
Operations Research Letters 44 (2016) 469–473
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Splitting versus setup trade-offs for scheduling to minimize weighted
completion time
José Correa a, Victor Verdugo a,b,∗, José Verschae c

a Departamento de Ingeniería Industrial, Universidad de Chile, Chile
b Departement d’Informatique, École normale supérieure, France
c Facultad de Matemáticas & Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Chile

a r t i c l e i n f o

Article history:
Received 6 May 2014
Received in revised form
30 April 2016
Accepted 30 April 2016
Available online 7 May 2016

Keywords:
Scheduling
Split jobs
Weighted completion time

a b s t r a c t

We study scheduling problemswhen jobs can be split and a setup is required before processing each part,
to minimize the weighted sum of completion times. Using a simple splitting strategy and a reduction to
an orders scheduling problem we derive a 2-approximation algorithm for the case with uniform weights
and setups, improving upon previouswork.We extend this idea to the general identical machine case and
conclude by designing a constant factor approximation algorithm when machines are unrelated.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Scheduling problems in which jobs are allowed to be split into
many parts and be processed independently and concurrently on
differentmachines naturallymodel situations inwhich jobs consist
of a large number of small identical operations. When processing a
job (or its small operations) the setup cost is negligible, whilewhen
switching to a different job a setup time is required, during which
themachine cannot process or setup any other job (see Fig. 1). This
family of scheduling problems was introduced by Potts and Van
Wassenhove [9] to study batching and lot-sizing integrated with
scheduling decisions in manufacturing.

In this paper we consider a stylized version of the model in
which jobs can be arbitrarily split, introduced by Serafini [11]
as a scheduling model for the textile industry. More specifically,
our model considers a set M of m machines and a set J of n
jobs under two different machine environments: unrelated and
identical machines. In the unrelatedmachine setting, each job j ∈ J
has a machine dependent setup time sij and processing time pij,
while for identical machines the processing and setup times are
machine independent, so pij = pj and sij = sj for all j ∈ J and i ∈ M .
On the other hand, each job j ∈ J is associated with a nonnegative

∗ Corresponding author at: Departamento de Ingeniería Industrial, Universidad
de Chile, Chile.

E-mail addresses: correa@uchile.cl (J. Correa), victor.verdugo@ens.fr
(V. Verdugo), jverschae@uc.cl (J. Verschae).

http://dx.doi.org/10.1016/j.orl.2016.04.011
0167-6377/© 2016 Elsevier B.V. All rights reserved.
weight wj and the objective is to minimize the weighted sum of
job completion times. Thus, the problems studied are denoted by
R|split|


wjCj (unrelatedmachines) and P|split|


wjCj (identical

parallel machines).
A number of scheduling problems with split jobs are polyno-

mially solvable in the absence of setup times [11,13], however
when setup times are present these problems become NP-hard.
Indeed, Schalekamp et al. [10] show that P|split|


wjCj is NP-

hard even with uniform setup times (sj = s). They also design
a 2.781-approximation algorithm for the uniform setup time ver-
sion of P|split|


Cj and an exact polynomial time algorithm for

the case m = 2, though the complexity is open for m ≥ 3. Xing
and Zhang [13] consider the problem of minimizing makespan on
identicalmachineswith splitting jobs and setup times, P|split|Cmax,
obtaining a (1.75 − 1/m)-approximation algorithm. This was
later improved to an algorithm with a worst-case factor of 5/3
by Chen et al. [2]. Recently, Correa et al. [3] obtain a (2.618 +

ε)-approximation algorithm for the case of unrelated machines,
R|split|Cmax. We refer to the survey by Allahverdi et al. [1] for fur-
ther related results.

