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Abstract

We characterize the revenue maximizing mechanism in an environment with pri-
vate valuations and asymmetric discount factors. The optimal mechanism combines
auctions to encourage competition and dynamic pricing to screen of buyers’ valuations.
When buyers are ex-ante symmetric and the seller is more patient than the buyers, the
optimal mechanism takes a remarkably simple form. The seller runs a modified second
price auction and allocates the item to the highest bid buyer if and only if the second
highest bid exceeds the reserve price. The winning buyer pays the second highest bid.
If the item is not sold in the auction, the seller posts a price path that depends on the
second highest bid. The item is then allocated to the highest bid buyer at a strictly
positive time. Our results imply that, for a patient seller, auctions and pricing schemes
are complements and caution against the presumption that it is ex-ante optimal to
commit not to trade when an auction fails.
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1 Introduction

Most of the mechanism design literature assumes that contracting parties discount time at
the same rates. Yet, this assumption may fail in several important applications. For example,
agents may borrow at different interest rates (imperfect capital markets), or they may (agree
to) disagree on the probability with which the negotiation continues, and this translates
into heterogeneous time discounts.1 While the role of differences in time preferences has
been explored in models ranging from bargaining theory and finance to repeated games and
revenue management (Rubinstein, 1982; Harrison and Kreps, 1978; Lehrer and Pauzner,
1999; Talluri and Van Ryzin, 2006), little is known about how different discount rates shape
outcomes in a multi-agent mechanism design framework. The goal of this paper is to close
this important gap.

We consider the following model. There is one seller holding a single object and N ≥ 1
buyers. Types are independent and valuations are private. The seller and buyers discount
rates may be different, but the model is otherwise standard (Myerson, 1981). Transfers and
assignments occur simultaneously so neither party can lend to the other. A mechanism maps
reports to a decision of who receives the item, when the item is delivered, and how much the
buyer pays when the transaction takes place.

Our main contribution is to characterize the revenue maximizing mechanism. When
the seller is less patient than the buyers, and buyers are ex-ante symmetric, the optimal
mechanism is a standard second price auction with a reserve price. In contrast, when the
seller is more patient than the buyers, the optimal mechanisms consists of two steps. At
time 0, the seller runs a modified second price auction with a reserve price. In this auction,
the seller assigns the good to the bidder with the highest bid and charges the second highest
bid, whenever the latter exceeds the reserve price. If the second highest bid falls short of
the reserve price, the auction fails to allocate the object. In this case, the seller assigns the
good to the bidder with the highest valuation who pays a price determined by the second
highest bid and receives the good at a strictly positive time. Figure 1 illustrates the optimal
mechanism. We show that the optimal mechanism generates more revenue than any static
mechanism and cannot be implemented through a simple posted price path. We also extend
our analysis to the case in which buyers are ex-ante asymmetric.

A key economic insight emerging from our analysis is that auctions and pricing schemes
are complements for a patient seller. Indeed, in our model the auction stage allows the
seller to extract rents through competition, whereas the dynamic pricing stage is used to
screen buyers through time. Our results therefore caution against the presumption that for
a revenue maximizing seller, it is ex-ante optimal to commit not to trade after an auction
fails.2

Since seller and buyers have different discount rates, our mechanism design problem is not

1Prior research also suggests that costumers’s discount rates are substantially low in some industries. Yao
et al. (2012) show that consumers’ discount factors for telecommunication services are about 0.9 per week,
which is probably lower than the discount rates of companies.

2Previous literature argues that for a seller with full commitment power, the revenue maximizing policy
is a static second price auction (Stokey, 1979; Bulow, 1982).
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Figure 1: Implementation of the optimal mechanism for ex-ante symmetric buyers. The
seller runs a modified second price auction with reserve price v∗ at time 0. If the second
highest bid is lower than v∗, the seller preannounces a contingent pricing scheme ψ∗ which
depends on the second highest bid. The item is allocated at time 0 if and only if the highest
bid b1 is above v∗.

quasilinear. In particular, the approach by Myerson (1981) or any of its multiple extensions
are not applicable. One of the key innovations in the paper is the concept of dynamic
marginal revenue. Similar to its static counterpart (Bulow and Roberts, 1989), the dynamic
marginal revenue measures the rents that a seller can extract in any incentive compatible
mechanism. In contrast, the dynamic marginal revenue depends on the allocation rule that
determines the time at which the item is allocated as a function of types.3

When the seller is more impatient, the dynamic marginal revenue is always below the
standard static marginal revenue and, as a result, the best that the seller can do is to run
a static optimal mechanism. Thus, for ex-ante symmetric buyers, the optimal mechanism
can be implemented by a second price auction with reserve price. When the seller is more
patient than the buyers, delaying trade involves nontrivial tradeoffs. Delaying trade for a
type means that the seller charges less and receives the payment later. On the other hand,
delaying trade changes the dynamic marginal revenue of higher types, thus allowing the
seller to extract more rents (the incentive compatibility constraint is binding for high types
pretending to be low types). We formally capture this tradeoff by deriving necessary and
sufficient conditions for optimality.

From a mathematical standpoint, our analysis is novel. Standard results from calculus
of variations and optimal control impose strong convexity restrictions that are unlikely to
hold in nontrivial applications of our mechanism design framework. Instead, we address
the problem by discretizing the typespace and taking the limit as the discretization gets
finer. We expect that this technical contribution may be useful in other mechanism design

3The static marginal revenue only depends on the distribution of types but not on the allocation rule of
the mechanism.
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problems in which the usual quasilinearity assumption does not hold.
The mechanism design formulation of our problem generates several comparative statics

results. We prove that as the seller becomes arbitrarily patient, the optimal mechanism
extracts virtually the full surplus. Intuitively, an arbitrarily patient seller can slowly screen
buyers who must give up substantial surplus to accelerate trade. We also illustrate our
results with a numerical example and explore the relative relevance of the auction stage for
the optimal revenues. Our simulations show that when buyers and seller have similar discount
rates, the auction stage plays a major role generating revenues. Yet, even when discount
rates are similar, the dynamic pricing scheme generates a significant share of revenues. When
buyers are much more impatient than the seller, the item is rarely allocated in the auction
phase and most of the seller’s rent comes from dynamically screening high buyers using a
posted price.

Since utility is nontransferable in our model, our paper connects to the auction literature
that relaxes the quasilinearity assumption (Maskin and Riley, 1984; Laffont and Robert,
1996; Pai and Vohra, 2014; Baisa, 2017). In those papers, randomizations play a key role in
the optimal mechanisms. We add to this literature by expositing a setup with closed form
solutions and, more importantly, by bringing the role of time (instead of randomizations) to
the design of optimal mechanisms.

Recent work has also highlighted the role of dynamics in mechanism design. As opposed
to our work, in which the dynamics are founded on the difference in discount rates, researchers
have suggested other reasons to explain trade over time. The most common assumptions
in this literature are that consumers arrive stochastically and goods may perish or there
is a deadline for trade (Aviv and Pazgal, 2008; Elmaghraby et al., 2009; Osadchiy and
Vulcano, 2010; Correa et al., 2016; Board and Skrzypacz, 2016; Gershkov et al., 2017; Briceño-
Arias et al., 2017). Other assumptions to explain this phenomenon are that valuations may
change over time (Pavan et al., 2014; Garrett, 2016) or that buyers may be short-lived (Pai
and Vohra, 2013). On the other hand, the literature on durable goods with heterogeneous
discounting has observed that delay on trade occurs in specific environments (Stokey, 1979;
Landsberger and Meilijson, 1985; Shneyerov, 2014). Our paper extends these results by
deriving the optimal mechanism in a general multi-agent framework .

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
introduces the dynamic marginal revenue and solves the one-buyer case. Section 4 solves the
N -buyer case allowing for heterogeneous buyers. Section 5 illustrates the solutions under
parametric restrictions. Section 6 concludes. The appendix contains omitted proofs.

2 Model

We consider a model with N ≥ 1 buyers and one seller. The seller owns an indivisible object
and places no value for it. Buyer i has a private valuation for the asset vi ∈ [0, 1]. We
consider independent private values where the valuation for buyer i is drawn independently
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according to a continuous distribution Fi on [0, 1].4 We denote the density of Fi by fi and
assume the following regularity conditions.

Assumption 1 For all vi ∈ [0, 1], we have

a. fi(vi) > 0 (full support).

b. fi(vi) is continuously differentiable.

c. MRi(vi) := vi − 1−Fi(vi)
fi(vi)

is non-decreasing in vi.

