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Abstract

We present a short, geometric proof for the price-of-anarchy results that have recently been established
in a series of papers on selfish routing in multicommodity flow networks and on nonatomic congestion
games. This novel proof also facilitates two new types of theoretical results: On the one hand, we give
pseudo-approximation results that depend on the class of allowable cost functions. On the other hand, we
derive stronger bounds on the inefficiency of equilibria for situations in which the equilibrium costs are
within reasonable limits of the fixed costs. These tighter bounds help to explain empirical observations in
vehicular traffic networks. Our analysis holds in the more general context of nonatomic congestion games,
which provide the framework in which we describe this work.
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1. Introduction

Congestion games (Rosenthal, 1973) are noncooperative games in which players’ strategies
consist of subsets of resources, and the utility of a player depends only on the number of play-
ers choosing the same or some overlapping strategy. We consider nonatomic congestion games
(Schmeidler, 1973), which model interactions involving a continuous number of players, each
having a negligible affect on other players. Nonatomic congestion games have been studied,
among others, by Milchtaich (2000, 2004), Chau and Sim (2003), and Roughgarden and Tardos
(2004).

The most prominent example of a nonatomic congestion game is the traffic routing model
of Wardrop (1952). The arcs in a given network represent the resources, the different origin–
destination pairs correspond to the player types, and the strategies available to a particular player
type are the paths in the network between its origin–destination pair. The cost of an arc describes
the delay experienced by traffic traversing that arc as a function of the flow on that arc. A social
optimum corresponds to a multicommodity flow of minimum total delay, whereas in a Wardrop
equilibrium, every player is traveling on a shortest path.

Nash equilibria in general and Wardrop equilibria in particular are typically inefficient: they
generally do not minimize the social cost. Koutsoupias and Papadimitriou (1999) proposed to an-
alyze the inefficiency of equilibria from a worst-case perspective; this led to the notion of “price
of anarchy” (Papadimitriou, 2001), which is the ratio of the worst social cost of a Nash equilib-
rium to the cost of an optimal solution. In the context of selfish routing (i.e., the traffic model
described in the previous paragraph), the price of anarchy was analyzed in a series of papers for
increasingly more general classes of cost functions and other model features; see, among others,
Roughgarden and Tardos (2002, 2004), Roughgarden (2003), Chau and Sim (2003), Correa et al.
(2004), and Perakis (2007).

In this article, we give alternative proofs for the price-of-anarchy results in the above-
mentioned papers. Our proofs simplify and unify previous arguments, and they provide insights
that enable us to extend these results to more general settings. The paper is organized as fol-
lows. Nonatomic congestion games are formally defined in Section 2. In Section 3, we present
new proofs for two known bounds on the inefficiency of equilibria in nonatomic congestion
games with affine, separable cost functions. These proofs rely on a new interpretation of the pa-
rameter β , originally introduced by Correa et al. (2004) in the context of traffic routing. This
interpretation sets the stage for various generalizations. In Section 4, we consider nonseparable,
nonlinear cost functions. We also discuss the special cases of separable cost functions (Sec-
tion 4.1) and of situations in which the variable costs of resources do not exceed their fixed costs
by too much (Section 4.2). Section 5 contains our concluding remarks.

2. Nonatomic congestion games

A nonatomic congestion game consists of a finite set A of resources and k different types of
players. Players are infinitesimal agents, and the continuum of players of type i is represented
by the interval [0, ni], for some ni > 0, i = 1,2, . . . , k. Each player type i possesses a set Si of
strategies, and each strategy consists of a subset of the resources. For notational convenience,
we assume that the sets Si , i = 1,2, . . . , k, are disjoint. We denote their union by S . The rate
of consumption of a resource a ∈ S by a strategy S ∈ Si is given by ra,S � 0. Each player
selects a strategy, which leads to a strategy distribution x = (xS)S∈S with

∑
S∈Si

xS = ni for
each player type i, and xS � 0 for all S ∈ S . A strategy distribution generates a utilization rate
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xa := ∑k
i=1

∑
S∈Si : a∈S ra,SxS for each resource a ∈ A. In the sequel, we use x interchangeably

to denote a strategy distribution or its associated vector of utilization rates. Moreover, we let
X represent both the space of feasible strategy distributions and that of feasible utilization rate
vectors. This abuse of notation is harmless because we are interested only in the total cost of
different strategy distributions, and the total cost of any strategy distribution is fully specified by
its corresponding vector of utilization rates.

