic games.

Consider a dynamic stochastic game with noisy transitions and simultaneous moves. The per-period payoff

is u∆
i (ω, {1, . . . , N}, a) = ui(ω, a)∆ + O(∆2). Hence, while Assumptions 1 and 2 are satisfied, Assumption

3 is not. Overloading notation, let Equil(〈∆, u, p, q, ρ〉) be the set of Markov perfect equilibria of this game.

Analogously, let Equil0(〈u, p, q, ρ 〉) be the set of solutions to the limit conditions (3.2) and (3.3).13

Proposition 3 Fix p, q, and ρ. For almost all u, lim∆→0 Equil(〈∆, u, p, q, ρ〉) = Equil0(〈u, p, q, ρ〉).

In words, provided that periods are sufficiently short the Markov perfect equilibria of the discrete-time

stochastic game with simultaneous moves almost coincide with those of the continuous-time stochastic game,

although the latter are much easier to compute than the former. We note that Proposition 3 does not carry

over from simultaneous to alternating moves. We also note that with a continuum of actions, a version of

Proposition 3 (and of Theorem 1) can be obtained by considering approximate equilibria as in Fudenberg

and Levine (1986).

5.3 Games with Infinite Hazard Rates and Frequent Moves

We apply and extend our main results to shed light on the numerous examples in the literature in which the

protocol of moves matters crucially for equilibrium behavior. We use the canonical model of Lagunoff and

Matsui (1997) to expose a discontinuity in the set of Markov perfect equilibria as hazard rates become large

and moves become frequent.

Consider a two-player game as the one in Example 5. The set of states is Ω = Ω1 × Ω2, with |Ωi| ≥ 2

for all i. The set of actions of player i is Ai(ω) = Ωi. We now assume that the flow payoffs of the players

coincide:

si(ω, aj) =
1

2
π(ω).

13Given a sequence (Aν) indexed by ν ∈ N, with Aν ⊆ Rn, we define

lim inf
ν→∞

Aν = {x ∈ Rn | lim sup
ν→∞

d(x,Aν) = 0} and lim sup
ν→∞

Aν = {x ∈ Rn | lim inf
ν→∞

d(x,Aν) = 0},

where d(x,A) = inf {‖y − x‖ | y ∈ A}. If both limits coincide, we denote their common value by limν→∞Aν .
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Denote ω∗ = arg maxω∈Ω π(ω) and assume it is unique. Use the function π : Ω → R to define the payoff

matrix of a normal-form game in which players simultaneously choose actions ai ∈ Ωi. We assume that this

normal-form game has a Nash equilibrium ωNE such that ωNEi 6= ω∗i for all i. Because ω∗ is the unique

maximizer of the function π, ω∗ is also a Nash equilibrium. An example of such game is the payoff matrix

in Example 6 with Ωi = {E,O} and π(E,E) = 2, π(O,O) = 1, and π(ω) = 0 otherwise. In this example,

ω∗ = (E,E) and ωNE = (O,O).

Our Theorem 1 shows that irrespective of the protocol of moves < J ,P >, the set of Markov perfect equi-

libria Equil(< ∆,J ,P, u, p, q, ρ >) converges to Equil0(< u, p, q, ρ >) as ∆→ 0. We can further characterize

the limit as λ→∞:

Proposition 4 There exists a strategy profile σ∗ such that

lim
λ→∞

Equil0(< u, p, q, ρ >) = lim
λ→∞

lim
∆→0

Equil(< ∆,J ,P, u, p, q, ρ >) = {σ∗}.

Moreover, σ∗i (ω) = ω∗i for all i and all ω.

Up to the fact that the limit as ∆ → 0 is a continuous-time stochastic game, the logic of Proposition 4

follows from Lagunoff and Matsui (1997). Note that if player i’s state is ωi = ω∗i , then player −i has an

incentive to choose a−i = ω∗−i to obtain π(ω∗). In a given state ω, player i thus knows that if his state

changes to ω∗i , then his rival will switch to action a−i = ω∗−i relatively soon as long as λ is sufficiently large.

The unique limit solution is therefore σ∗.

Proposition 4 shows that when the hazard rate goes to infinite, the set of Markov perfect equilibria does

not depend on the protocol of moves if moves are frequent. This seemingly contradicts the celebrated results

in Maskin and Tirole (1988a) and Lagunoff and Matsui (1997) that the set of Markov perfect equilibria

depends critically on the protocol of moves when hazard rate are infinite.

The explanation is that there is a discontinuity in the joint limit as λ → ∞ and ∆ → 0. Hence, caution

is warranted in working with games with infinite hazard rates and arbitrarily frequent moves, as the order

of limits matters. To establish the discontinuity, consider a protocol of simultaneous moves < J sim,Psim >.

Imposing λ∆ = 1, players determine the state with probability one when they move. It is relatively simple

to show that

{σ∗, σNE} ⊆ Equil(< ∆,J sim,Psim, u, p, q, ρ >),

where σNEi (ω) = ωNEi for all i and all ω. Intuitively, if λ∆ = 1, then players can coordinate on one of the

two Nash equilibria ωNE and ω∗. We conclude that

lim
λ→∞

lim
∆→0

Equil(< ∆,J ,P, u, p, q, ρ >) ( lim inf
λ∆=1,∆→0

Equil(< ∆,J sim,Psim, u, p, q, ρ >).

Moreover, the limit of the set of Markov perfect equilibria as ∆→ 0 keeping λ∆ constant depends on the

protocol of moves, in line with Maskin and Tirole (1988a) and Lagunoff and Matsui (1997). To illustrate,
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consider a protocol of alternating moves < J alt,Palt >. Imposing λ∆ = 1/2, a player determines his state

with probability one when he moves.14 From Theorem 1 in Lagunoff and Matsui (1997), if the period length

∆ is sufficiently small, then15

Equil(< ∆,J alt,Palt, u, p, q, ρ >) = {σ∗}.

This implies that

lim
λ∆=1/2,∆→0

Equil(< ∆,J alt,Palt, u, p, q, ρ >) ( lim inf
λ∆=1,∆→∞

Equil(< ∆,J sim,Psim, u, p, q, ρ >).

In this sense, the results in Maskin and Tirole (1988a) and Lagunoff and Matsui (1997) can be obtained by

taking the joint limit λ∆→ 1 and ∆→ 0, but this is just one out of many ways of taking the joint limit in

our setting.

6 Conclusions

The timing of decisions is an essential ingredient into modeling many strategic situations. Yet, determining

the protocol of moves that is most realistic and appropriate for the application at hand can be challenging.