Parts a. and c. are standard in the literature whereas part b. is a technical restriction.
All players are infinitely lived and can trade at any time t ≥ 0. If there is trade at period

t between the seller and buyer i at price p ∈ R, then the game ends and the payoffs are given
by

US(p, t) = exp(−λt)p,
UBi(p, t, vi) = exp(−µit)(vi − p),
UBj(p, t, vj) = 0 for j 6= i,

where µi, λ ∈ R++ are discount rates. While symmetric discount rates is a frequent simplify-
ing assumption in the literature, we allow for heterogeneous discount rates. This additional
generality can be motivated by the following examples:

I. Imperfect capital markets. Financial markets are imperfect, and the interest
rates at which seller and buyers may borrow need not coincide. In this type of model, λ and
µi can be interpreted as the interest rates at which seller and buyer i may borrow.

II. Heterogeneous beliefs. Seller and buyers may know that the execution of the
contract may become unfeasible at some time t. For example, the seller may leave the
market, in which case the mechanism is not executed, and the buyers obtain zero payoffs.
Such event occurs at an exponentially distributed random time. However, the seller and
buyers may have different estimates of the intensity of the exponential distribution. In other
words, players agree to disagree. In this case, the exponential rates λ and µi can capture
the seller’s and buyers’s beliefs that the game will no longer be executed.

We restrict attention to mechanisms where transfers and allocations occur simultane-
ously. This restriction is crucial for our results as, otherwise, a patient seller could generate
unbounded revenues by using a Ponzy scheme. The assumption that transfers and alloca-
tions are simultaneous implies the idea that buyers do not borrow from sellers and it is likely
to hold in environments in which contracts that deliver the good before payments cannot be
enforced. Our restriction is motivated by the observation that in practice sellers rarely lend
money to buyers.5

4The only non-trivial assumption regarding the support of Fi is that it intersects the seller’s valuation
for the object (non-gap case).

5Most auction platforms do not lend money to buyers presumably because it is hard for them to enforce
payments. Note that, particularly in developing countries, retail companies do provide credit to clients.
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When λ 6= µi for some i, utility is nontransferable. To see this, suppose there is only one
buyer with discount rate µ, and compute the value H(u) that maximizes the seller’s payoff
subject to the constraint that the buyer receives utility at least u:

H(u) := max
(t,p)∈R+×R

e−λtp

subject to
e−µt(v − p) ≥ u.

By varying u, we can characterize the whole Pareto frontier as the set{
(u,H(u)) | u ∈ R

}
.

It is simple to see that when λ 6= µ, the function H(u) is equal to

H(u) =
( λ

λ− µ
v

u

)−λ/µ(
v −

( λ

λ− µ
v

u

))
.

Thus, the slope of the Pareto frontier is not -1 and therefore utility is nontransferable.

The mechanism design problem

We solve the revenue maximizing problem using a mechanism design approach. We restrict
attention to deterministic mechanisms and show this is without loss of generality. A deter-
ministic mechanism is a family of functions (pi, xi, τi) : [0, 1]N → R× {0, 1} × R ∪ {∞}, for
i = 1, . . . , N , with

∑N
i=1 xi(v) ≤ 1, such that when players report v ∈ [0, 1]N , the good is

assigned to player i whenever xi(v) = 1, at time τi(v) and at the price pi(v).
Since our model is not quasilinear, the definition of incentive compatible mechanisms

is subtle. In particular, the well known results establishing equivalence between Bayesian
and ex-post incentive compatibility in quasilinear environments do not hold (Gershkov et al.,
2013). We restrict attention to mechanisms that are ex-post incentive compatible: if buyers’s
valuations are common knowledge, it is in the best interest of each buyer to report their
type. The restriction to mechanisms satisfying ex-post constraints is of interest because
buyers often do not know the distributions of valuations of other buyers. We also assume
that any buyer can always refuse to participate in the mechanism and gets zero payoffs. We
therefore also restrict attention to mechanisms in which buyers get nonnegative payoffs.6

The following definition introduces the family of mechanisms we focus on.

Definition 1 A deterministic mechanism (pi, xi, τi)
N
i=1 is Ex-Post Incentive Compatible

(E.P.I.C.) if

Thus our model seems sensible for most auction platforms but not necessarily for retailers. Exploring the
industry conditions under which sellers can lend money to buyers is interesting, but beyond the scope of this
paper.

6This restriction is also formulated ex-post. Our results would not change if the participation constraint
were formulated in an interim sense.
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a. For all i = 1, . . . , N and all v ∈ [0, 1]N ,

vi ∈ arg max
v′∈[0,1]

exp(−µiτi(v′, v−i))
[
vixi(v

′, v−i)− pi(v′, v−i)
]
.

b. For all i = 1, . . . , N and all v ∈ [0, 1]N ,

exp(−µiτi(vi, v−i))
[
vixi(vi, v−i)− pi(vi, v−i)

]
≥ 0.

A randomized mechanism is a probability distribution over deterministic mechanisms.
We say that a randomized mechanism is E.P.I.C. if each player finds it optimal to report his
type and to participate even when the whole type profile and the mechanism randomization
is common knowledge.

The seller maximizes the expected revenue

E
[ N∑
i=1

exp(−λτi(vi, v−i))pi(vi, v−i)
]

(1)

over all randomized E.P.I.C. mechanisms.
The following result shows the restriction to deterministic E.P.I.C. mechanisms is without

loss of generality.

Lemma 1 To find a solution to Problem (1), it is without loss to restrict attention to de-
terministic E.P.I.C. mechanisms.

In what follows, we restrict attention to deterministic E.P.I.C. mechanisms. To economize
on notation, we call a deterministic E.P.I.C. mechanisms simply E.P.I.C. mechanism.

The envelope theorem and a reformulation

An attractive feature of E.P.I.C. mechanisms is that the standard envelope approach (Mil-
grom and Segal, 2002) holds and thus transfers are completely determined by the allocation
rule (and the utility level of the lowest type).

Lemma 2 A mechanism (pi, xi, τi)
N
i=1 satisfies Definition 1 part a. if and only if

a. For every v−i ∈ [0, 1]N−1, exp(−µiτi(vi, v−i))xi(vi, v−i) is non-decreasing on vi.

b. For all v ∈ [0, 1]N ,
exp(−µiτi(vi, v−i))(vixi(vi, v−i)− p(v))

= Ui(0, v−i) +

∫ vi

0

exp(−µiτi(s, v−i))xi(s, v−i)ds

where Ui(0, v−i) is the utility attained by the lowest type vi = 0.
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Using Lemma 2, Fubini’s theorem, and the fact that Ui(0, v−i) = 0 for any optimal
mechanism, we can reformulate the problem of optimal mechanism design as

max Φ(x, τ) (2)

subject to

exp(−µiτi(·, v−i))xi(·, v−i) is non-decreasing and
N∑
i=1

xi(v) ≤ 1

where

Φ(x, τ) := E
[ N∑
i=1

xi(v) exp(−λτi(v))

(
vi −

∫ 1

vi
exp((µi − λ)τi(s, v−i))fi(s)ds

exp((µi − λ)τi(v))fi(vi)

)]
.

The rest of the paper characterizes the solution to this problem.

3 Solving the one buyer case: the dynamic marginal

revenue

To solve Problem (2), we first analyze the problem for the one buyer case. We omit the index
i (and, for example, write µ for the discount rate of the buyer and x for the allocation).

For the one buyer case, E.P.I.C. mechanisms can be fully characterized by the temporal
allocation rule.

Lemma 3 For any E.P.I.C. mechanism (x, τ, p) there is a (weakly) revenue-improving E.P.I.C.
mechanism (x̃, T, p), with x̃(v) = 1 for all v ∈ [0, 1].

Using Lemma 3, the seller’s problem can be restated as

max Φ(T ) := E
[

exp(−λT (v))

(
v −

∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)

)]
(3)

subject to
T : [0, 1]→ R+ ∪ {∞}, T is non-increasing.

For any T : [0, 1]→ R+, we define the dynamic marginal revenue of type v as

MR(v|T ) = v −
∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)
.

Then, Φ(T ) = E[exp(−λT (v))MR(v|T )].
The dynamic marginal revenue summarizes the information rents that can be extracted

from type v given an allocation rule T . This concept naturally extends the static one: for
λ = µ, MR(v|T ) = v − 1−F (v)

f(v)
as in Myerson (1981), and Bulow and Roberts (1989).

The following preliminary result shows that when the seller is more impatient than the
buyer, all trade occurs at t = 0.
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Lemma 4 If λ ≥ µ, in the optimal mechanism all trade occurs at t = 0. Types v < v̄ never
trade, with v̄ = 1−F (v̄)

f(v̄)
.

Put another way, when the buyer is more patient than the seller, the seller does not ben-
efit from inter-temporal price discrimination. The proof consists on bounding the dynamic
marginal revenue by its static counterpart. Note that since µ ≤ λ and T is non-increasing

MR(v|T ) ≤ v − 1− F (v)

f(v)

This means that for any trading mechanism, the seller’s expected payoff is at most

Φ(T ) ≤ E
[

exp(−λT (v))MR(v)

]
The term on the right side is maximized by setting

T (v) =

{
0 if v < v̄

∞ if not.