The cost of a resource a ∈ A is given by a continuous function ca : R
A
�0 → R�0. The cost

functions ca considered here include separable functions, for which ca(x) = ca(xa), and affine
functions, for which ca(x) = ∑

a′∈A ca,a′xa′ + ba for some coefficients ca,a′ and ba . The cost
experienced by a player that selects a strategy S ∈ S is given by cS(x) := ∑

a∈S ra,Sca(x). We
define the social cost C(x) of a strategy distribution x as the total disutility experienced by all
players:

C(x) :=
k∑

i=1

∑

S∈Si

cS(x)xS =
∑

a∈A

ca(x)xa = 〈
c(x), x

〉
.

Here, c(x) := (ca(x))a∈A, and 〈c(x), x〉 denotes the inner product of the two vectors c(x) and x.
A social optimum xOPT is a feasible strategy distribution of minimum social cost; i.e.,

C(xOPT) � C(x) for all strategy distributions x ∈ X. Because c is continuous and X is compact
and convex, social optima exist and are well-defined.

Extending the notion of Wardrop equilibrium (1952) to nonatomic congestion games, a strat-
egy distribution xEQ is called an equilibrium if all players of the same type experience the same
cost, and there is no strategy of smaller cost; i.e., cS(xEQ) � cS′(xEQ) for any two strategies
S,S′ ∈ Si with x

EQ

S > 0, for each i = 1,2, . . . , k. It is well known (e.g., de Palma and Nesterov,
1998) that if a strategy distribution xEQ is an equilibrium, then it satisfies

〈
c
(
xEQ

)
, xEQ − x

〉
� 0 for all strategy distributions x ∈ X. (1)

Hartman and Stampacchia (1966) proved that for c continuous, (1) always has a solution (if X

is compact and convex). In the following, we assume that the operator c : R
A
�0 → R

A
�0 is mono-

tone; i.e., 〈c(x) − c(y), x − y〉 � 0 for all x, y ∈ R
A
�0. Monotonicity guarantees the existence of

equilibria, and every solution to the variational inequality (1) is, in fact, an equilibrium (de Palma
and Nesterov, 1998).

For a given instance of a nonatomic congestion game, we measure the inefficiency of an
equilibrium with the help of the ratio C(xEQ)/C(xOPT), where xEQ and xOPT denote a (worst)
equilibrium and a social optimum, respectively. The price of anarchy for a class of games is
defined as the supremum of this ratio over all instances belonging to that class.

3. A graphical proof for affine and separable cost functions

Let us begin by studying nonatomic congestion games with affine and separable cost func-
tions. We present a new proof of an existing bound on the worst-case inefficiency of equilibria,
and a strengthening of a pseudo-approximation bound. The key insight into both results comes
from a graphical representation of the situation.

We assume for the rest of this section that the cost of a resource a ∈ A under the utilization rate
vector x is ca(x) = ca(xa) = caxa + ba for some nonnegative coefficients ca and ba . Under this
assumption, it is known not only that an equilibrium xEQ exists, but also that different equilibria
have the same social cost (Beckmann et al., 1956).
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The following result shows that, in equilibrium, the social cost cannot increase by more than
33%, compared to a social optimum. This means that the lack of central coordination does not
cause a significant loss of efficiency. The most compact proof of this fact was presented in the
context of selfish routing by Correa et al. (2004); our proof below can be viewed as a geometric
variant of it. The result itself is due to Roughgarden and Tardos (2002, 2004).

Theorem 3.1. Let xEQ be an equilibrium of a nonatomic congestion game with separable, affine
cost functions, and let xOPT be a social optimum. Then, C(xEQ) � 4/3C(xOPT).