In this paper, an outgrowth of [12], we first improve upon the
results of Schalekamp et al. [10], who design a greedy strategy
for P|split|


Cj and uniform setups. In their algorithm jobs are

sorted by their size and split among an appropriate number of
machines such that the job finishes the earliest. The algorithm
and its analysis combine the decision of how to split and how to
schedule simultaneously. This provokes extra technical difficulties
in the analysis. In a broad sense, the completion time of each job

http://dx.doi.org/10.1016/j.orl.2016.04.011
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.04.011&domain=pdf
mailto:correa@uchile.cl
mailto:victor.verdugo@ens.fr
mailto:jverschae@uc.cl
http://dx.doi.org/10.1016/j.orl.2016.04.011

470 J. Correa et al. / Operations Research Letters 44 (2016) 469–473
Fig. 1. Example where a job is split in two pieces.

is bounded by using the average load of jobs processed before it.
The bound on the total cost obtained by this method naturally
yields a term that depends purely on the processing time of jobs,
and another depending on the setup times. Afterwards, each term
is bounded separately. Bounding the term related to the setup
times requires some technical effort and it is not clear how to
generalize it to other cases, for example, for weighted jobs or
job-dependent setup times. In contrast, we propose a simple but
new splitting scheme that separates the decision of splitting and
scheduling. This provides a more robust strategy that extends
naturally to different problem specifications and yields very clean
and simple arguments. Specifically we split jobs into uniform
pieces of size essentially equal to the setup. We then interpret
the problem we are left with as a problem of scheduling orders,
where orders correspond to jobs and jobs correspond to pieces,
and by applying existing machinery [7,8] we obtain a factor 4
approximation algorithm for P|split|


wjCj, which improves to

(2+ε) if the setups are uniform, and further to 2 if also the objective
is unweighted. In the latter case the analysis becomes remarkably
simple.

To wrap-up we consider the most general version of the
problem for which we can design a constant factor approximation
algorithm. This turns out to be the unrelated machine problem
R|split, rij|


wjCj in which additionally jobs have machine-

dependent release dates. In this setting the splitting concept is that
of Correa et al. [3] where if a fraction xij of job j is assigned to
machine i it requires time xijpij + sij to be processed.

2. Identical machines

Clearly in the identical machine case we can consider that
pj, wj, sj ∈ Z+. Recall that a job may be split into several parts,
which can be processed simultaneously on different machines and
before processing any part of a job a setup time is required, during
which the machine cannot process or setup any other job. These
setup times affect Cj, the completion time of job j ∈ J , and therefore
also


j∈J wjCj, the objective to be minimized.

2.1. Splitting jobs into orders

Key to our algorithms is a rule that pre-specifies the splitting
pattern of every job j. If a job j has a positive setup time, the
rule splits the job into parts of size sj, which together with their
setups need a total processing time of 2sj each. If the setup time is
zero, the rule splits the job into m parts of size pj/m. The variant
obtained, where jobs are split and each part is not splittable, can
be interpreted as the following scheduling problem with orders.
Consider a set of jobs J that is partitioned into sets L1 ∪ · · · ∪ Lk
with Ls ∩ Ls′ = ∅ for all s ≠ s′. Each set Ls corresponds to an
order, that is completedwhen the last of its jobs is completed. Thus,
the completion time of order L is CL := max{Cj : j ∈ L}. Given
weights wL ∈ Z+ for each order L, we aim to find a schedule on
m machines that minimizes


L wLCL. We denote this problem as

P|part|


wLCL [4].
Given an instance I of P|split|


wjCj, we transform it to an

instance I ′ of P|part|


wLCL as follows: each job with sj > 0 is
split into ⌈pj/sj⌉ parts, each of size 2sj. A job j with sj = 0 is split
into m parts of size pj/m. Together, the parts of a given job j are
interpreted as an order Lj where the parts correspond to jobs and
the weight of Lj is wLj := wj. We remark that the number of jobs
in I ′ might be pseudo-polynomial. In Section 2.2 we discuss how
we deal with this technical issue. The next two lemmas show how
to transform feasible schedules for an instance I of P|split|


wjCj

into schedules for the transformed instance I ′ of P|part|


wLCL
and back.

Lemma 1. A feasible schedule for I ′ with completion times CLj can
be transformed into a feasible schedule to I with completion times
Cj ≤ CLj for each j ∈ J .

Proof. Consider a feasible schedule for I ′. Since each job in Lj has
processing time 2sj, we can use the time slots occupied by jobs in Lj
to process job j. In this slot we can schedule the setup time sj plus
sj processing time units of job j. The chosen number of ⌈pj/sj⌉ parts
for job j guarantees that job j can be processed for sj · ⌈pj/sj⌉ ≥ pj
units of time, and thus fully completed before CLj . �

Lemma 2. A feasible schedule for I with completion times Cj can
be transformed into a feasible schedule for I ′ with completion times
CLj ≤ 2Cj for each j ∈ J .