Thus, when λ ≥ µ, the optimal trading mechanism is a simple take-it-or-leave it offer as in
Myerson (1981).

The optimal mechanism changes radically when the seller is more patient than the buyer.
By delaying trade, the seller can extract virtually all the surplus from any type v buyer. The
optimal timing of trading solves a non-trivial trade-off. To see this, suppose that F is the
uniform distribution and consider the non-increasing policy T (v) = (1 − v)κ, where κ > 0.
Then,

MR(v|T ) = v − 1

κ(λ− µ)

(
1− exp(−κ(λ− µ)v)

)
.

When λ < µ, by taking κ → ∞, the seller delays trade and the dynamic marginal revenue
from type v goes to v. Yet, delaying trade is costly as the seller discount profits using a rate
λ > 0. The optimal trading policy must balance these two forces.

We now characterize some properties of the optimal trading policy T ∗.

Proposition 1 Let T ∗ be a solution to (3) and define v = inf{v | T ∗(v) < ∞}. If µ > λ,
then v = 0 and limv→0 T

∗(v) =∞.

Proposition 1 shows that when the seller is more patient than the buyer, in the optimal
mechanism all types trade. This proposition deviates from the standard results from static
mechanism design problems in which the seller commits not to trade to maximize revenue.
When µ > λ, the seller extracts higher surplus by distorting the timing of trade for all types.
Intuitively, because the seller is relatively more patient, the cost for delaying a specific type
is lower than the benefit of extracting higher rents from higher types (because consumers
are more impatient, it is less appealing for them to mimic types that are receiving the object
further in the future).
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3.1 Optimal trading dynamics

We now characterize the trading dynamics in the optimal mechanism for the one buyer case.
To find this optimal mechanism, we first ignore the monotonicity constraint in Problem (3)
and solve the relaxed problem first

max
T : [0,1]→R

∫ 1

0

exp(−λT (v))
(
v −

∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)

)
f(v)dv. (4)

To derive a necessary optimality condition, define v∗ = inf{v | T ∗(v) = 0}. Take v < v∗

and slightly perturb T ∗(v) > 0 to T ∗(v) + ε, with ε > 0. Approximating to the first order,
this perturbation has three effects on the seller expected revenue.

First, by changing the trading period, payoffs occur later and the expected revenue is
reduced by the quantity

−λ exp(−λT ∗(v))MR(v|T ∗)(v)f(v)ε.

Second, by delaying trade with agent v, higher types have less incentive to mimic type v.
Thus, from the seller’s perspective the benefit from relaxing the incentive constraint of types
s > v equals to

exp(−λT ∗(v))(µ− λ)

∫ 1

v
exp((µ− λ)T ∗(s))f(s)ds

exp((µ− λ)T ∗(v))
ε.

Finally, notice that in an E.P.I.C. mechanism, agent v’s surplus is pin-down by the assignment
for lower types s < v (Lemma 2). Hence, to encourage type v to wait ε more units of time,
the seller has to decrease the price p(v), and this has a negative impact on expected revenues:

−(µ− λ) exp((µ− λ)T ∗(v))f(v)

∫ v

0

exp(−µT ∗(s))dsε.

Combining these three effects and simplifying some terms, we deduce that any candidate
solution T ∗ must satisfy that for all v ∈ [0, v∗]

v −
∫ 1

v
exp((µ− λ)T ∗(s))f(s)ds

exp((µ− λ)T ∗(v))f(v)
= (1− λ

µ
)
(
v − exp(µT ∗(v))

∫ v

0

exp(−µT ∗(s))ds
)
. (5)

The left hand side of the above equation equals the optimal dynamic marginal revenue
MR(v|T ∗). Using Lemma 2, the term on the right hand side equals (1 − λ

µ
) times the

optimal pricing p∗(v). Therefore, in the optimal mechanism, we have that transfers and
information rents are connected by the equation:

MR(v|T ∗) = (1− λ

µ
)p∗(v) for v ≤ v∗ .

To solve the integral Equation (5) we need to compute v∗ ∈ [0, 1] and T ∗ : [0, 1] → R,
with the constraint T ∗(v) = 0 for v > v∗. While the derivation of Equation (5) is simple and
intuitive, the proof that is a valid necessary and sufficient condition for our problem is more
involved.
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Theorem 1 For µ > λ there exists a unique solution to (v∗, T ∗) to Equation (5). Moreover,
T ∗ is non-increasing, twice-continuously differentiable in ]0, v∗[, and solves Problem (3).

The proof of this theorem is technical. We now sketch the key steps in the proof; all details
are in the appendix. First, we discretize the space of types and consider a discrete version
of Problem (3). The discrete problem always has a solution, which satisfies a first order
condition. We show that the family of solutions of the discrete problems has a pointwise
converging limit, and that the limit is a continuous function that satisfies Equation (5) and
solves Problem (3). Second, using results from ordinary differential equations, we deduce
that the integral system given by Equation (5) and the constraint T (v) = 0 for v ≤ v∗ has
a unique solution (v∗, T ∗).

The proof strategy for Theorem 1 is novel. Standard existence theorems do not apply to
our problem. Results from calculus of variations impose strong convexity restrictions that
are unlikely to be met in interesting applications of our model (Ekeland and Temam, 1999).
We therefore need to discretize the space of types and take the limit as the grid grows large
to derive our necessary and sufficient optimality conditions.

A direct consequence of Theorem 1 is that the monotonicity constraint in Problem (2) is
not binding. Hence, any solution to the seller’s problem satisfies Equation (5).

The necessary and sufficient integral in Equation (5) is not easy to work with. It is
an integral equation in which the boundary condition is left open. We show that, under
mild conditions, the optimal transfer scheme can be found by solving a standard ordinary
differential equation.

Assumption 2 The distribution F is such that the limit L := limv→0
f ′(v)v
f(v)

exists.

The following result provides a simple way to find solutions to our mechanism design
problem.

Proposition 2 Suppose that Assumption 2 holds, and define l as the unique solution, in the
unit interval, of the equation

2 + L(1− (1− λ

µ
)x)− (1− λ

µ
)(2x+

λ

µ

x2

1− x
) = 0 . (6)

Then, the following hold:

1. The differential equation{
2 + f ′(v)

f(v)

(
v − (1− λ

µ
)p(v)

)
− (1− λ

µ
)
(

2p′(v) + λ
µ
p(v)p′(v)
v−p(v)

)
= 0

p(0) = 0, p′(0) = l
(7)

has a unique solution p̂ : [0, 1]→ R.

2. The optimal cutoff v∗ can be computed as the unique solution to

v − 1− F (v)

f(v)
= (1− λ

µ
)p̂(v).
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3. The optimal transfer rule solves

p∗(v) = min{p̂(v∗), p̂(v)}

4. The optimal trading time satisfies

T ∗(v) =

∫ v∗

v

p̂′(s)

µ(s− p̂(s))
ds.

To complement the above proposition, we present a simple formula that characterizes
the seller’s profit π∗ := Φ(T ∗). From incentive compatibility, we have that for v ≥ v∗ the
transfer rule has to be constant, thus,

π∗ = (1− F (v∗))p∗(v∗) + E[exp(−λT ∗(v))p∗(v)1{v≤v∗}].

Using Equation (5), we obtain that

π∗ =

(
1− λ

µ

)−1 (
(1− F (v∗))MR(v∗) + E[exp(−λT ∗(v))MR(v|T ∗)1{v≤v∗}]

)
.

Taking a different route, we can recompute the seller’s payoff from the envelope approach
derived in Equation (2), obtaining

π∗ = E[e−λT
∗(v)MR(v|T ∗)(v)1{v≤v∗}] + E[exp(−λT ∗(v))MR(v|T ∗)(v)1{v>v∗}]

= E[exp(−λT ∗(v))MR(v|T ∗)(v)1{v≤v∗}] + E[MR(v)1{v>v∗}] .

Combining these two equations we get the following result.

Corollary 1 In the optimal mechanism, the seller’s revenue is given by

π∗ =
µ

λ

(1− F (v∗))2

f(v∗)
.

Proof. Take the two equations above for π∗. Notice that E[MR(v)1{v>v∗}] = (1− F (v∗))v∗

and combine the equations to obtain π∗ as function of v∗.
As discussed earlier, the key drivers of our results are that the buyer is more impatient

than the seller and that the seller capitalizes this temporal-advantage by making a slow
screening of the demand through time. Notice that the seller’s advantage (the degree of
impatience) only depends on the ratio µ

λ
and not on the absolute values of the discount

factors.7 This result is natural: the unit of account in which the payoffs are computed (e.g.,
dollars) should be independent of the unit of time (e.g., months).