While the literature abounds with examples in which the protocol of moves matters crucially for equilibrium

behavior, our paper is a first attempt to show that the implications and predictions of a fairly general and

widely used class of dynamic models are independent of the timing of decisions and thus more robust for the

purposes of applied work.

In particular, we introduce separable dynamic games with noisy transitions and establish that they are

protocol invariant provided that periods are sufficiently short and moves are therefore sufficiently frequent.

Protocol invariance means that the set of Markov perfect equilibria of these games is nearly the same ir-

respective of the order in which players are assumed to move within a period, including—and extending

beyond—simultaneous, alternating, and sequential moves. We also show that the Markov perfect equilibria

of separable dynamic stochastic games with noisy transitions have a remarkably simple structure.

In addition to alleviating the burden of determining the most realistic and appropriate protocol of moves,

our main results have a number of implications for applied work. They provide a new justification for focusing

on Markov perfect equilibria in dynamic stochastic games and facilitate computing these equilibria. They

further point to a discontinuity in the set of Markov perfect equilibria as hazard rates become large and

moves become frequent, thereby shedding light on the examples in the literature in which the protocol of

moves matters crucially for equilibrium behavior.

14Recall from Assumption 3 that the hazard rates are scaled by |J |. This is the reason we take λ∆ = 1 with simultaneous moves
and λ∆ = 1/2 with alternating moves.

15The restriction to a discount factor close to one in Lagunoff and Matsui (1997) translates into a period length ∆ close to zero
in our setting.
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Appendix

This Appendix consists of three parts. Appendix A.1 provides the proof of Theorem 1, Appendix A.2 provides

the proof of Theorem 2, and Appendix A.3 provides the proofs for Section 5.

A.1 Proof of Theorem 1

A.1.1 Notation and Preliminary Definitions

Enumerate the state space as Ω = {ω1, . . . , ω|Ω|} and the set of actions for player i asAi(ω) =
{
a1
i , . . . , a

|Ai(ω)|
i

}
.

Given a strategy profile σ = (σi)
N
i=1 ∈ Σ, define the matrix Pσ ∈ R|Ω|×

∑
ω∈Ω

∑N
i=1|Ai(ω)| as

σ1(a1
1 | ω1) . . . σ1(a

|A1(ω)|
1 | ω1) σ2(a1

2 | ω1) . . . σN (a
|AN (ω)|
N | ω1) 0 . . . 0 . . .

0 . . . . . . σ1(a1
1 | ω2) . . . σN (a

|AN (ω)|
N | ω2) . . .

0 . . . . . . . . . . . .

 .

Define the matrix Q ∈ R
∑
ω∈Ω

∑N
i=1|Ai(ω)|×|Ω| as

q1(a1, ω
1) 0 . . .

...

q1(a
|A1(ω)|
1 , ω1) 0 . . .

...

qN (a
|AN (ω)|
N , ω1) 0

0 q1(a1, ω
2) 0 . . .

...
...


and the matrix P ∈ R

∑
ω∈Ω

∑N
i=1|Ai(ω)|×|Ω| as

P(i,ai,ω),ω′ =

 ϕi(ω
′ | ai, ω) if ω′ 6= ω,

0 if ω′ = ω.

Given a player i ∈ {1, . . . , N}, limit condition (3.2) can be written as

(
ρ1 + Pσ(Q− P )

)
V 0
i = Pσui,

where 1 is the identity matrix, V 0
i ∈ R|Ω|, and ui ∈ R

∑N
j=1

∑
ω∈Ω|Aj(ω)|. The matrix ρ1+Pσ(Q−P ) is strictly

dominant diagonal and therefore invertible.16 We emphasize the dependence of the unique solution to limit

condition (3.2) by writing V 0
i (·) = V 0

i (·, σ). This solution is

V 0
i (·, σ) =

(
ρ1 + Pσ(Q− P )

)−1

Pσui.

16A strictly dominant diagonal matrix X is a square matrix with entries Xij such that |Xii| >
∑
j 6=i|Xij | for all i.
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Given i ∈ {1, . . . , N} and ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)|, consider the vector

ui + (P −Q)V 0
i (·, σ) = ui + (P −Q) (ρ1 + Pσ(Q− P ))

−1 Pσui

= ui + (P −Q)
1

ρ

(
1− 1

ρ
Pσ(Q− P ) +

1

ρ2
(Pσ(Q− P ))2 . . .

)
Pσui

=

(
1− 1

ρ
(Q− P )Pσ +

1

ρ2
((Q− P )Pσ)2 − 1

ρ3
((Q− P )Pσ)3 + . . .

)
ui

=

(
1 +

1

ρ
(P −Q)Pσ

)−1

ui,

where the inversion is justified by strict diagonal dominance. The map

ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)| 7→

(
1 +

1

ρ
(P −Q)Pσ

)−1

ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)|

is invertible.

The above results have been presented for a given strategy profile σ ∈ Σ. Following Appendix A.1 in

Doraszelski and Escobar (2010), we construct an open set Σε ⊂ R
∑N
j=1

∑
ω∈Ω|Aj(ω)| that strictly contains Σ

such that all the preceding operations are valid for any σ ∈ Σε.

A.1.2 Regularity

We begin by providing a formal definition of regularity and establishing the key technical point that for almost

all flow payoffs u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, the restriction to regular solutions is without loss of generality.

Given i ∈ {1, . . . , N}, ω ∈ Ω, ai ∈ Ai(ω), and σ ∈ Σε, define the function

Ui(ω, ai, σ) = ui,i(ω, ai) +
∑
ω′ 6=ω

(
V 0
i (ω′, σ)− V 0

i (ω, σ)
)
ϕi(ω

′ | ω, ai).

In light of limit condition (3.3), we interpret Ui(ai, ω, σ) as the objective function that player i ∈ {1, . . . , N}
maximizes over ai ∈ Ai(ω) given state ω ∈ Ω and continuation play σ ∈ Σε.

Consider σ̄ ∈ Equil0(< u, p, q, ρ >). Choose aωi such that σ̄i(a
ω
i | ω) > 0 for all i ∈ {1, . . . , N} and all

ω ∈ Ω. Given ai 6= aωi and σ ∈ Σε, define

fi,ai,ω(σ) = σi(ai | ω)
(
Ui(ai, ω, σ)− Ui(aωi , ω, σ)

)
while

fi,aωi ,ω(σ) =
∑

ai∈Ai(ω)

σi(ai | ω)− 1.