Proof. By a simple swapping argument, we can restrict ourselves
to consider a schedule for I that processes each job contiguously
on eachmachine. Let tij be the amount of time used to schedule job
j on machine i (without considering the setup). We will see that
duplicating the total time spent to process job j on each machine i,
that is sij + tij, is enough to process the complete order Lj.

If the job j has a positive setup time, doing this gives a total of
2(sj + tij) = 2sj


1 + tij/sj


≥ 2sj⌈tij/sj⌉ units of time available for

order Lj onmachine i. Hence, we can process at least ⌈tij/sj⌉ jobs of
Lj on machine i. For this case, the lemma follows by noticing that
the total number of jobs of Lj that we can process is


i∈M


tij
sj


≥


i∈M

tij
sj


≥


pj
sj


= |Lj|.

When the job has a setup time equal to zero, by duplicating the
time we obtain a total of 2tij ≥ (pj/m) · ⌈2m · tij/pj − 1⌉ units of
time available for order Lj on machine i. Therefore, we can process
⌈2m · tij/pj − 1⌉ jobs of order Lj on machine i and thus in total we
can process at leastm jobs of Lj:
i∈M


2m · tij

pj
− 1


≥


i∈M


2m · tij

pj
− 1


= m. �

Corollary 3. For any α ≥ 1, an α-approximation algorithm for
P|part|


wLCL implies a pseudo-polynomial 2α-approximation al-

gorithm for P|split|


wjCj.

The last result is an immediate consequence of Lemmas 1 and 2
and it naturally raises the question of whether the proposed way
of splitting can be done more effectively. We show that if each
job is split into several parts independently to the rest of the
instance, then our splitting procedure is best possible regarding
the worst-case loss in the objective function. More precisely,
we say that F(·, ·) is a splitting function if F(p, s) is a vector
(f1(p, s), . . . , fr(p,s)(p, s)) such that

r(p,s)
ℓ=1 fℓ(p, s) = p. Then, any

splitting function defines a feasible way of splitting job j in r(pj, sj)
many pieces, of sizes sj + fℓ(pj, sj) for ℓ ∈ {1, . . . , r(pj, sj)}.

Lemma 4. Consider an instance of P|split|


wjCj and a splitting
function F . If each job is split according to F , then there exists an
instance for which the transformation increases the optimal value by
a factor of at least 2.

J. Correa et al. / Operations Research Letters 44 (2016) 469–473 471
Proof. Consider a single job with processing time p ∈ Z+ and
setup time s = 1. Suppose there exists an entry in F(p, s) with
value f ≥ 1 and there arem = p2 machines. Any solutionwith this
splitting has a cost of at least 1 + f ≥ 2. In an optimal schedule
the job is split uniformly over the p2 machines achieving a cost of
1+1/p. Therefore, the splitting scheme induced by F increases the
cost by at least a factor of 2/(1+ 1/p), which converges to 2 when
p → ∞.

Now suppose that every entry in the vector F(p, s) is at most
α < 1, which implies that r(p, s) ≥ p/α. If the instance contains
a single machine, then the cost of scheduling the pieces on the
machine is at least p/α + p. In an optimal schedule the job is not
split, yielding a cost of 1 + p. We obtain that cost increases by a
factor of at least
p/α + p
1 + p

>
2p

1 + p
p→∞

−→ 2. �

2.2. A 4-approximation for P|split|


wjCj

Now we obtain a 4-approximation algorithm for the general
P|split|


wjCj problem using Corollary 3 and a result of Leung

et al. [7] for P|part|


wLCL.
Leung et al. [7] design a list-scheduling algorithm for R|part|
wjCj which specialized to the identical parallel machine setting

leads to a 2-approximation algorithm. The algorithm works as
follows. First relabel the orders such that p(L1)/wL1 ≤ · · · ≤

p(Ln)/wLn , where p(L) :=


j∈L pj. For each k = 1, . . . , n, take all
jobs in Lk in arbitrary order and schedule them iteratively in the
machine with the smallest load. In the instance of P|part|


wLCL

constructed in Corollary 3 the number of jobs is pseudopolynomial
and all jobs within an order have the same processing time.
We now argue how we can use this fact in order to implement
this algorithm in polynomial time. In this setting, a schedule is
described by specifying the number of jobs nik of each order Lk
assigned to machine i.