7From Proposition 2 we get that the distribution v∗ is only a function of the µ
λ and the original distribution.

Therefore, Corollary 1 implies that the revenue that the seller obtains only depends on this ratio.
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A remarkable feature of the optimal mechanism is that the threshold v∗ entirely deter-
mines the optimal mechanism. Thus, it is natural to ask how v∗ and v̄ compare, where v̄
is the optimal reserve price in the classical Myerson setup. We assert that v∗ > v̄. Indeed,
from Equation (7) we get that p∗ is strictly positive for v > 0, implying that MR(v∗) > 0.
Hence, by Assumption 1 c., the inequality holds. This inequality has a simple explanation:
the dynamic marginal revenue differs from the static benchmark only after time 0, and more-
over, it is constructed in such a way that is positive for all types v > 0. Consequently, the
only way to transform the dynamic marginal revenue of v̄ in a strictly positive one is by
allocating it after time 0.

Finally, in order to get a sense about how the solution changes as the ratio λ/µ varies,
we analyze the limit case λ/µ → 0. Because profits are bounded, Corollary 1 implies that
v∗ → 1 as λ/µ → 0. Thus, as the buyer becomes more impatient relative to the seller,
trade is likely to occur after time 0. We assert that when λ/µ→ 0, p∗(v) converges to v for
all v ∈ [0, 1]. To show this, notice that the seller’s payoff only depends on the ratio λ/µ.
Thus, without loss of generality, we can fix λ and take µ → ∞. The characterization of
T ∗ in Proposition 2, part 4, and the fact trade happens after time 0 with probability one,
imply that p∗(v) converges to v for all v.8 Therefore, the seller extracts all the rents in the
economy.

4 The optimal mechanism

In this section, we use previous results to find the optimal mechanism for the N -buyer
case. The following lemma shows that the rents that the seller can extract from the buyers
are computed by treating each buyer individually. In other words, conditional on giving the
item to buyer i, the seller’s profit is the present value of the single buyer optimal dynamic
marginal revenue.

Lemma 5 The seller’s problem is equivalent to solving

max
xi(·)

N∑
i=1

E
[
xi(v) exp(−λT ∗i (vi))MRi(vi|T ∗i )

]
.

subject to
N∑
i=1

xi(v) ≤ 1 and xi(v) ≥ 0,

where T ∗i is the solution for the single buyer case with distribution Fi.

Lemma 5 states that, in the optimal mechanism, the reports of all players only influence
who gets the item but not when the item is allocated. The dynamic decision only depends

8From Proposition 2, part 4, p∗ converges for almost every v ∈ [0, 1]. Since p∗ is continuous, we extend
the conclusion to every element in the interval.
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on each buyer’s type. Fixing T ∗i as the optimal trading time for the one buyer case with
distribution Fi (as in Section 3), we can solve for the optimal mechanism.

Theorem 2 The solution (x∗, τ ∗, p∗) to Problem (2) is given by

a. τ ∗i (v) = T ∗i (vi).

b. x∗i (v) =

{
1
|W | if i ∈ W := arg maxj exp(−λT ∗j (vj))MRj(vj|T ∗j )

0 otherwise
.

c. p∗i (v) = vix
∗
i (v)− exp(µiT

∗
i (vi)

∫ vi
0

exp(−µiT ∗i (s))x∗i (s, v−i)ds.

Proof. Immediate from Lemma 5.
When λ > µi, the seller always allocates the item. In this case, when the winner’s

valuation vi is lower than v∗i then trade is delayed.

Implementation for the symmetric case

We now characterize the optimal mechanisms for the ex-ante symmetric case.

Proposition 3 Suppose that valuations are drawn from the same distribution F and that
players discount rates coincide µi = µ > λ, for i = 1, . . . , N . Then the following protocol is
a revenue maximizing mechanism:

1. At t = 0, run a modified second price auction. Where the highest bid b(1) receives the
item and pays the second highest reported bid b(2) if b(2) ≥ v∗.

2. If b(2) < v∗, preannounce a pricing scheme

ψ∗(t; b(2)) = T ∗−1(t)− exp(µt)

∫ T ∗−1(t)

b(2)

exp(−µT ∗(s))ds , t > 0.

The highest-valuation bidder trades at time T ∗(b(1)) and pays ψ∗(T ∗(b(1)); b(2)).

Proof. Immediate from Lemma 5.
The optimal mechanisms runs a modified second price auction with reserve price v∗ at

t = 0. The difference with a standard second price auction comes from the entry decision
generated by the reserve price. In a standard second price auction, the auction allocates if at
least one buyer bids above the reserve price. In our modified second price auction, it is also
important whether the second highest bid is above the reserve price. Thus, if two or more
bids are above v∗, the auction allocates the good to the bidder with the highest bid, who
pays the second highest bid b(2). If not, the auction does not allocate the object, and the
seller negotiates a price and a time at which the transaction occurs.9 The highest valuation

9Note that the seller commits to the protocol and so she honors her terms of trade.
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bidder pays a price determined by the second highest valuation b(2). The negotiation results
in a transaction at time T ∗(b(1)).

The main message from Proposition 3 is that a patient seller should use an auction to
extract rents through competition and a decreasing price path to screen valuations over time.
This result casts doubt on the presumption that sellers should commit not to sell after an
auction fails. Our results therefore may help rationalize why sellers sometimes commit to
sell after an auction.10

5 Illustrative example

In this section, we characterize the optimal mechanism for two buyers whose valuations are
uniformly distributed on [0, 1] and µ > λ.

Dynamic Marginal Revenue

We first start by computing the dynamic marginal revenue for each buyer. Using Proposi-
tion 2, we compute the optimal temporal distortion and the respective dynamic marginal
revenue. For the uniform case, we have that the optimal temporal distortion is

T ∗(v) =

0 if v ≥ v∗

2v∗−1

µ
(

1−v∗(1+λ
µ

)
) log(v

∗

v
) if v1 ≤ v∗,

where

v∗ =
1

1 +
√

λ
µ
(2− λ

µ
)−1

.

The dynamic marginal revenue is

MR(v|T ∗) =

2v − 1 if v ≥ v∗(
1−

√
λ
µ
(2− λ

µ
)−1

)
v if v ≤ v∗.

.

Optimal allocation

The surplus that could be extracted from player i is MR(vi|T ∗). Because both players
have valuations drawn from the same distribution, (and the dynamic marginal revenue is
monotone) we have that x∗i (v) = 1 if and only if vi > v−i. When buyer i gets the item, the
item will be delivered at time T ∗(vi).

10One reason sellers may sell after an auction fails is lack of commitment. Yet, in some marketplaces sellers
commit to sell if no buyer bids above a reserve price. For example, the platform mercadominero.cl sells
second hand mining machinery and announces a dynamic pricing scheme at the beginning of each auction.
For details see http://www.mercadominero.cl/sitio/procedimiento.pdf.
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Dynamic implementation

Since players are ex-ante symmetric, the optimal mechanism can be implemented as follows.
At time 0, run a modified second price auction: if b(2) ≥ v∗, the player with the highest bid
gets the item and pays the second highest bid b(2); if not, post the dynamic pricing scheme

ψ∗(t; b(2)) = v∗
c

1 + c
exp

(
−µt
c

)
+ b(2) 1

1 + c

(
b(2)

v∗

)c
exp(−µt) , t ≥ 0

where c = 2v∗−1
1−v∗(1+λ

µ
)
.

Comparative statics

To illustrate the solution and gain some intuition, we plot figures containing the dynamic
marginal revenues, the reserve price, the optimal price paths for different parameter settings,
and the seller’s profit as a function of the parameters.
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Figure 2: Dynamic Marginal Revenue for the uniform case, and λ = 1. The green line is
the standard demand curve (complete information rents), and the blue line is the marginal
revenue in the static case.

Figure 2 shows the optimal dynamic marginal revenue as the buyer’s discount rate µ
increases: the complete information rents correspond to the demand curve D depicted in
green, whereas the static marginal revenue is depicted in blue. As µ/λ increases, the dynamic
marginal revenue approaches to the demand curve D. On the other hand, when µ approaches
λ, the dynamic marginal revenue approaches the static marginal revenue.

Figure 3 shows that the reserve price is increasing as a function of µ/λ. From the formula
described at the beginning of this section, we observe that the reserve price only depends
on this ratio. Moreover, when the discount rates are very different, the posted price part
of the optimal mechanism becomes more relevant (and likely to end up being used). On
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Figure 3: Reserve value v∗ as a function of µ/λ.
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Figure 4: Optimal pricing ψ∗ as function of the second highest bid b2, when b2 < v∗ and
µ = 3, λ = 1.

the contrary, as µ/λ→ 1, the optimal dynamic mechanism approaches to the optimal static
mechanism.