By definition, f(σ̄) = 0. In this subsection, we sometimes emphasize the dependence of f on u by writing

f(σ, u). Note that f : Σε × RN
∑
ω∈Ω

∑N
i=1|Ai(ω)| → R

∑
ω∈Ω

∑N
i=1|Ai(ω)| is continuously differentiable.
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Definition 1 σ̄ ∈ Equil0(< u, p, q, ρ >) is regular if the Jacobian of f with respect to σ, ∂f
∂σ (σ̄), has full rank∑N

j=1

∑
ω∈Ω|Aj(ω)|.

We present two preliminary lemmas. We say that a strategy profile σ ∈ Σε is completely mixed if

σi(ai | ω) > 0 for all i ∈ {1, . . . , N}, ω ∈ Ω, and all ai ∈ Ai(ω).

Lemma 4 If σ ∈ Σε is completely mixed, then the Jacobian of f with respect to (σ, u), ∂f
∂(σ,u) (σ, u), has full

rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|.

Proof. Define the matrix M(σ, i) ∈ R
∑
ω∈Ω(|Ai(ω)|−1)×

∑N
j=1

∑
ω∈Ω|Aj(ω)| such that, for all ai 6= āωi , its

(i, ai, ω) row equals 0 in all components save for the (i, ai, ω) column, where we write σi(ai | ω), and for the

(i, aωi , ω) column, where we write −σi(ai | ω). The function f can be expressed as

fi(σ, u) =



∑
ai∈Ai(ω) σi(ai | ω1)− 1,

...∑
ai∈Ai(ω) σi(ai | ω|Ω|)− 1,

M(σ, i)
(
1 + 1

ρ (P −Q)Pσ
)−1

ui.

Up to permutation (which are irrelevant to determine the rank of the Jacobian), we can write

∂f(σ, u)

∂(σ, u)
=



σ1 σ2 . . . σN u1 u2 . . . uN

X1 0 0 0 0 0 . . . 0

0 X2 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 0 XN 0 0 . . . 0

Z1 0 . . . 0

0 Z2 . . . 0

Y1 Y2 . . . YN
...

...
. . .

...

0 0 . . . ZN



,

where Xi equals



σi(· | ω1) σi(· | ω2) . . . σi(· | ω|Ω|)

1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



and has rank |Ω|, while Zi = M(σ, i)
(
1 + 1

ρ (P − Q)Pσ
)−1

. Since M(σ, i) has full rank
∑
ω∈Ω(|Ai(ω)| − 1)
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and (1+ 1
ρ (P −Q)Pσ)−1 has full rank

∑
ω∈Ω

∑N
j=1|Aj(ω)|, Zi has rank

∑
ω∈Ω(|Ai(ω)| − 1). We deduce that

the Jacobian has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)| and the lemma follows.

Given σ ∈ Σ, i ∈ {1, . . . , N}, and ω ∈ Ω, define the best reply as

Bi(σ, ω) = arg max
ai∈Ai(ω)

Ui(ω, ai, σ)

and the carrier as

Ci(σ, ω) =
{
ai ∈ Ai(ω) | σi(ai | ω) > 0

}
.

Using this notation, σ ∈ Equil0(< u, p, q, ρ >) if and only if Ci(σ, ω) ⊆ Bi(σ, ω) for all i ∈ {1, . . . , N}. We

say that σ ∈ Equil0(< u, p, q, ρ >) is quasi-strict if Ci(σ, ω) = Bi(σ, ω) for all i ∈ {1, . . . , N}.

Lemma 5 For almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, any σ ∈ Equil0(< u, p, q, ρ >) is quasi-strict.

Proof. Given i ∈ {1, . . . , N}, consider correspondences B∗i : Ω → ∪ω∈ΩAi(ω) and C∗i : Ω → ∪ω∈ΩAi(ω),

with C∗i (ω) ⊆ B∗i (ω) ⊆ Ai(ω) for all ω ∈ Ω. Define G(B∗, C∗) as the set of all u having some σ ∈ Equil0(<

u, p, q, ρ >) with best replies B∗ = (B∗i )Ni=1 and carriers C∗ = (C∗i )Ni=1. Formally,

G(B∗, C∗) =
{
u | there exists σ ∈ Equil0(< u, p, q, ρ >) with Bi(σ, ·) = B∗i and Ci(σ, ·) = C∗i for all i = 1, . . . , N

}
.

Consider first σ̄ ∈ Equil0(< ū, p, q, ρ >) such that Bi(σ, ω) = B∗i (ω) for all ω ∈ Ω. Fix aωi such that σ̄i(a
ω
i |

ω) > 0 and note that the indifference condition Ui(ai, ω, σ̄)−Ui(aωi , ω, σ̄) = 0 holds for all i ∈ {1, . . . , N} and

all ai ∈ B∗i (ω). For all ω ∈ Ω and all i ∈ {1, . . . , N}, define the matrix Pi(σ) ∈ R
∑
ω∈Ω(|B∗i (ω)|−1)×

∑
ω∈Ω|Ai(ω)|,

such that for all ai ∈ B∗i (ω), its (ω, ai) row equals 0 save for the (ω, ai) component, where it equals 1, and

the (ω, aωi ) component, where it equals -1. We can therefore stack all the indifference conditions by writing

M(σ, u) =


P1(σ)

(
1 + 1

ρ (P −Q)Pσ
)−1

u1

...

PN (σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

uN


and note that M(σ̄, ū) = 0. The Jacobian ∂M

∂u (σ, u) can be computed as

∂M

∂u
(σ, u) =



P1(σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

0 · · · 0

0 P2(σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

· · · 0

...

0 · · · PN (σ)
(
1 + 1

ρ (P −Q)Pσ
)−1


.

Since Pi(σ) has full rank
∑
ω∈Ω(|B∗i (ω)| − 1), the Jacobian ∂M

∂u (σ, u) has rank
∑N
i=1

∑
ω∈Ω(|B∗i (ω)| − 1).
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In particular, since M(σ̄, ū) = 0, we can construct open sets N , N1 ⊆ R
∑N
i=1

∑
ω∈Ω(N |Ai(ω)|−|B∗i (ω)|+1),

N2 ⊆ R
∑N
i=1

∑
ω∈Ω(|B∗i (ω)|−1), with σ̄ ∈ N and ū ∈ N1×N2, and a continuously differentiable function Φ such

that for all (σ, u1) ∈ N×N1 there exists a unique u2 = Φ(σ, u1) ∈ N2 which is a solution to M(σ, (u1, u2)) = 0.

Without loss, all these open sets are balls with rational centers and radii and we emphasize their dependence

on (σ̄, ū) by writing N σ̄,ū
1 , N σ̄,ū

2 , and N σ̄,ū.