Lemma 5. The list-scheduling algorithm by Leung et al. [7] can
be implemented in polynomial time if all jobs in an order have
the same processing times and the number of jobs per order is
pseudopolynomial.

Proof. Let us assume that we have scheduled orders L1, . . . , Lk−1,
and let Ti be the completion time (load) of machine i in that
schedule. We denote by Ck the completion time of order Lk in the
list-scheduling algorithm and by pk the processing time of a job in
Lk.Wenotice the following property: after scheduling order Lk each
machine that processes a job in Lk has load in [Ck − pk, Ck]. Thus,
we have that

nik ∈


Ck − pk − Ti

pk


,


Ck − pk − Ti

pk


+ 1


.

Consider the function h(C) =


i∈M⌈(C − pk − Ti)/pk⌉, which
is an estimate of the number of jobs of size pk that can be used
to greedily schedule jobs having a completion time at most C . In
particular it holds that 0 ≤ |Lk| − h(Ck) ≤ m. Moreover, we know
thatmini∈M Ti ≤ Ck ≤ mini∈M Ti+|Lk|pk. Since h is non-decreasing,
by running a binary search procedure we can find C∗ such that
|Lk| − m ≤ h(C∗) ≤ |Lk|. Then we assign ⌈(C∗

− pk − Ti)/pk⌉
many jobs of Lk to each machine i. The at mostmmissing jobs in Lk
can be assigned greedily. �

We conclude the following result.

Theorem 6. The problem P|split|


wjCj admits a 4-approximation
algorithm.
2.3. Uniform setup times

We now turn to the special case in which the setup times
are independent of the jobs. For the corresponding problem with
orders, this translates into the case in which all jobs have the same
processing times, P|pj = p, part|


wLCL. Inwhat followswe argue

that this problem admits a PTAS. To this end we first prove that
for P|pj = p, part|


wLCL we can focus on solutions given by

a list-scheduling algorithm. However, unlike the list-scheduling
algorithm studied in Section 2.2, the sequence of orders is not
necessarily given by Smith’s rule. Without loss of generality we
assume that p = 1.

Lemma 7. For each instance of P|pj = 1, part|


wLCL there exists
a list-scheduling optimal solution.

Proof. Consider an optimal schedule S with completion times CL
and relabel the orders such that CL1 ≤ CL2 ≤ · · · ≤ CLn . We
feed the list-scheduling algorithm with the sequence of orders
L1, . . . , Ln. The completion time of order Lj in this schedule is C ′

Lj
=

⌈
1
m


k≤j |Lk|⌉. On the other hand, in the original schedule S all the

orders L1, . . . , Lj have been completed up to time CLj , and then we
have thatmCLj ≥


k≤j |Lk|. Because of the integrality of CLj it holds

that CLj ≥
 1

m


k≤j |Lk|


= C ′

Lj
. �

Lemma 7 teaches us an important lesson. Optimal solutions
to P|pj = p, part|


wLCL are characterized by the sequence of

orders. We next show that we can further reduce the problem
to a single machine problem with a non-linear objective, namely

wj⌈Cj/m⌉.

Lemma 8. The instances of P|pj = p, part|


wLCL are in a cost-
preserving one-to-one correspondence to instances of 1 ∥


wj

⌈Cj/m⌉.

Proof. We map each instance Io of the problem with orders to
an instance Is for the single machine problem as follows. Each or-
der L of Io corresponds to a job j(L) in Is with processing time |L|
and weight wL. Clearly this mapping is bijective. By Lemma 7 we
know that there exists an optimal schedule for Io given by a list-
scheduling algorithm. Let L1, . . . , Ln be any sequence of orders. If
we schedule the jobs in Is according to this sequence, the total
cost is
n

j=1

wLj

CLj

m


=

n
j=1

wLj


1
m


k≤j

|Lk|


,

which coincides with the cost of the solution for Io following the
corresponding list-scheduling solution. Thus, any solution for Is is
in one-to-one correspondence to a list-scheduling solution Io of
equal cost. �

With Lemma 8 we can design approximation algorithms for
the single machine problem, which turns out to be strongly NP-
hard [6], and then transfer them to the problemwith orders. To this
endwe use the PTAS for 1 ∥


j wjf (Cj), where f is any computable

non-negative non-decreasing function, obtained by Megow and
Verschae [8], and directly obtain a PTAS for P|pj = p, part|


wLCL,

and a (2 + ε)-approximation algorithm for our split job problem
with uniform setup times.