Regarding the optimal pricing ψ∗, Figure 4 shows the impact of the second highest bid
b2 in ψ∗ (conditional that b2 < v∗). We observe that as b2 increases, so do trading prices.

Figure 5 shows the impact on the pricing scheme as a function of the disagreement in the
discount rates. As µ/λ increases, the pricing scheme gets steeper and with higher values. On
the other hand, as µ and λ get closer the pricing gets flatter, recovering the optimal static
mechanism.

Figure 6 illustrates the relevance of the auction stage in the optimal revenues. The plot
shows the percentage of the seller’s revenue coming from the auction. We observe that for
similar discount factors the auction is an important source of revenues for the seller. Yet,
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Figure 6: Fraction of the seller’s revenue coming from the auction stage, as a function of
µ/λ.

even when the discount factors are similar, the pricing stage brings a significant fraction of
revenues. When buyers are significantly more impatient than the seller, the auction stage
does not play an important role: the pricing stage provides most of the seller’s rents. Thus,
our results suggest that in markets where the seller and buyers have similar access to capital,
auctions should play an important role; by contrast, in markets where buyers are significantly
more impatient, posted prices should prevail.

6 Concluding remarks

We derive the revenue maximizing mechanism when a seller and buyers have different
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discount rates. The optimal policy crucially depends on the comparison between discount
rates. When the seller is more impatient than the buyers, the optimal mechanism is a
Myerson’s optimal auction run at time zero (and trade is not delayed). When the buyers are
more impatient than the seller, time is used as a screening device. The optimal mechanism
allocates the item to the bidder with the highest discounted (optimal) dynamic marginal
revenue. When buyers are ex-ante symmetric the mechanism takes a simple form: An
auction with reserve price assigns at time 0 and, when the item is not sold, a dynamic
pricing scheme awards the item to the highest-type buyer. Our results show that auctions
and pricing schemes are complements for a patient seller and we introduce new tools to solve
our mechanism design problem.

An interesting open question concerns the role of time in situations when both parties,
seller and buyers, have private valuations about an asset. Consider for instance the setting
described by Myerson and Satterthwaite (1983), where a negotiation between a seller and
a buyer is mediated by a broker. Both parties have private and independent valuations
about the underlying asset. The broker’s objective is to maximize the expected profit she
can extract from the transaction.11 To illustrate the relevance of the timing decision in this
context, we show that if the broker is more patient than the other agents, time is a useful
tool for the broker. On the one hand, if the broker restricts attention to static mechanisms,
his profit would be given by

πStatic = E
[
(MR(vb)−MC(vs))1{MR(vb)≥MC(vs)}

]
,

where MC(vs) = vs+
F (vs)
f(vs)

(Myerson and Satterthwaite, 1983, Section 5). On the other hand,
if the broker restricts attention to static allocations for the seller, τs ≡ 0, but screens the
buyer using τb(vs, vb) = T ∗(vb) (where T ∗ is the temporal allocation described in Section 3),
the broker’s profit is given by

E
[(
e−λBrokerT

∗(vb)MR(vb|T ∗)−MC(vs)
)
1{e−λBrokerT

∗(vb)MR(v|T ∗)≥MC(vs)}

]
≤ πDynamic.

Noticing that e−λBrokerT
∗(vb)MR(vb|T ∗) ≥ MR(vb), with strict inequality for a nonnegligible

set of types, we conclude that πStatic < πDynamic. In particular, when valuations are uniformly
distributed in [0, 1] and discount rates

µBuyer

λBroker
= 5, it is easy to show that πStatic = 0.0419

whereas πDynamic ≥ 0.0461.
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A Appendix A: Proofs

This appendix contains proofs for all results but Theorem 1.

Proof of Lemma 1. Consider any randomized E.P.I.C. mechanism. Note that all random-
ness can be generated using a random variable ω ∈ [−1, 0] which is uniform (independent
of valuations). Construct a new mechanism design problem, with N + 1 buyers, where the
new buyer has valuation ω. Any general E.P.IC. mechanism in the original problem can be
seen as a deterministic E.P.I.C. mechanism in the N + 1-buyer problem. Theorem 2 shows
that in the optimal mechanism for the N + 1 game, the temporal allocation for each player
is deterministic and independent of the others players valuation (in particular, it does not
depend on ω). Noting that the buyer with valuation ω never gets the item and never sets
the price paid by the winning buyers, we conclude that the optimal mechanism for the N +1
problem does not condition on ω. As a result, the restriction to deterministic mechanism for
the N -buyer problem is without loss.
Proof of Lemma 2. For the proof fix v−i and consider ui(v

′
i, vi) := exp(−µiτi(v′i))(vixi(v′i)−

pi(v
′
i)), and U(vi) = u(vi, vi).

12

Consider an E.P.I.C. mechanism (p, x, τ), then for every vi, v
′
i we have that u(vi, vi) ≥

u(v′i, vi) and u′(v′i, v
′
i) ≥ u(vi, v

′
i). This is equivalent to

exp(−µiτi(vi))vixi(vi)− exp(−µiτi(v′i))v′ixi(v′i)
≥ exp(−µiτi(vi))pi(vi)− exp(−µiτ(v′i))pi(v

′
i)

≥ exp(−µiτi(v′i))vixi(v′i)− exp(−µiτi(vi))v′ixi(vi) .

Thus,

vi(exp(−µiτi(vi))xi(vi)−exp(−µiτi(v′i))xi(v′i)) ≥ v′i(exp(−µiτi(vi))xi(vi)−exp(−µiτi(v′i))xi(v′i)).

This implies that exp(−µiτi(vi))xi(vi) is non-decreasing.
To show part b., notice that

u(v′i, v1)− u(v′i, v2) = exp(−µiτi(v′))xi(v′i)(v1 − v2) ≤ |v1 − v2| ,

which implies that u(v′i, ·) is absolutely continuous. Because u(v′i, ·) is also differentiable,
with u2(v′i, vi) = exp(−µiτi(v′i))xi(v′i) ≤ 1, from Theorem 2 in Milgrom and Segal (2002), we
get that Ui(vi) = Ui(0) +

∫ vi
0

exp(−µiτi(s))xi(s)ds.
To tackle the converse, consider an E.P.I.C. mechanism (p, x, τ) satisfying a. and b..

Because Ui(v1)−Ui(v2) =
∫ v2

v1
exp(−µiτi(s))xi(s)ds ≤ |v1−v2| we have that Ui(vi) is Lipschitz

and hence φ(v′i, vi) = u(v′i, vi)−Ui(vi) is absolutely continuous a.e. differentiable on vi. Thus,
for a.e. vi ∈ [0, 1] we have that

φ2(v′i, vi) = u(v′i, vi) = U ′i(vi) = exp(−µiτi(v′i))xi(v′i)− exp(−µiτi(vi))xi(vi) .
12To simplify notation we omit v−i on xi and τi.
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By the monotonicity assumption over (xi, τi), we have that φ2(v′i, vi) ≥ 0 for a.e. vi < v′i
and φ2(v′i, vi) ≤ 0 for a.e. vi > v′i. The continuity of φ(v′i, ·) implies that 0 = φ(v′i, v

′
i) ≥

φ(v′i, vi) for every vi. Thus, Ui(vi) ≥ u(v′i, vi) for (v′i, vi) which correspond to the incentive
compatibility definition.
Proof of Lemma 3. Given an E.P.I.C. mechanism (x, τ), consider the mechanism (x̃, T )

where x̃(v) = 1 and T (v) = − log(x(v))
µ

+ τ(v) for v ∈ [0, 1].

Using Lemma 2, we have that (x̃, T ) is also an E.P.I.C. mechanism and the transfers
generated under both mechanisms are exactly the same.

Rewriting the seller’s problem, we get that

Φ(x, τ) = E[exp(−λτ(v))p(v)] = E[exp(−λT (v))x(v)
λ
µp(v)]

≤ E[exp(−λT (v))p(v)] = Φ(x̃, T ) .

Where the inequality holds because x(v) ∈ [0, 1]. Hence, we conclude that without loss
of generality we can restrict our attention to mechanism where the non-temporal allocation
rule is always equals to one.
Proof of Proposition 1. Take T : [0, 1]→ R non-increasing such that v > 0, with v < 1.
For ε, η ∈ R and T̄ = T (v̄ + ε), define the alternative allocation rule

T̂ (v) =

{
T (v) v /∈ [v − η, v + ε]

T̄ v ∈ [v − η, v + ε].