Now take C∗ such that for some i ∈ {1, . . . , N} and some ω ∈ Ω, C∗i (ω) ( B∗i (ω). Consider the set

Rσ̄,ū(B∗, C∗) =
{
u ∈ N σ̄,ū

1 ×N σ̄,ū
2 | there exists (σ, u1) ∈ (N σ̄ ∩A(C∗))×N σ̄,ū

1 such that u2 = Φ(σ, u1)
}

⊆RN
∑
ω∈Ω

∑N
j=1|Aj(ω)|,

where A(C∗) = {σ ∈ Σ | Ci(·, ω) = C∗i (ω) for all i = 1, . . . , N}. Note that the dimension of (N σ̄ ∩A(C∗))×
N σ̄,ū

1 equals N
∑
ω∈Ω

∑N
j=1|Aj(ω)| −

∑N
i=1

∑
ω∈Ω|B∗i (ω)| +

∑N
i=1

∑
ω∈Ω|C∗i (ω)| < N

∑
ω∈Ω

∑N
j=1|Aj(ω)|.

Therefore, M σ̄,ū(B∗, C∗) has measure zero. Since we are choosing the neighborhoods from a countable set,

it follows that G(B∗, C∗) ⊆ ∪n∈NQn, where Qn = Rσ̄n,ūn(B∗, C∗), has measure zero as well.

The following is the main result of this subsection.

Proposition 5 For almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, all σ̄ ∈ Equil0(< u, p, q, ρ >) are regular.

Proof. From Lemma 5, we can rule out games u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)| having non quasi-strict solutions

and focus on games having only quasi-strict solutions. Since there is a finite number of correspondences

B∗i : Ω→ Ai, it is enough to prove that the set of games having a non-regular equilibrium σ with

Bi(σ, ω) = Ci(σ, ω) = B∗i (ω)

for all i ∈ {1, . . . , N} and all ω ∈ Ω has measure zero. Considering the submatrix J̄(σ, u) obtained from
∂f
∂σ (σ, u) by crossing out all rows and columns corresponding to components (ai, ω) with ai /∈ B∗i (ω), it

follows that J̄(σ) has full rank if and only if so does ∂f
∂σ (σ, u). Noting that J̄(σ, u) is the Jacobian of a

completely mixed solution, without loss of generality we can therefore assume that B∗(ω) does not depend

on ω and restrict attention to completely mixed solutions. Using Lemma 4 and the transversality theorem

(see the discussion in Section 7.1.2 in Doraszelski and Escobar 2010), we deduce that for almost all games,

all completely mixed equilibria are regular.

A.1.3 Establishing Lemma 2

Fix a game u ∈ RN
∑
ω∈Ω

∑N
i=1|Ai(ω)| and a regular solution σ0 ∈ Equil0(< u, p, q, ρ >). Let < J ,P >

be a protocol of moves and ∆ > 0 the period length. We establish that the regular solution σ0 can be

approximated by a Markov perfect equilibrium of a separable dynamic game with noisy transitions and an

arbitrary protocol of moves if the period length ∆ is sufficiently small. To do so, we apply a version of the

implicit function theorem to the limit conditions.
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Proof of Lemma 2. In the separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >,

write the continuation value of player i ∈ {1, . . . , N} if players J ∈ J have the move and the state is ω ∈ Ω

as V ∆
i (ω, J). Note that the value function V ∆

i : Ω × J → R is uniquely determined by the strategy profile

σ ∈ Σ. We therefore write V ∆
i (·, ·) = V ∆

i (·, ·, σ). Note that V ∆
i (·, ·, σ) is a continuous function of (σ,∆) and its

differential with respect to σ at ∆ = 0 exists. In particular, for all J ∈ J and all σ ∈ Σ, V ∆
i (·, J, σ)→ V 0

i (·, σ)

as ∆→ 0.

A strategy profile σ∆ is a Markov perfect equilibrium of the separable dynamic game with noisy transitions

Γ =< ∆,J ,P, u, p, q, ρ > if for all i = 1, . . . , N , ω ∈ Ω, and all ai ∈ Ai(ω)

σ∆
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
U∆
i (ω, ãi, σ

∆)

with

U∆
i (ω, ai, σ

∆) = ui,i(ω, ai) + exp(−ρ∆)
∑
ω′ 6=ω

∑
J′∈J

(
V ∆
i (ω′, J ′, σ∆)− V ∆

i (ω, J ′, σ∆)
)
ϕi(ω

′ | ω, ai)Pr(J ′ | J) +O(∆)

and J ∈ J is such that i ∈ J .

Consider the profile (aωi )i=1,...,N,ω∈Ω that is used in the construction of the function f in Appendix A.1.2

for which σ0 is regular. Abusing notation, construct the function f : [0, 1] × Σε → R
∑
ω∈Ω

∑N
i=1|Ai(ω)| such

that for all ai 6= aωi

fi,ai,ω(∆, σ) = σi(ai, ω)
(
U∆
i (ω, ai, σ)− U∆

i (ω, aωi , σ)
)

while

fi,aωi ,ω(∆, σ) =
∑

ai∈Ai(ω)

σi(ai | ω)− 1.

Observe that f(∆, σ) is a continuous function, with a well-defined differential with respect to σ, Dσf(0, σ),

at (0, σ). Moreover, f(0, σ0) = 0 and Dσf(0, σ0) has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|. A version of the implicit

function theorem (see Lemma 6 below) implies that for all r > 0 there exists ∆̄ > 0 such that for all ∆ < ∆̄,

there exists σ∆ ∈ Σε with ‖σ0 − σ∆‖ < r such that f(∆, σ∆) = 0. Moreover, we can take ∆̄ and r small

enough so that (i) σ∆
i (ai, ω) > 0 whenever σ0

i (ai, ω) > 0, and (ii) U∆
i (ω, ai, σ

∆) < U∆
i (ω, aωi , σ

∆) whenever

Ui(ω, ai, σ0) < Ui(ω, aωi , σ0).

To prove that σ∆ is a Markov perfect equilibrium of the separable dynamic game with noisy transitions

< ∆,J ,P, u, p, q, ρ >, consider first ai ∈ Ai(ω) and ω ∈ Ω such that σ0(ai | ω) = 0. Since σ0 is regular, it is

also quasi-strict and therefore Ui(ω, ai, σ0) < Ui(ω, aωi , σ0). From (ii), U∆
i (ω, ai, σ

∆) < U∆
i (ω, aωi , σ

∆). Since

f(∆, σ∆) = 0, it follows that σ∆(ai | ω) = 0. Next consider ai ∈ Ai(ω) and ω ∈ Ω such that σ0(ai | ω) > 0.