We remark that the fact that the transformation in Corollary 3
creates a pseudopolynomial number of jobs per order does not
affect the polynomiality of the algorithm just described. Indeed,
the number of jobs in the instance of P|pj = p, part|


wLCL

corresponds to the processing time of jobs of the instance of 1 ∥
wjf (Cj), which can be described with polynomially many bits.

472 J. Correa et al. / Operations Research Letters 44 (2016) 469–473
Theorem 9. There exists a (2 + ε)-approximation for the problem
with splittable jobs and equal setup times.

Finally, when all setup times are equal and all weights are
unit, i.e., P|sj = s, split|


Cj. The same reasoning allows us to

reduce the problem to 1 ∥


⌈Cj/m⌉ by losing a factor of 2
in the approximation guarantee. For the latter problem a simple
swapping argument amounts to conclude that the SPT rule yields
an optimal schedule, and therefore we obtain a 2-approximation
algorithm.

Theorem 10. The split scheduling problemadmits a2-approximation
in the case of uniform setup times and uniform weights.

3. Unrelated machines

We now focus on the unrelated machine case, R|split|


wjCj.
Here, a fraction y of job j on machine i uses sij + y · pij time units
in total. We consider the problem even under machine-dependent
release dates rij for eachmachine–job pair i, j. For technical reasons
we scale the processing times and setups such that pij ≥ m for all
nonzero pij’s. Additionally, also by scaling, we can assume that if
pij = 0 then sij ≥ 1. Thus, any feasible solution satisfies Cj ≥ 1 for
all j.

Our algorithm is based on an interval-indexed LP relaxation
introduced by Hall et al. [5] and the extension in [4]. Let T be an
upper bound on the makespan of the optimal schedule, e.g., T =

i,j rij + sij +pij. Given 1 < α ≤ 2, let q be such that αq−1
≥ T . We

partition the time axis in intervals [τ0, τ1], (τ1, τ2], . . . , (τq−1, τq],
where τ0 = 1 and τk = αk−1. Our LP-relaxation considers variables
yijk ∈ [0, 1] that represent the fraction of job j that finishes at
interval (τk−1, τk] for each k ≥ 2, and yij1 represents the fraction
of job j finishing in [0, 1]. In what follows when it is not specified
k ranges in {1, . . . , q}, i ranges in M and j ∈ J .

min


j

wjCj

s.t.

i,k

yijk = 1 for all j, (1)
j


ℓ≤k

yijℓ(pij + sij) ≤ τk for all k, i, (2)
i,k

yijkτk−1 ≤ Cj for all j, (3)

yijk = 0 for all i, j, k : rij > τk or sij > τk, (4)
yijk ≥ 0 for all i, j, k.

It is easy to see that (1), (2), and (4) are valid inequalities for our
problem. To see also that (3) is valid notice that for all k we have
that τk−1 ≤ Cj if yijk > 0: this holds by definition of yijk for k ≥ 2
and because Cj ≥ 1 for k = 1. Thus (3) follows by (1). Hence, the
previous LP is a relaxation to our problem.

Consider an optimal solution (yijk)ijk and (CLP
j)j of this LP.

Our rounding technique consists of two steps. First, since the LP
solution can process a fraction of job j at a time much larger
than CLP

j , we truncate the solution so that no job finishes later
than γ · CLP

j /(γ − 1), for some γ > 1 that will be chosen
appropriately. Unfortunately, the resulting fractional solution it is
still not a feasible schedule since the LP only reserved a fraction of
the needed setup for each piece of a job. To overcome this difficulty,
we interpret each interval–machine pair (i, k) as a machine and
round using the technique of [3] that studies the split job problem
in the minimum makespan setting. It is worth mentioning that
both transformations maintain variables yijk = 0 untouched, and
thus (4) is always satisfied. Finally we construct the final schedule
with a greedy algorithm based on the rounded LP solution.