Note that T̂ is non-increasing. We claim that we can choose ε and η such that Φ(T̂ )−Φ(T ) >
0. Now,

Φ(T̂ )− Φ(T ) =

∫ v+ε

v−η
exp(−λT̄ )

{
v − F (v + ε)− F (v)

f(v)
−

∫ 1
v+ε exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T̄ )f(v)

}
f(v)dv

−
∫ v+ε

v
exp(−λT (v))

{
v −

∫ 1
v exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)

}
f(v)dv

= exp(−λT̄ )
{

(v − η)
(
F (v + ε)− F (v − η)

)}
− exp(−λT̄ )

∫ v+ε

v−η

∫ 1
v+ε exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T̄ )f(v)
f(v)dv

−
∫ v+ε

v
exp(−λT (v))

{
v −

∫ 1
v exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)

}
f(v)dv
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It follows that

exp(λT̄ )
(

Φ(T̂ )− Φ(T )
)

= (v − η)
(
F (v + ε)− F (v − η)

)
−
∫ v+ε

v−η

∫ 1

v+ε
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T̄ )f(v)
f(v)dv

−
∫ v+ε

v

exp(−λ(T (v)− T̄ ))
{
v −

∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)

}
f(v)dv

≥(v − η)
(
F (v + ε)− F (v − η)

)
−
∫ v̄+ε

v−η

∫ 1

v+ε
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T̄ )f(v)
f(v)dv − ε

where the inequality follows since exp(−λ(T (v)− T̄ )) ≤ 1 for all v ∈ [v̄, v̄+ ε]. Take η ∈]0, v̄[
such that (v̄ − η)

(
F (v̄) − F (v̄ − η)

)
> 0, define δ = (v̄ − η)

(
F (v̄) − F (v̄ − η)

)
, and take ε

and T̄ = T (v̄ + ε) such that

ε < δ/2 and

∫ v̄+ε

v̄−η

∫ 1

v̄+ε
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T̄ )f(v)
f(v)dv < δ/2

where we use the assumption that µ− λ > 0 and the fact that T̄ = T (v̄+ ε)→∞ as ε→ 0.
It follows that

exp(λT̄ )
(

Φ(T̂ )− Φ(T )
)
> (v̄ − η)(F (v̄ + ε)− F (v̄)) + δ − δ

2
− δ

2
> 0

and therefore Φ(T̂ )− Φ(T ) > 0.
Proof of Proposition 2. We start by showing that l exists. If f(0) > 0, then since f ′(0)
exists we have that L = 0. If instead f(0) = 0, because F is regular in the myersonian sense,
we get that f ′(0) > 0. Thus, independently of the value f(0), we have that L ≥ 0. Next,
noticing that the left hand side of Equation (6) is strictly decreasing in x, that at x = 0 the
value is 2 +L > 0, and that as x approaches to one the value goes to −∞; we conclude that
l is well defined. More on, l ∈ (0, 1). The uniqueness of l comes from the monotonicity of
the function g(x) := 2 + L(1− (1− λ

µ
)x)− (1− λ

µ
)(2x+ λ

µ
x2

1−x) over the domain [0, 1].13

I. Existence of Solution of the O.D.E. Consider the optimal allocation T ∗. From
Theorem (1), we have that T ∗ is differentiable on (0, v∗). Thus, differentiating Equation (5)
we obtain:

T ∗′(v) = −
2 + f ′(v)

f(v)

∫ 1
v exp((µ−λ)T ∗(s))f(s)ds

exp((µ−λ)T ∗(v))f(v)

µ(1− λ
µ
)

[∫ 1
v exp((µ−λ)T ∗(s))f(s)ds

exp((µ−λ)T ∗(v))f(v)
+ exp(µT ∗(v))

∫ v
0

exp(−µT ∗(s))ds
] . (8)

13Taking derivative, we have that g′(x) = −(1− λ
µ )(2 + L+ 2x(1−x)+x3

(1−x)2 < 0.
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Using Lemma 2, we get that p∗′(v) = −µ(v − p(v))T ∗′(v). Plugging this result and
Equation (5) into Equation (8), we obtain that the optimal pricing policy p∗ satisfies

2 +
f ′(v)

f(v)
(v − (1− λ

µ
)p∗(v))− (1− λ

µ
)(2p∗′(v) +

λ

µ

p∗(v)p∗′(v)

v − p∗(v)
) = 0 for v ≤ v∗ .

Clearly, the optimal mechanism satisfies p∗(0) = 0. Moreover taking the limit v → 0 in the
last equation, and using L’Hopital’s rule, we conclude that

2 + L(1− (1− λ

µ
)p∗′(0))− (1− λ

µ
)(2p∗′(0) +

λ

µ

p∗′(0)2

1− p∗′(0)
) = 0.

Using Lemma 2 part a., we have that p∗ is increasing. Hence, since with p∗(v) ≤ v and
p∗(0) = 0, we have that p∗(v) ∈ (0, 1). We conclude that p∗ solves the differential equation.

II. Uniqueness of Solution of the O.D.E. We claim that p∗ is the unique solution
of the Cauchy Problem. Take a general solution p, we assert that p(v) ≤ v for all v ∈ [0, 1].
Because p′(0) < 1, it means that for v in a neighborhood of 0, we have that p(v) < v. Now,
suppose that there is ṽ such that p(ṽ) = ṽ, from the differential equation at ṽ we obtain
that p′(ṽ) = 0. Consequently, for v in a neighborhood of ṽ we get p′(v) < 1, equivalently,
p(v) < v. Thus, p(v) < v for almost every v ∈ [0, 1].

Because (1 − λ
µ

)
p(1) < 1 = MR(1) and the inequality is reversed at v = 0, i.e. (1 −

λ
µ

)
p(0) > MR(0)), we obtain that the set V ∗ = {v | (1 − λ

µ

)
p(v) = MR(v)} is not empty.

For v̆ ∈ V ∗, we implicitly define T̂ by exp(µT̂ (v))
∫ v

0
exp(−µT̂ (s))ds = (v − p(v)) for v ≤ v̆

and T (v̆) = 0. Writing u(v) =
∫ v

0
exp(−µT̂ (s))ds, we get the following differential equation

u(v)

u′(v)
= (v − p(v)) .

Using that u(v̆) = v̆ − p(v̆), we can easily solve the above differential equation.14 From the
solution we get that

exp(µT̂ (v)) =
1

u′(v)
=
v − p(v)

v̆ − p(v̆)
exp

(
−
∫ v

v̆

ds

s− p(s)

)
.

Taking to the power of (1− λ/µ) in both side of the expression, we get that

exp((µ− λ)T̂ (v)) =

[
v − p(v)

v̆ − p(v̆)
exp

(
−
∫ v

v̆

ds

s− p(s)

)](1−λ
µ

)
. (9)

Similarly, consider T̃ such that
1−F (v̆)+

∫ v̆
v exp((µ−λ)T̃ (s))f(s)ds

exp((µ−λ)T̃ (v))f(v)
= v −

(
1 − λ

µ

)
p(v) for v ≤ v̆.

Since v̆ ∈ V ∗, we have that T̃ (v̆) = 0. Doing the same procedure as we did for T̂ , we get

exp((µ− λ)T̃ (v)) =
1

f(v)

v̆ −
(
1− λ

µ

)
p(v̆)

v −
(
1− λ

µ

)
p(v)

exp

(
−
∫ v

v̆

ds

s−
(
1− λ

µ

)
p(s)

)
. (10)

14The solution is log
(u(v̆)
u(v)

)
= −

∫ v
v̆

ds
s−p(s) , for v ≤ v̆.
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We claim that T̂ (v) = T̃ (v) for v ≤ v̆. From Equations (9) and (10), we have that T̂ , T̃
are differentiable (since p is differentiable), and moreover, they satisfy

(µ− λ)T̂ ′(v) = −
(
1− λ

µ

) p′(v)

v − p(v)
(11)

(µ− λ)T̃ ′(v) = −
2 + f ′(v)

f(v)
(v −

(
1− λ

µ

)
p(v))−

(
1− λ

µ

)
p′(v)

(v −
(
1− λ

µ

)
p(v))

; (12)

combining the above and using that p solves Equation (2), we conclude T̂ ′(v) = T̃ ′(v) for
v ≤ v̆. Finally, since T̂ (v̆) = T̃ (v̆) = 0 we conclude that T̂ = T̃ . Hence, the bundle (T̂ , v̆)
solves the equation presented in Theorem 1. The uniqueness result implies that T̂ = T̃ = T ∗

and v̆ = v∗. Thus, p(v) = p∗(v) is the optimal pricing mechanism and v∗ is the unique
solution to the equation (1− λ

µ

)
p(v∗) = MR(v∗).

Proof of Lemma 5. Using the same technique as for the single buyer case (see Ap-
pendix B), we deduce, via the discretization approach, the first order conditions for the
temporal allocation variable for Problem (2).