Proof. Let x be a feasible strategy distribution. Because of (1), we have

C
(
xEQ

) =
∑

a∈A

ca

(
xEQ
a

)
xEQ
a �

∑

a∈A

ca

(
xEQ
a

)
xa

=
∑

a∈A

ca(xa)xa +
∑

a∈A

(
ca

(
xEQ
a

) − ca(xa)
)
xa. (2)

Since the functions ca are nondecreasing, we need to focus only on the expressions (ca(x
EQ
a ) −

ca(xa))xa for which xa < x
EQ
a to bound the last term in (2) from above. In this case, (ca(x

EQ
a ) −

ca(xa))xa is equal to the area of the shaded rectangle in Fig. 1. Note that the area of any rectangle
whose upper-left corner point is (0, ca(x

EQ
a )) and whose lower-right corner point lies on the line

representing ca(ya) = caya + ba , is at most half that of the triangle defined by the three points
(0, ca(x

EQ
a )), (0, ba), and (x

EQ
a , ca(x

EQ
a )). In turn, the area of the triangle is at most half that of the

rectangle defined by the two points (0,0) and (x
EQ
a , ca(x

EQ
a )). In particular,

(
ca

(
xEQ
a

) − ca(xa)
)
xa � 1

4
ca

(
xEQ
a

)
xEQ
a . (3)

Setting x = xOPT proves the claim. �
An immediate consequence of this proof is a pseudo-approximation result, which upper

bounds the social cost of an equilibrium by that of an optimal strategy distribution for the same

Fig. 1. Illustration of the proof of Theorem 3.1.



J.R. Correa et al. / Games and Economic Behavior 64 (2008) 457–469 461
game with more players of each type. More precisely, to obtain the following result, one needs
only the following inequality derived in the preceding proof,

∑

a∈A

ca

(
xEQ
a

)
xa � C(x) + 1

4
C

(
xEQ

)
, (4)

which holds for any nonnegative vector x (i.e., x need not be a feasible strategy distribution).

Corollary 3.2. If xEQ is an equilibrium of a nonatomic congestion game with separable, affine
cost functions, and yOPT is a social optimum for the same game with 5/4 times as many players
of each type,1 then C(xEQ) � C(yOPT).

Proof. Using (1) together with the feasibility of the vector (4/5)yOPT for the original game,
and (4), we obtain

C
(
xEQ

) = 5

4

∑

a∈A

ca

(
xEQ
a

)
xEQ
a − 1

4
C

(
xEQ

)
�

∑

a∈A

ca

(
xEQ
a

)
yOPT
a − 1

4
C

(
xEQ

)
� C

(
yOPT

)
. �

The smallest value for which this corollary remains true is, in fact, 5/4. A tight example is
presented in a more general context in Section 4.2. The first result of this kind was given by
Roughgarden and Tardos (2002), who showed that an equilibrium traffic assignment causes a
total travel time of at most that of a social optimum routing twice as much traffic. This result
and its subsequent extension to general nonatomic congestion games (Roughgarden and Tardos,
2004) hold for arbitrary (albeit separable) cost functions. The selfish routing version of Corol-
lary 3.2 is due to Chakrabarty (2004) and inspired us to qualify the pseudo-approximation bounds
according to the class of cost functions considered; see the next section for details.

4. Nonseparable and nonlinear cost functions

In this section, we generalize the results of the previous section to nonatomic congestion
games with general cost functions, as defined in Section 2. Afterwards, we discuss some impor-
tant special cases for which we can provide additional insights.

In several practical situations, the cost of using one resource may depend on the rate of
consumption of other resources, and the relations between utilization rates and costs may be
nonlinear. For instance, the time a vehicle needs to cross through a stop sign clearly depends on
the amount of traffic on the perpendicular street; the waiting time of passengers at a given bus
stop depends on the number of passengers boarding the bus at previous stops; or, to give an ex-
ample in the context of wireless communication networks, transmission delays might depend on
the load of neighboring cells, because of interference. In transportation science, congestion ef-
fects are usually modeled with the help of degree-4 polynomials (Bureau of Public Roads, 1964),
and in telecommunication engineering, delays usually arise from queuing effects; in either case,
the functions are nonlinear.

In the previous section, we used the linearity of the cost functions ca in one place only, namely
when we proved (3). An appropriate generalization of (3) is, in fact, the key for extending The-

1 Formally, the continuum of players of type i in the new game is represented by the interval [0, 5 ni ], i = 1,2, . . . , k.
4
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orem 3.1 and Corollary 3.2 to more general classes of cost functions. To that effect, we define,
for a cost function c and a vector v ∈ X,

β(c, v) := max
x∈R

A
�0

〈c(v) − c(x), x〉
〈c(v), v〉 ,

where 0/0 = 0, by convention. For a given class of cost functions C , we let

β(C) := sup
c∈C, v∈X

β(c, v).