The next lemma specifies how to truncate the solution given by
the LP.

Lemma 11. Let γ > 1 and Yj =


i,k:τk−1≤γ CLP
j

yijk for each job j.
Then,

y′

ijk =


0 if τk−1 > γ · CLP

j ,

yijk/Yj if τk−1 ≤ γ · CLP
j ,

satisfies (1) and (4). Also, (2) is satisfied if the right-hand-side is
multiplied by γ /(γ − 1).

Proof. The vector y′ satisfies (1) and (4) by definition. We will
show that for all i, j, k it holds that y′

ijk ≤ yijk · γ /(γ − 1). This
is enough to conclude the lemma since y satisfies (2). Notice that
Yj ≥ (γ − 1)/γ ,
i,k

yijkτk−1 ≥


i,k:τk−1≥γ CLP

j

yijk · γ · CLP
j = γ CLP

j (1 − Yj) > CLP
j ,

contradicting (3). We conclude that y′

ijk ≤ yijk/Yj ≤ yijk · γ /(γ − 1)
for all i, j, k, which implies the lemma. �

We further round the solution by using the following recent
result for R|split|Cmax, implicitly proven in [3]. The theorem gives
a way of rounding a fractional solution into a fractional solution
in which the setups are fully considered, while the total load of the
machine is atmost twice the original fractional load plus one setup.

Theorem 12 ([3]). Consider an instance of R|split|Cmax. For any non-
negative assignment vector x such that


i xij = 1 for all j, there exists

a non-negative solution x̃ such that:


i x̃ij = 1 for each j, if xij = 0
then x̃ij = 0, and for each machine i
j:x̃ij>0

(x̃ijpij + sij) ≤ 2


j

xij(pij + sij) + max
j:xij>0

sij.

The next step of our algorithm consists in interpreting a
machine–interval pair as a machine in the previous theorem and
applying it to solution y′ given by Lemma 11. This leads to a
solution ỹ satisfying for all i, k:
j:ỹijk>0

(ỹijk · pij + sij) ≤ 2


j

y′

ijk(pij + sij) + max
ij:y′ijk>0

sij

≤ 2


j

y′

ijk(pij + sij) + τk, (5)

where the last inequality follows from (4) since y′

ijk > 0 implies
that yijk > 0.

Let Jik = {j : ỹijk > 0}. The final step of the algorithm is
the following. For every k = 1, . . . , q and every machine i, our
algorithm takes each job j (in arbitrary order) in Jik and processes its
setup time sij and a fraction of ỹijk as early as possiblewhile obeying
the release dates.

Theorem 13. The problem R|rij, split|


j wjCj admits a 19.7864-
approximation algorithm.

Proof. Let τ̄k = 1/(α − 1) +
k

ℓ=1(2


j y
′

ijk(pij + sij) + τℓ). We
prove that all pieces of jobs corresponding to Jik can be completely
processed (including setup) within [τ̄k−1, τ̄k]. Indeed, for all j ∈ Jik
we have that ỹijk > 0 and thus yijk > 0, which in turn implies that

J. Correa et al. / Operations Research Letters 44 (2016) 469–473 473
rij ≤ τk by (4). Thus, since 1 < α ≤ 2, we have that

rij ≤ τk ≤
1

α − 1
+

τk − 1
α − 1

=
1

α − 1
+

k−1
ℓ=1

τℓ ≤ τ̄k−1.

Therefore all jobs in Jik are available at time τ̄k−1. Moreover, since
τ̄k− τ̄k−1 = 2


j y

′

ijk(pij+sij)+τk, Eq. (5) implies that all the pieces
in Jik, togetherwith their setups, can be processedwithin [τ̄k−1, τ̄k].
Hence, all pieces of Jik are finished by time

τ̄k =
1

α − 1
+

k
ℓ=1

2


j

y′

ijk(pij + sij) + τℓ



≤
1

α − 1
+ 2

γ

γ − 1
τk +

k
ℓ=1

τℓ

≤ α


2

γ

γ − 1
+

α

α − 1


τk−1.