Given a fixed report v−i ∈ [0, 1]N−1, we denote by v∗(v−i) the smallest type such that
τ ∗i (v∗(v−i)) = 0. Then, for vi ≤ v∗(v−i) there is an interior solution on the temporal alloca-
tion, satisfying:

xi(v)

[
−λvi + µi

∫ 1

vi
exp((µi − λ)τi(s, v−i))fi(s)ds

exp((µi − λ)τi(v))fi(vi)

−(µi − λ) exp(µiτi(v))

∫ vi

0

exp(−µiτi(s, v−i))ds
]

= 0. (13)

By the monotonicity condition over E.P.I.C. mechanisms (see Lemma 2), we have that
whenever xi(vi, v−i) > 0, then xi(v

′
i, v−i) > 0 for v′i > vi. Thus, for xi(v

∗(v−i), v−i) > 0 we
have that Equation (13) has a not trivial solution. When xi(v

∗(v−i), v−i) = 0, the temporal
allocation rule is irrelevant for the seller’s payoff. In particular, T ∗i (vi), the optimal allocation
for the single case, is a solution to the problem.

Thus, defining vi := infvi{vi | xi(vi, v−i) > 0} we have that for any type vi ∈ [vi, v
∗(v−i)]

the following conditions holds

−λvi+µi

∫ 1

vi
exp((µi − λ)τi(s, v−i))fi(s)ds

exp((µi − λ)τi(v))fi(vi)
−(µi−λ) exp(µiτi(v))

∫ vi

0

exp(−µiτi(s, v−i))ds = 0.

From Theorem 1 we conclude that there is a unique solution of this integral equation. More-
over, the solution is τi(vi, v−i) = T ∗i (vi), where T ∗i is the solution of the single agent problem
for a buyer whose distribution is drawn according to Fi and have a discount factor µi.

B Appendix B: Proof of Theorem 1

This appendix provides a proof for Theorem 1. First, we show the existence of solution
for Problem (2). We also show that the optimal solution consists of a pair (T ∗, v∗) satis-
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fying Equation (5). The second part of this section shows the uniqueness of the solution.
Section B.3, provides proofs for technical steps used in Section B.1 and Section B.2.

B.1 Existence of Solution: A Discretization Approach

For n ∈ N, consider the partition of the unit interval given by Pn = { i
n
| i = 1, . . . , n}.

Define the problem

(Pn) max
T :Pn→R+∪{∞}

n∑
i=1

exp(−λTi)
{ i
n
−
∑n

k=i exp((µ− λ)Tk)f( k
n
) 1
n

exp((µ− λ)Ti)f( i
n
)

}
f(
i

n
)
1

n
,

the discretization of Problem (4).
Because R+ ∪{∞} is compact (under the extended topology) and the problem is contin-

uous on T , we have that Problem (Pn) has a solution T n ∈ [R+ ∪ {∞}]n.
Even though T ni could be infinity for some i ∈ Pn, we assert that this cannot be true.

Take j the largest element in Pn such that T nj = ∞. By definition of j we have that∑n
k=j+1 exp((µ− λ)T nk )f( k

n
) 1
n
<∞. Hence, we can find T̃j <∞ sufficiently large such that

j

n
−
∑n

k=j+1 exp((µ− λ)T nk )f( k
n
) 1
n

+ exp((µ− λ)T̃j)f( j
n
) 1
n

exp((µ− λ)T̃j)f( j
n
)

> 0 .

Replacing Tj by T̃j the seller’s payoff strictly increases, violating the optimality of T n. There-
fore, the optimal solution never allocates at time ∞.

Noticing that the optimization problem is smooth we have that for T ni > 0, first order
conditions holds. Thus, after some algebraic manipulation, we obtain

−λ i
n

+ µ

∑n
k=i exp((µ− λ)T nk )f( k

n
) 1
n

exp((µ− λ)T ni )f( i
n
)

− (µ− λ) exp(µT ni )
i∑

k=1

exp(−µT nk )
1

n
= 0 for T ni > 0 .

(14)
We are now in position to take the limit over the mesh. For this extent, we project T n

over [R+ ∪ {∞}][0,1], by defining for v ∈ [0, 1] T n(v) := T ni for v ∈ ( i−1
n
, i
n
]. Similarly, we

define fn(v) := fn( i
n
) as the discretization of the density distribution. Using that R+∪{∞}

is a compact set, Tychonoff’s Theorem states that we can take a subsequence such that
Tn → T ∗ (point-wise), and fn → f , where f is the original density of our problem (Willard,
2004, Chapter 6).

Two intermediate claims are derived from the limit.

Claim 1 T ∗ is a continuous function satisfying

−λv+µ

∫ 1

v
exp((µ− λ)T ∗(s))f(s)ds

exp((µ− λ)T ∗(v))f(v)
−(µ−λ) exp(µT ∗(v))

∫ v

0

exp(−µT ∗(s))ds = 0 for T ∗(v) > 0 .

Proof. See Apprendix B.3.
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Claim 2 T is smooth function. Moreover, there is v∗ ∈ (0, 1] such that T (v) = 0 if and only
if v ≥ v∗ and T is decreasing on (0, v∗].

Proof. See Apprendix B.3.
Using the above results, we are now in position to show that T solves Problem (2). First,

denote by Φ(T n, fn) the value of Problem (4) when is evaluated in T n and the buyers’s
distribution is given by fn. Then, by continuity of T , we have that Φ(T n, fn) < Φ(T, f) + ε
for n sufficiently large.

Consider a feasible continuous solutionG of Problem (4). Then, by Riemman-integrability
of G, we have that Φ(Gn, fn) > Φ(G, f)− ε where Gn is G’s projection onto Pn. Next, from
the optimality of T n in Problem (Pn), we get that Φ(Gn, fn) < Φ(T n, fn). Taking ε → 0,
we have that for every feasible continuous solution G, Φ(G, f) ≤ Φ(T ∗, f). By a density
argument, we can extend this conclusion to a general feasible solution G. Finally, the mono-
tonicity of T ∗, permits to conclude that T ∗ solves Problem (3).

B.2 Uniqueness of the bundle (T ∗, v∗)

The objective of this section is to show that there is a unique function T ∗ : [0, 1]→ R+ and
v∗ ∈ [0, 1] such that T ∗(v) = 0 for v ≤ v∗ and T ∗ solves Equation (5) for v ≤ v∗. First,
consider v∗ as given, we claim that T ∗ as a function of v∗ is uniquely pin-down.

Claim 3 For u ∈ [0, 1], there is at most one function Tu : [0, u] → R such that Tu(u) = 0
and solves

v −
∫ 1

v
exp((µ− λ)Tu(s))f(s)ds

exp((µ− λ)Tu(v))f(v)
= (1− λ

µ
)(v − exp(µTu(v))

∫ v

0

exp(−µTu(s))ds) ∀v ≤ u ,

(15)

Proof. See Apprendix B.3.
To show uniqueness of the bundle (T ∗, v∗), suppose for the sake of a contradiction that

there are v∗1 > v∗2 and Tv∗1 and Tv∗2 both solving (15). Define T̃v∗2 (v) := Tv∗1 (v)− Tv∗1 (v∗2). By

simple inspection we get that T̃v∗2 also solves Equation (5) and satisfies T̃v∗2 (v∗2) = 0. Invoking

Claim 3, we conclude that T̃v∗2 (v) = Tv∗2 (v) for v ≥ v∗2.
Using the monotonicity of Tv∗1 , we get

v∗2 −
1− F (v∗2)

f(v∗2)
< v∗2 −

∫ 1
v∗2

exp((µ− λ)Tv∗1 (s))f(s)ds

exp((µ− λ)Tv∗1 (v))f(v)
= v∗2 −

∫ 1
v∗2

exp((µ− λ)T̃v∗2 (s))f(s)ds

exp((µ− λ)T̃v∗2 (v))f(v)
(16)

= (1− λ

µ
)(v∗2 − exp(µT̃v∗2 (v∗2))

∫ v∗2

0
exp(−µT̃v∗2 (s))ds) . (17)

On the other hand, using that T̃v∗2 (v) = Tv∗2 (v) for v ≤ v∗2, we get

v∗2 −
1− F (v∗2)

f(v∗2)
= (1− λ

µ
)(v∗2 − exp(µTv∗2 (v∗2))

∫ v∗2

0

exp(−µTv∗2 (s))ds) (18)

= (1− λ

µ
)(v∗2 − exp(µT̃v∗2 (v∗2))

∫ v∗2

0

exp(−µT̃v∗2 (s))ds) . (19)
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Equations (17) and (19) are mutually exclusive. Therefore, we conclude that there is a
unique v∗ ∈ [0, 1] and T ∗ solving Equation (5).

B.3 Proofs of Claims

Proof of Claim 1. We assert that T ∗ is continuous if the sequence (T n){n≥0} satisfies the
following property at every v ∈ [0, 1]:

(Property 1) ∀ε > 0 ∃N ∈ N ∃δ > 0 s.t ∀n ≥ N if | i
n
−v| ≤ δ then |T n(

i

n
)−T n(

i+ 1

n
)| < ε .