We can use (i) to deduce that σ∆(ai | ω) > 0 and, since f(∆, σ∆) = 0, U∆
i (ω, ai, σ

∆) = U∆
i (ω, aωi , σ

∆). All

of these observations prove that whenever σ∆(ai, ω) > 0, ai solves maxãi∈Ai(ω) U∆
i (ω, ãi, σ

∆). Therefore, σ∆

is a Markov perfect equilibrium of the separable dynamic game with noisy transitions < ∆,J ,P, u, , q, ρ >.
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Since for almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, all σ0 ∈ Equil0(< u, p, q, ρ >) are regular, Lemma 2 follows.

It remains to prove the implicit function theorem we used above. The textbook presentation of the

implicit function theorem (Section M.E in Mas-Colell, Whinston, and Green 1995) applies to continuously

differentiable functions defined on open sets. In our setup, the set of parameters ∆ ∈ [0, 1] is closed and,

moreover, we are interested in the boundary case ∆ = 0. The following result is a modification of Theorem

A in Halkin (1974).

Lemma 6 (Implicit Function Theorem) Assume f : [0, 1] × Σε → R
∑
ω∈Ω

∑N
i=1|Ai(ω)| is a continuous

function such that its differential with respect to σ ∈ Σε at ∆ = 0, Dσf(0, σ), exists. Let σ0 ∈ Σ be

such that f(0, σ0) = 0 and Dσf(0, σ0) has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|. Then, for all r > 0 there exists

∆̄ > 0 such that for all ∆ < ∆̄, there exists σ∆ such that ‖σ0 − σ∆‖ < r and f(∆, σ∆) = 0.

Proof. Consider the function ϕ(σ,∆) = σ − [Dσf(0, σ0)]−1f(∆, σ) and note that the problem of finding

σ∆ such that f(∆, σ∆) = 0 reduces to the problem of finding a fixed point of ϕ(·,∆). Note thatDσϕ(0, σ0) = 0

and therefore we can assume, without loss, that r > 0 is small enough so that for all ‖σ − σ0‖ < r, σ ∈ Σε

and
‖ϕ(σ, 0)− ϕ(σ0, 0)‖

‖σ − σ0‖
<

1

2
.

Since ϕ(σ0, 0) = σ0, we can therefore deduce that for all ‖σ − σ0‖ ≤ r, ‖ϕ(σ, 0)− σ0‖ ≤ r/2.

Define now m(∆) = max{σ|‖σ−σ0‖≤r}‖ϕ(σ,∆) − ϕ(σ, 0)‖. Berge’s maximum theorem (Theorem 17.31 in

Aliprantis and Border 2006) implies that m is continuous in ∆ ∈ [0, 1]. Since m(0) = 0, there exists ∆̄ > 0

such that for all ∆ < ∆̄, m(∆) < r/2. We thus deduce that for all σ such that ‖σ − σ0‖ ≤ r and ∆ < ∆̄

‖ϕ(σ,∆)− σ0‖ ≤ ‖ϕ(σ,∆)− ϕ(σ, 0)‖+ ‖ϕ(σ, 0)− σ0‖

≤ m(∆) + ‖ϕ(σ,∆)− σ0‖

≤ r.

It follows that for all ∆ < ∆̄, the continuous function ϕ(·,∆) maps the convex and compact set {σ | ‖σ−σ0‖ ≤
r} into itself. For any such ∆ < ∆̄, Brouwer’s fixed point theorem (Theorem M.I.1 in Mas-Colell, Whinston,

and Green 1995) implies the existence of σ∆ within distance r of σ0 such that ϕ(σ∆,∆) = σ∆.

A.1.4 Proof of Theorem 1

Proof of Theorem 1. From Lemma 2, take one of the generic flow payoffs u ∈ RN
∑
ω∈Ω

∑N
j=1|Aj(ω)|

and any two protocols of moves as in the statement of Theorem 1. From Lemma 1, there exists ∆̃ > 0

such that for all ∆ < ∆̃ and all σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >), there exists σ0 ∈ Equil0(< u, p, q, ρ >)

such that ‖σ∆ − σ0‖ < ε/2. From Lemma 2 we can find ∆̂ > 0 such that for all ∆ < ∆̂, there exists
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σ̂∆ ∈ Equil(< ∆, J̄ , P̄, u, p, q, ρ >) such that ‖σ̄∆ − σ0‖ < ε/2. Taking ∆̄ = min{∆̃, ∆̂} > 0, Theorem 1

follows from the triangle inequality.

A.2 Proof of Theorem 2

It is useful to begin by establishing the following lemma:

Lemma 7 Let σ ∈ Equil0(< u, p, q, ρ >) with corresponding profile of value functions V . Then there exists

σ̃ ∈ Equil0(< u, p, q, ρ >) with corresponding profile of value functions Ṽ such that for all ω ∈ Ω and all

i ∈ {1, . . . , N},

a. Ṽi(ω) = Vi(ω);

b. {ai ∈ Ai(ω) | σ̃i(ai | ω) > 0} ⊆ {ai ∈ Ai(ω) | σi(ai | ω) > 0};

c. |{ai ∈ Ai(ω) | σ̃i(ai | ω) > 0}| ≤ N .

In particular, if {ai ∈ Ai(ω) | σi(ai | ω) > 0} ≥ N + 1 for some i ∈ {1, . . . , N} and some ω ∈ Ω, then σ̃ is

not regular.

The proof of this result extends some of the ideas in the proof of Theorem 3.1 in Raghavan, Tijs, and

Vrieze (1985).

Proof of Lemma 7. Write limit condition (3.2) as

ρVi(ω) =

N∑
j=1

∑
aj∈Aj(ω)

(
ui,j(ω, aj) +

∑
ω′∈Ω

(Vi(ω
′)− Vi(ω))ϕj(ω

′ | ω, aj)

)
σj(aj | ω).

Fix player 1 and state ω ∈ Ω. Consider the finite set

C1(ω) =
{
v = (v2, . . . , vN ) ∈ RN−1 | there exists a1 ∈ A1(ω) such that

vi = ui,1(ω, a1) +
∑
ω′∈Ω

(Vi(ω
′)− Vi(ω))ϕ1(ω′ | ω, a1) for all i = 2, . . . , N

}
.