Note that, because of the monotonicity of c ∈ C , β(C) � 1. This parameter was originally intro-
duced by Correa et al. (2004) in the context of traffic routing and separable cost functions. It
leads directly to the following lemma, which is a generalization of (4).

Lemma 4.1. Let xEQ be an equilibrium of a nonatomic congestion game with cost functions
drawn from a class C of nonseparable cost functions, and let x be a nonnegative vector. Then,
〈c(xEQ), x〉 � C(x) + β(C)C(xEQ).

Proof. Using the definition of β(C) and the linearity of the inner product, we get
〈
c
(
xEQ

)
, x

〉 = 〈
c(x), x

〉 + 〈
c
(
xEQ

) − c(x), x
〉

�
〈
c(x), x

〉 + β
(
c, xEQ

)〈
c
(
xEQ

)
, xEQ

〉

� C(x) + β(C)C
(
xEQ

)
. �

The following theorem generalizes the main results of Section 3, yielding price-of-anarchy
and pseudo-approximation results for nonatomic congestion games with nonseparable and non-
linear cost functions. Actually, it also strengthens previously known price-of-anarchy bounds for
the case of nonseparable cost functions. These prior bounds require stronger assumptions on the
cost functions, such as convexity and differentiability. Chau and Sim (2003) proved that the price
of anarchy for nonseparable and symmetric cost functions is bounded by a natural extension
of the parameter α(C) of Roughgarden and Tardos (see the discussion in Section 4.1 below).
Perakis (2007) considered general nonseparable cost functions and proved upper bounds on the
price of anarchy using variational inequalities as well. Her bounds depend on two parameters
that measure the asymmetry and the nonlinearity of the cost functions considered.

Theorem 4.2. Let xEQ be an equilibrium of a nonatomic congestion game with cost functions
drawn from a class C of nonseparable cost functions.

(a) If xOPT is a social optimum for this game, then C(xEQ) � (1 − β(C))−1C(xOPT).
(b) If yOPT is a social optimum for the same game with 1 + β(C) times as many players of each

type, then C(xEQ) � C(yOPT).

Proof. For (a), it suffices to use (1) and Lemma 4.1:

C
(
xEQ

) = 〈
c
(
xEQ

)
, xEQ

〉
�

〈
c
(
xEQ

)
, xOPT

〉
� C

(
xOPT

) + β(C)C
(
xEQ

)
.

Let us now prove part (b). Because of the feasibility of (1 + β(C))−1yOPT for the original
game, we have that 〈c(xEQ), xEQ〉 � 〈c(xEQ), (1 + β(C))−1yOPT〉. Therefore,
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C
(
xEQ

) = (
1 + β(C)

)〈
c
(
xEQ

)
, xEQ

〉 − β(C)
〈
c
(
xEQ

)
, xEQ

〉

�
(
1 + β(C)

)〈
c
(
xEQ

)
,
(
1 + β(C)

)−1
yOPT

〉 − β(C)
〈
c
(
xEQ

)
, xEQ

〉

� C
(
yOPT

) + β(C)C
(
xEQ

) − β(C)C
(
xEQ

)

= C
(
yOPT

)
.

The last inequality follows from Lemma 4.1. �
Both parts of this theorem are tight for particular classes of cost functions, as we will illustrate

in Section 4.2.
It remains to determine the value of β(C) for certain classes of cost functions. We start off by

considering affine cost functions of the form c(x) = Ax + b, with b � 0 and A symmetric and
positive semidefinite. In this setting, Theorem 4.2 provides a simple proof of a result by Chau
and Sim (2003), who established that the price of anarchy for this class of cost functions is at
most 4/3. Indeed, in this case

β(c, v) = max
x∈R

A
�0

〈c(v) − c(x), x〉
〈c(v), v〉 =

maxx∈R
A
�0

〈A(v − x), x〉
〈Av,v〉 + 〈b, v〉 .