Here, the first inequality follows since by Lemma 11 y′ satisfies
(2) with the right-hand-side amplified by a factor γ /(γ − 1), and
the second by the definition of τk. We conclude that all pieces of
a job j ∈ Jik finish by time α


2 γ

γ−1 +
α

α−1


τk−1. Moreover, if

j ∈ Jik then ỹijk > 0, and thus by Theorem 12 y′

ijk > 0. By the
definition of y′ in Lemma 11 this implies that τk−1 ≤ γ · CLP

j .
Therefore job j is completely finished by time γα(2 γ

γ−1 +
α

α−1)C
LP
j .

Choosing α = 1.39775 and γ = 1.60225 we obtain that each job j
finishes by times 19.7864 · CLP

j and thus the overall cost is at most
19.7864


j wjCLP

j . �

The values of α and γ are computed numerically in order
to approximately minimize the approximation factor. The exact
optimal values cannot be determined analytically since they
correspond to the solutions of higher order polynomial equations.
Acknowledgments

This work was supported by Nucleo Milenio Información y
Coordinación en Redes ICM/FIC P10-024F, by EU-IRSES grant
EUSACOU, and by FONDECYT project No. 11140579.

References

[1] A. Allahverdi, C. Ng, T. Cheng, M. Kovalyov, A survey of scheduling problems
with setup times or costs, European J. Oper. Res. 187 (2008) 985–1032.

[2] B. Chen, Y. Ye, J. Zhang, Lot-sizing scheduling with batch setup times, J. Sched.
9 (2006) 299–310.

[3] J.R. Correa, A. Marchetti-Spaccamela, J. Matuschke, O. Svensson, L. Stougie,
V. Verdugo, J. Verschae, Strong LP formulations for scheduling splittable jobs
on unrelated machines, Math. Program.-Ser. B 154 (2015) 305–328.

[4] J.R. Correa, M. Skutella, J. Verschae, The power of preemption on unrelated
machines and applications to scheduling orders, Math. Oper. Res. 37 (2012)
379–398.

[5] L.A. Hall, A.S. Schulz, D.B. Shmoys, J. Wein, Scheduling to minimize average
completion time: off-line and on-line approximation algorithms, Math. Oper.
Res. 22 (1997) 513–544.

[6] W. Höhn, T. Jacobs, On the performance of Smith’s rule in single-machine
scheduling with nonlinear cost, ACM Trans. Algorithms 11 (2015) 25.

[7] J.Y.T. Leung, H. Li, M. Pinedo, J. Zhang, Minimizing total weighted completion
time when scheduling orders in a flexible environment with uniform
machines, Inform. Process. Lett. 103 (2007) 119–129.

[8] N. Megow, J. Verschae, Dual techniques for scheduling on a machine with
varying speed, in: Automata, Languages, and Programming, ICALP 2012,
in: LNCS, vol. 7965, 2013, pp. 745–756.

[9] C.N. Potts, L.N.V. Wassenhove, Integrating scheduling with batching and lot
sizing: A review of algorithms and complexity, J. Oper. Res. Soc. 43 (1992)
395–406.

[10] F. Schalekamp, R. Sitters, S. van der Ster, L. Stougie, V. Verdugo, A. van Zuylen,
Split scheduling with uniform setup times, J. Sched. 18 (2014) 119–129.

[11] P. Serafini, Scheduling jobs on severalmachineswith the job splitting property,
Oper. Res. 44 (1996) 617–628.

[12] V. Verdugo, Algoritmos de aproximación para la programación de trabajos
divisibles con tiempos de instalación en máquinas paralelas (Master’s thesis),
Department of Industrial Engineering and Department of Mathematical
Engineering, University of Chile, 2014.

[13] W. Xing, J. Zhang, Parallel machine scheduling with splitting jobs, Discrete
Appl. Math. 103 (2000) 259–269.

http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref1
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref2
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref3
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref4
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref5
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref6
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref7
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref8
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref9
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref10
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref11
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref12
http://refhub.elsevier.com/S0167-6377(16)30026-8/sbref13

	Splitting versus setup trade-offs for scheduling to minimize weighted completion time
	Introduction
	Identical machines
	Splitting jobs into orders
	A 4-approximation for P |split|wj Cj
	Uniform setup times

	Unrelated machines
	Acknowledgments
	References