Indeed, take v ∈ [0, 1] and a sequence vk → v. Because T n → T ∗ (pointwise), we have that
for n, k sufficiently large, |T ∗(v)− T ∗(vk)| ≤ ε+ |T n( i

n
)− T n( i+1

n
)| with v ∈ ( i

n
, i+1
n

]. Hence,
so long as |T n( i

n
)− T n( i+1

n
)| < ε, T ∗ is continuous at v.

We now proceed to show that Property 1 holds. Consider first the case where T n( i
n
), T n( i+1

n
)

are both positive. Subtracting Equation (14), when is evaluated at T n( i
n
) and when is eval-

uated at T n( i+1
n

), we obtain that

Cn
i

(
f( i

n
)

f( i+1
n

)
exp(−(µ− λ)T n(

i+ 1

n
))− exp(−(µ− λ)T n(

i

n
))

)
= W n

i

(
exp(µT n(

i+ 1

n
))− exp(µT n(

i

n
))

)
,

(20)

where Cn
i = µ

∑n
k=i exp((µ−λ)Tnk )f( k

n
) 1
n

f( i
n

)
and W n

i = (µ− λ)
∑i

k=1 exp(−µT nk ) 1
n
.

Suppose for the sake of a contradiction that Property 1 does not hold. Then, there is
ε > 0, and a sequence of in approaching v such that |T n( in

n
)−T n( in+1

n
)| > ε. Without loss of

generality, consider the case that T n( in
n

) > T n( in+1
n

) + ε (the other case is analogous). Then,
by the monotonicity of the exponential function, we have that

exp(−(µ− λ)T n(
in + 1

n
))− exp(−(µ− λ)T n(

in
n

)) > exp(−(µ− λ)T n(
in
n

))(exp(−(µ− λ)ε)) ,

exp(µT n(
in + 1

n
))− exp(µT n(

in
n

)) < − exp(µT n(
in
n

))(exp(µε))

These two inequalities have different signs, and are bounded away from zero. On the other
hand, the density f is continuous and the tems Cn

i and W n
i are alway positive. This two

facts make impossible to hold Equation (20), which is a contradiction. We conclude that
Property 1 holds for the case where T n( i

n
), T n( i+1

n
) are both positive.

The second case is when T n( i
n
) is zero and T n( i+1

n
) is positive. The proof is similar with

the subtlety that for i
n

the first order conditions are given by

−λ i
n

+ µ

∑n
k=i exp((µ− λ)T nk )f( k

n
) 1
n

f( i
n
)

− (µ− λ)
i∑

k=1

exp(−µT nk )
1

n
≤ 0 .
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Hence, subtracting Equation (14) at i+1
n

, in the above expression we obtain

Cn
i

(
f( i

n
)

f( i+1
n

)
exp(−(µ− λ)T n(

i+ 1

n
))− 1

)
≥ W n

i

(
exp(µT n(

i+ 1

n
))− 1

)
− µ− λ

n
.

Noticing limPn
f( i
n

)

f( i+1
n

)
exp(−(µ− λ)T n( i+1

n
)) ≤ 1, the above inequality can only be sustained

for every n if T n( i+1
n

)→ 0, i.e., |T n( i+1
n

)− T n( i
n
)| → 0.

The case where T n( i
n
) is positive and T n( i+1

n
) is zero is analogous to the last paragraph

and is, therefore, omitted.
We conclude that T ∗ is a continuous function.
To finalize the proof of the claim we take the limit in Equation (14). Since T ∗ is contin-

uous, it is Riemman-Integrable, therefore by taking the limit over Equation (14) we get

−λv+µ

∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)T (v))f(v)
−(µ−λ) exp(µT (v))

∫ v

0

exp(−µT (s))ds = 0 for T (v) > 0 .

Proof of Claim 2. Take v such that T (v) > 0. We define the real function

hv(x) = −λv + µ

∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)x)f(v))
− (µ− λ) exp(µx)f(v)

∫ v

0

exp(−µT (s))ds .

We assert that hv is strictly decreasing. Indeed, note that

h′v(x) = −µ(µ−λ)

(∫ 1

v
exp((µ− λ)T (s))f(s)ds

exp((µ− λ)x)f(v))
+exp(µx)f(v)

∫ v

0

exp(−µT (s))ds

)
< 0 for x ∈ R.

This implies that T (v) = h−1
v (0).

Because T (v) is continuous we have that hv(x) is differentiable on v. Therefore, by the
Implicit Function Theorem we conclude that T is continuously differentiable on v.

Hence, differentiating Equation (14) at v, we get

T ′(v) = −
2 + f ′(v)

f(v)

∫ 1
v exp((µ−λ)T (s))f(s)ds

exp((µ−λ)T (v))f(v)

µ(1− λ
µ
)

[∫ 1
v exp((µ−λ)T (s))f(s)ds

exp((µ−λ)T (v))f(v)
+ exp(µT (v))

∫ v
0

exp(−µT (s))ds

] . (21)

Define v∗ := min{v | T (v) = 0}, then the numerator of T ′(v∗) is −[2 + f ′(v∗)
f2(v∗)

(1 −
F (v∗))] which is strictly negative.15 Thus, because the denominator of T ′(v∗) is positive,
T is decreasing on [v∗ − ε, v∗]. We claim that T is strictly decreasing on (0, v∗]. If not,
ṽ = max{v | v ≤ v∗ and T ′(v) = 0} would be well-defined. Then, T (ṽ) > 0 and from

15The Myerson-regularity condition on F is equivalent, in terms of the density f , to have 2 + f ′(v)
f2(v) (1 −

F (v)) > 0, for every v > 0.
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Equation (21) we would get that the numerator of T ′(ṽ) is strictly less than −[2 + f ′(ṽ)
f2(ṽ)

(1−
F (ṽ))]. Thus T ′(ṽ) < 0, contradicting the definition of ṽ. Therefore, T is decreasing on
(0, v∗] and equals to zero for v ≥ v∗.
Proof of Claim 3. From Equation (15) evaluated at v = u, we obtain that cu :=∫ u

0
exp(−µTu(s))ds equals u−(1− λ

µ
)−1
[
u− 1−F (u)

f(u)

]
. Also we have that

∫ v
0

exp(−µTu(s))ds =∫ u
0

exp(−µTu(s))ds −
∫ u
v

exp(−µTu(s))ds. These two expression allow us to alternatively
restructure Equation (15) as

v−
∫ 1

v
exp((µ− λ)Tu(s))f(s)ds

exp((µ− λ)Tu(v))f(v)
= (1− λ

µ
)(v−exp(µTu(v))

(
cu−

∫ u

v

exp(−µTu(s))ds
)
) (22)

By a similar argument as in Claim 2, we have that Tu is differentiable. Hence, differen-
tiating the above equality with respect to v, we get

T ′u(v) = −
2 + f ′(v)

f(v)

∫ 1
v exp((µ−λ)Tu(s))f(s)ds

exp((µ−λ)Tu(v))f(v)

µ(1− λ
µ
)

[∫ 1
v exp((µ−λ)Tu(s))f(s)ds

exp((µ−λ)Tu(v))f(v)
+ exp(µTu(v))

(
cu −

∫ u
v

exp(−µTu(s))ds
)] .

This differential equation can be reformulated as a standard ordinary differential equation
of the form

T ′u(v) = −
2 + f ′(v)

f(v)
H(v)

exp((µ−λ)Tu(v))f(v)

µ(1− λ
µ
)

[
H(v)

exp((µ−λ)Tu(v))f(v)
+ exp(µTu(v))(cu +G(v))

] (23)

H ′(v) = − exp((µ− λ)Tu(v))f(v) (24)

G′(v) = exp(−µTu(v)) (25)

With this representation, the uniqueness results known in ODE allow us to conclude
the claim. Suppose that there are two solutions T1 and T2 of Equation (15). Because both
function are continuous, denote by u∗ = min{v ∈ [0, u] | T1(v) = T2(v)}. We assert that u∗

cannot be positive. If not, define the Cauchy Problem{
(T ′u(v), H ′(v), G′(v)) = F (v, Tu(v), H(v), G(v))

(Tu(u
∗), H(u∗), G(u∗)) = (T1(u∗),

∫ 1

u∗
exp((µ− λ)T1(s))ds, 0)

,

where F is defined by equations (23) to (25). By construction, both T1 and T2 solve this
Problem. Since F is continuously differentiable at u∗, and therefore locally Lipschitz, the
Picardi-Lindelof Theorem guarantees uniqueness of solution for [u∗, u∗ + ε] for some ε > 0
(Coddington and Levinson, 1955, Chapter 1). This contradicts the definition of u∗. There-
fore, there is a unique solution to Equation (15).
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