Observe that the vector ṽ = (ṽ2, . . . , ṽN ) ∈ RN−1 defined by

ṽi =
∑

a1∈A1(ω)

(
ui,1(ω, a1) +

∑
ω′∈Ω

(Vi(ω
′)− Vi(ω))ϕj(ω

′ | ω, a1)
)
σ1(a1 | ω)

belongs to the convex hull of C1(ω). Caratheodory’s theorem (Theorem 17.1 in Rockafellar 1970) implies

that there exists a distribution σ̃1(· | ω) ∈ P(A1(ω)) with {a1 ∈ A1(ω) | σ̃1(a1 | ω) > 0} ⊆ {a1 ∈ A1(ω) |
σ1(a1 | ω) > 0} such that

ṽ =
( ∑
a1∈A1(ω)

ui,1(ω, a1) +
∑
ω′∈Ω

(Vi(ω
′)− Vi(ω))ϕj(ω

′ | ω, a1) | i = 2, . . . , N
)
σ̃1(a1 | ω) ∈ RN−1
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and |{a1 ∈ A1(ω) | σ̃1(a1 | ω) > 0}| ≤ N . Do this procedure for all players (not just player 1) and obtain

a strategy profile σ̃ = (σ̃i)
N
i=1 that satisfies (b) and (c) for all i = 1, . . . , N and all ω ∈ Ω. Also note that,

by construction, Vi is the value function for player i and σi(·, ω) is putting positive weight only on actions

ai ∈ Ai(ω) that maximize

ui,i(ω, ai) +
∑
ω′ 6=ω

(Vi(ω
′)− Vi(ω))ϕi(ω

′ | ω, ai).

We therefore conclude that (σ̃, V ) is a solution to limit condition (3.2) and (3.3) having properties (a), (b),

and (c).

Proof of Lemma 3. Proposition 5 shows that all solutions are regular for almost all flow payoffs

u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|. Take such flow payoffs u and a solution σ. If for some i = 1, . . . , N and some

ω ∈ Ω, |{ai ∈ Ai(ω) | σi(ai | ω)}| ≥ N + 1, we could use Lemma 7 to find the non-regular solution σ̃.

Proof of Theorem 2. From the proof of Theorem 1, for almost all flow payoffs u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|,

all ε > 0 and all protocols of moves < J ,P >, we can find ∆̄ > 0 such that for all ∆ < ∆̄, the carrier of

σ0 ∈ Equil0(< u, p, q, ρ >) and σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) coincide and ‖σ∆ − σ0‖ < ε. Theorem 2

thus follows from Lemma 3.

A.3 Proofs for Section 5

Proof of Proposition 2. Take any u as in Theorem 1. Define Payoffs0(< u, p, q, ρ >) ⊆ RN to be the set

of payoff profiles associated with solutions in pure strategy profiles to the limit conditions (3.2) and (3.3):

Payoffs0(< u, p, q, ρ >) ={
V 0(ωt=0) ∈ RN | (V 0, σ0) solves (3.2) and (3.3) for some pure strategy profile σ0

}
,

where ωt=0 ∈ Ω is the initial state of the game. For ε > 0 take ∆̄ such that for all ∆ < ∆̄, and all protocols

< J ,P >, the Hausdorff distance between Payoffs0(< u, p, q, ρ >) and PayoffsF (< ∆, < J ,P >, u, p, q, ρ >)

is less than ε/3.

Take now v ∈ PayoffsF (Γsim) which is approachable. Then, for all n ≥ 1, there exists an asynchronous

protocol < J n,Pn > and wn ∈ PayoffsF (< ∆,J n,Pn, u, p, q, ρ >) such that ‖v − wn‖ < 1/n. Restrict

the sequence such that 1/n < ε/3. From Bhaskar, Mailath, and Morris (2013), we can actually take wn ∈
PayoffsM (< ∆,J n,Pn, u, p, q, ρ >). By construction, for any such wn we can find w̃n ∈ Payoffs0(< u, p, q, ρ >

) such that ‖wn − w̃n‖ < ε/3. Since Payoffs0(< u, p, q, ρ >) has a finite number of elements, we can assume

that w̃n = w̃ does not depend on n (perhaps, by taking a subsequence). Now, take w ∈ PayoffsM (<

∆,J sim,Psim, u, p, q, ρ >) such that ‖w − w̃‖ < ε/3. It follows that

‖v − w‖ ≤ ‖v − wn‖+ ‖wn − w̃‖+ ‖w̃ − w‖ < ε

3
+
ε

3
+
ε

3

which proves the result.
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Proof Sketch of Proposition 3. The proof follows from the analysis in Appendix A.1 and arguments

in Doraszelski and Escobar (2010). Details are available upon request. To provide a sketch, consider the

analog to the limit conditions (3.2) and (3.3) that arise without Assumption 3:

ρVi(ω) = ui(ω, σ(ω)) +
∑
ω′ 6=ω

(Vi(ω
′)− Vi(ω))ϕ(ω′ | ω, σ(ω))

and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

ui(ω, ãi, σ−i(ω)) +
∑
ω′ 6=ω

(Vi(ω
′)− Vi(ω))ϕ(ω′ | ω, ãi, σ−i(ω)).

From these limit conditions, we can construct a function f (as we did in Appendix A.1) such that all solutions

are zeros of f and, moreover, for almost all flow payoffs u, all solutions are regular. We then apply the implicit

function theorem to deduce the result.

Proof of Proposition 4. The results follow directly from the analysis in Section 3 in Lagunoff and

Matsui (1997) and Theorem 1 in their working paper.
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Online Appendix

This Online Appendix consists of four parts. Appendix OA.1 provides a counterexample complementing

Example 6, Appendix OA.2 shows that the limit conditions (3.2) and (3.3) may not admit a solution in

pure strategies, and Appendices OA.3 and OA.4 generalize our notion of a protocol of moves and provide

extensions of Theorem 1.

OA.1 Non-Separable State-to-State Transitions

Consider a dynamic stochastic game with N = 2 players, Ω = {0, 1}, and Ai = {0, 1}. The hazard rate in

state ω = 0 is q(0, a1, a2) = 1 if and only if a1 = a2 = 1, and q(0, a1, a2) = 0 otherwise, whereas in state

ω = 1, q(1, a) = 0. The transition probability satisfies p(1 | 0, (a1, a2)) = 1. State ω = 1 is thus absorbing.

Flow payoffs do not depend on actions and take the form ui,i(ω) = ω. In the game with simultaneous moves,

it is simple to see that there exist two Markov perfect equilibria in pure strategies. In one of them, the state

is stuck in ω = 0. In contrast, in the game with alternating moves and transitions “materializing” only once

both players have made a decision (in a violation of Assumption 3 similar to Example 6), the unique Markov

perfect equilibrium is σ∗1 = 1, σ∗2(a1) = a1, and the state eventually jumps to ω′ = 1.

OA.2 Non-Existence of Solution in Pure Strategies

Consider a separable dynamic game with noisy transitions, N = 2 players, Ω = {1, 2}, Ai(ω) = {1, 2} if

ω = i, and Ai(ω) = {1} if ω 6= i. This means that player i makes a nontrivial decision only when ω = i. Flow

payoffs are ui,i(ω, ai) = 0 if ω = i for all ai ∈ {1, 2}, while

u1,2(a2, 2) =

10 if a2 = 1,

−10 if a2 = 2

and

u2,1(a1, 1) =

−10 if a1 = 1,

10 if a1 = 2.

Hence, the flow payoff of player i is 0 when ω = i, but his decision determines whether the flow payoff of

player −i is 10 or -10. Transition probabilities are determined as in Example 3 with λ = 1 and

l1(1 | 1, a1)

0 if a1 = 1,

1 if a1 = 2
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and

l2(1 | 2, a2) =

1 if a2 = 1,

0 if a2 = 2,

while li(i | i, a−i) = 1. This means that in state ω = i, player i (and only player i) determines a probability

distribution over the successor state ω′. (Note that given λ, l1, and l2, we can construct p and q as we did in

Example 3.)

We show that the limit conditions (3.2) and (3.3) do not admit a solution in pure strategies. The intuition is

similar to the non-existence of a Nash equilibrium in pure strategies in matching pennies. Consider a solution

σ∗ ∈ Equil0(< u, p, q, ρ >) in pure strategies. If σ∗1(· | 1) = (1, 0), then it must be the case that player 2 is

choosing σ∗2(1 | 2) = 1 for otherwise player 1 makes a loss in state ω = 2 while he can secure 0 by playing

a1 = 2. But this would mean that player 2 is willing to make a loss in state ω = 1, while he can secure 0

by playing a2 = 2. Similarly, it cannot be that σ∗1(· | 1) = (0, 1). Thus, the limit conditions (3.2) and (3.3)

do not admit a solution in pure strategies. They do, however, admit a solution in mixed strategies in which

player i chooses σi(· | ω) = (1/2, 1/2) when ω = i.17

OA.3 Generalized Protocol of Moves

We relax Assumption 1 by generalizing our notion a protocol of moves. We allow the evolution of the protocol

state J to depend on players’ actions aJ and the physical state ω. We maintain that J is a partition of the

set of players, but allow for a non-uniform stationary distribution. We show that Theorem 1 remains valid.

Assumption 4 (Generalized Protocol of Moves) Let J be a partition of {1, 2, . . . , N} and P = (Pr (J ′|J, ω, aJ))J,J ′∈J

a |J | × |J | transition matrix for all ω ∈ Ω and all selections J 7→ aJ ∈
∏
j∈J Aj(ω) = AJ(ω). Assume that

P(· | ·, ω, σJ) =
∑

aJ∈
∏
j∈J Aj(ω)

P(· | ·, ω, aJ)
∏
j∈J

σj(aj)

is irreducible for all ω ∈ Ω and all selections J 7→ σJ ∈
∏
j∈J Σj = ΣJ and its unique stationary distribution

π = (π(J))J∈J ∈ P(J ) is independent of ω and σJ .

We call < J ,P > a generalized protocol of moves. Under a generalized protocol of moves, the current physical

state and action profile may make a transition from one protocol state to another more likely, but on average

all protocol states are visited with frequencies that are independent of physical states and action profiles.

The remaining aspects of the model are unchanged.

17This example can be easily adapted to show that additive-reward, additive-transition dynamic stochastic games may not admit
a Markov perfect equilibrium in pure strategies. It is much simpler than other examples in the literature.
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Denote the above game by Γ =< ∆,J ,P, u, p, q, ρ > and consider a Markov perfect equilibrium σ∆ =

(σ∆
i )Ni=1. Under Assumptions 2, 3, and 4, the discrete-time Bellman equation for a period length of ∆ is

V ∆
i (ω, J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))∆

+ exp(−ρ∆)

{ ∑
J′∈J

V ∆
i (ω, J ′)

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)Pr(J ′|J, ω, aJ)

1− |J |
∑
j∈J

qj(ω, aj)∆


+
∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)Pr(J ′|J, ω, aJ)

|J |∑
j∈J

ϕj(ω
′|ω, aj)∆

}+O(∆2). (OA.1)

Taking the limit as ∆→ 0, we deduce that

V 0
i (ω, J) =

∑
J′∈J

V 0
i (ω, J ′)Pr(J ′|J, ω, σ0

J(ω)).

Assumption 4 implies that the transition matrix Pr(J ′ | J, ω, σ0
J) has a unique (and uniform) right eigenvector

so that V 0
i (ω, J) = V 0

i (ω, J ′) for all J, J ′ ∈ J . Let V 0
i : Ω → R be the value function of player i and

V 0 = (V 0
i )Ni=1 be the profile of value functions in the limit as ∆→ 0.

The Bellman equation can equivalently be written as

1

∆
V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ) = |J |
∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
j∈J

{ ∑
ω′ 6=ω

∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω′, J ′)Pr(J ′|J, ω, aJ)ϕj(ω
′|ω, aj)

−
∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ)qj(ω, aj)

}
+O(∆).

Multiplying by π(J) and summing over J ∈ J yields

1

∆

∑
J∈J

π(J)V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J∈J

π(J)
∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ)

= |J |
∑
J∈J

π(J)
∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
J∈J

π(J)
∑
j∈J

{ ∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J, ω, σ∆

J (ω))ϕj(ω
′|ω, σ∆

j (ω))

−
∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J, ω, σ∆

J (ω))qj(ω, σ
∆
j (ω))

}
+O(∆2).
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Using the facts that
∑
J∈J Pr(J ′|J, ω, σJ(ω))π(J) = π(J ′) and

∑
J′∈J Pr(J ′|J, ω, σJ(ω)) = 1, and taking the

limit as ∆→ 0, we obtain the continuous-time Bellman equation

ρV 0
i (ω) = |J |

∑
J∈J

π(J)
∑
j∈J

ui,j(ω, σ
0
j (ω))+|J |

∑
J∈J

π(J)
∑
j∈J

∑
ω′ 6=ω

V 0
i (ω′)ϕj(ω

′|ω, σ0
j (ω))− V 0

i (ω)qj(ω, σ
0
j (ω))

 .

(OA.2)

The discrete-time optimality condition for a period length ∆ is

σ∆(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

u∆
i (ω, J, ãi, σ

∆
J\{i}(ω))

+ exp(−ρ∆)
∑
ω′∈Ω

∑
J′∈J

∑
aJ\{i}

σJ\{i}(aJ\{i} | ω)V ∆
i (ω′, J ′)Pr

(
J ′|J, ω, ai, aJ\{i}

)
Pr∆

(
ω′|ω, J, ãi, aJ\{i}

)
.

Dividing by ∆, rearranging terms, and taking the limit as ∆→ 0, we deduce the continuous-time optimality

condition

σ0
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (OA.3)

Conditions (OA.2) and (OA.3) are the analogs of conditions (3.2) and (3.3) for a generalized protocol of

moves.

Consider the generalized protocols of moves < J1,P1 > and < J2,P2 > with stationary distributions π1

and π2. For all j = 1, . . . , N , define J1(j) to be the unique element in J1 such that j ∈ J1(j). Define J2(j)

analogously. We say that the generalized protocols of moves < J1,P1 > and < J2,P2 > are comparable if

|J1|π1(J1(j)) = |J2|π2(J2(j)) for all j = 1, . . . , N . Given a protocol < J ,P >l, a player j moves a fraction

π(J(j)) of the time and has an impact on payoffs and transitions which is scaled by |J |. Thus, comparability

means that the total impact of a player’s strategy on payoffs and transitions does not depend on the particular

protocol that we use in the model. All protocols that satisfy Assumption 1 are comparable.

Theorem 1 remains valid for generalized protocols of moves that are comparable.18

Theorem 3 (Generalized Protocol-Invariance Theorem) Fix p, q, and ρ. For almost all u, all gen-

eralized protocols of moves < J ,P > and < J ,P > that are comparable, and all ε > 0, there exists ∆̄ > 0

such that for all ∆ < ∆̄ and σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >), there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >)

such that ‖σ − σ‖ < ε.

OA.4 Non-Partition Protocol of Moves

We relax Assumption 1 and assume that J is not a partition of the set of players but contains subsets

J ⊆ {1, . . . , N} such that for all i = 1, . . . , N , there exists J ∈ J such that i ∈ J . This allows player i

18Strictly speaking, here we only show that Lemma 1 remains valid. The proof that Lemma 2 remains valid is available upon
request.
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to have the move in conjunction with different sets of rivals. To simplify the exposition, we assume that

|{J ∈ J | i ∈ J}| = κ for all i = 1, . . . , N . As before, there is an irreducible Markov chain P defined on J
that has a unique stationary distribution that is uniform on J . We call < J ,P > a non-partition protocol of

moves.

With a non-partition protocol of moves < J ,P >, the per-period payoff u∆
i (ω, J, aJ) is written as

u∆
i (ω, J, aJ) =

|J |
κ

∑
j∈J

ui,j(ω, aj)∆ +O(∆2),

and the hazard rate qJ(ω, aJ) and transition probability pJ(ω′ | ω, aJ) are written as

qJ(ω, aJ) =
|J |
κ

∑
j∈J

qj(ω, aj)

and

qJ(ω, aJ)pJ(ω′ | ω, aJ) =
|J |
κ

∑
j∈J

qj(ω, aj)pj(ω
′ | ω, aj),

where qj : {(ω, aj) | aj ∈ Aj(ω)} → R+ ∪ {0} and pj : {(ω, aj) | aj ∈ Aj(ω)} → P(Ω). The remaining aspects

of the model are unchanged.

With a non-partition protocol of moves < J ,P >, the identity of the players that have the move in

conjunction with player i is a state variable. Thus, a Markovian strategy for player i is a function σi : Ω×{J ∈
J | i ∈ J} → ∪ω∈ΩP(Ai(ω)). Overloading notation, we use Equil(< ∆,J ,P, u, p, q, ρ >) to denote the set of

Markov perfect equilibria. We say that a Markov perfect equilibrium σ is simple if σi(ai | ω, J) = σi(ai | ω, J̃)

for all i = 1, . . . , N , ω ∈ Ω, ai ∈ Ai, and all J, J̃ ∈ J . In this case, we write σi(ai | ω).

The following proposition partially extends Theorem 1 to a non-partition protocol of moves:

Proposition 6 Assume Equil0(< u, p, q, ρ >) only contains strict solutions. Then there exists ∆̄ > 0 such

that for all ∆ < ∆̄, σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) is simple and

Equil(< ∆,J ,P, u, p, q, ρ >) = Equil0(< u, p, q, ρ >).

In contrast to Theorem 1, Proposition 6 restricts attention to strict and thus pure solutions. When mixed

solutions are considered, the limit conditions may have a continuum of solutions if players use the payoff-

irrelevant realization of J to randomize over actions and our differential topology tools therefore cannot be

directly applied.

Proof. Consider a sequence
(
σ∆
)

with σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) and σ∆ → σ0 (possibly

through a subsequence) as ∆→ 0. Let V ∆ be the profile of value functions corresponding to σ∆ and assume

it converges to V 0. Similar to Section 3, we can deduce that V 0(ω, J) does not depend on J ∈ J and simply
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write V 0(ω). We can also follow Section 3 to deduce that

ρV 0
i (ω) =

1

κ

∑
J∈J

∑
j∈J

ui,j(ω, σj(ω, J)) +
∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕj(ω

′ | ω, σj(ω, J))


and

σ0
i (ai | ω, J) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (OA.4)

Define σ̃i(· | ω) = 1
κ

∑
J∈J σ

0
i (· | ω, J) for all i = 1, . . . , N and all ω ∈ Ω, and note that (σ̃, V 0) is a solution

to the limit conditions (3.2) and (3.3). Since Equil0(< u, p, q, ρ >) only contains strict solutions, the profile

σ̃ = (σ̃i)
N
i=1 must be a strict solution and thus the maximization problem in equation (OA.4) has a unique

solution. Therefore σ0
i (ai | ω, J) does not depend on J and σ0 is simple. In particular, σ0 ∈ Equil0(<

u, p, q, ρ >) and therefore there exists ∆̄ > 0 such that for all ∆ < ∆̄, σ∆ ∈ Equil0(< u, p, q, ρ >). To see

the converse, note that Equil0(< u, p, q, ρ >) has a finite number of pure solutions that are all strict. For

any solution (σ0, V 0) to the limit conditions (3.2) and (3.3), σ0 satisfies the conditions for a (simple) Markov

perfect equilibrium of a separable dynamic game with noisy transitions and the non-partition protocol of

moves < J ,P > since the continuation values in such a game converge to V 0 and, as a result, the incentive

constraints are satisfied if ∆ > 0 is sufficiently small.
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