As A is symmetric and positive semidefinite, the numerator amounts to a convex minimization
problem, and the optimum is attained at x = v/2, leading to a β-value of 1/4. Theorem 4.2
yields C(xEQ) � 4/3C(xOPT), where xOPT is a social optimum for this game. Moreover, C(xEQ) �
C(yOPT), for a social optimum yOPT of the same game with 5/4 times as many players of each
type.

4.1. Separable cost functions

An important special case is that of nonatomic congestion games with separable, nonlinear
cost functions. In practice, this class of cost functions is often used as a simplified model of real-
ity when there are insufficient data to estimate the interdependencies among different resources.
Moreover, several prior results were derived in this setting. A separable, continuous, and nonde-
creasing cost function ca : R�0 → R�0 is “standard” if it is differentiable, and its product with
the identify function is convex.

Theorem 4.3. (See Roughgarden and Tardos, 2004, Theorem 4.7.) For a nonzero cost function ca

in a given class C of standard cost functions, define

α(ca) := sup
xa>0:ca(xa)>0

(
λμ + (1 − λ)

)−1
,

where λ ∈ [0,1] satisfies ca(λxa)+ (λxa)c
′
a(λxa) = ca(xa) and μ = ca(λxa)/ca(xa) ∈ [0,1]. Let

xEQ be an equilibrium of a nonatomic congestion game with cost functions drawn from C . If xOPT

is a social optimum of this game, then C(xEQ) � α(C)C(xOPT), where α(C) := sup0�=ca∈C α(ca).

Under the assumptions of Theorem 4.3, one can show that α(C) = (1 − β(C))−1 (Correa et
al., 2004). In particular, Theorem 4.3 is, in fact, a special case of Theorem 4.2 (a). Indeed, for
such cost functions, β(C) = supca∈C,va�0 β(ca, va), where

β(ca, va) := max
(ca(va) − ca(xa))xa = max

(ca(va) − ca(xa))xa
.

xa�0 ca(va)va 0�xa�va ca(va)va
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Fig. 2. Illustration of the definition of β .

While this coincides with the original definition of β(C) by Correa et al. (2004), the authors did
not provide the interpretation offered by Fig. 2. If we go back to the proof of Theorem 3.1 and
argue along similar lines, we encounter the situation depicted in this figure. It remains to observe
that β(C) is an upper bound on the ratio of the area of the shaded rectangle to that of the large
rectangle.

Concrete values of β(C) can be readily calculated for several classes of cost functions. For
example, the maximum inefficiency of equilibria in games with quadratic or cubic cost functions
is 1.626 and 1.896, respectively; for polynomials of degree at most 4, it is 2.151. More generally,
when C contains polynomials of degree at most d with nonnegative coefficients, then β(C) =
d/((d + 1)1+1/d), which implies that the price of anarchy grows asymptotically as Θ(d/ lnd).
For details on these calculations, the reader is referred to Roughgarden (2003) and Correa et al.
(2004).

Let us also point out that Theorem 4.2 (b) dominates the following result.

Theorem 4.4. (See Roughgarden and Tardos, 2004, Theorem 5.1.) Let xEQ be an equilibrium
of a nonatomic congestion game with nondecreasing, continuous, and separable cost functions.
If yOPT is a social optimum of the same game with twice as many players of each type, then
C(xEQ) � C(yOPT).

4.2. Cost functions with limited congestion effects

To motivate our next set of results, it is helpful to consider selfish routing in traffic networks.
The empirically observed ratio of the total travel time of a Wardrop equilibrium to that of a
system optimum is typically significantly smaller than predicted by the price-of-anarchy results
of Theorem 4.2. For instance, in the computational studies of Jahn et al. (2005), the largest ratio
of Wardrop-equilibrium cost to system-optimum cost over several realistic instances was 1.15
(instead of the theoretical worst case of 2.151 for polynomials of degree 4). Qiu et al. (2006)
made similar observations in the context of telecommunication networks. Indeed, for a given
class of cost functions, the corresponding price of anarchy is a worst-case measure, taken over
all possible instances. However, if one compares the time needed to drive to work during rush
hour with the duration of the same trip at night, then the free-flow travel time is usually not a
negligible fraction of the rush-hour experience. We therefore consider the following scenario:
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the cost of any given resource at utilization rate zero is at least a constant fraction of that of the
same resource at the utilization rate in equilibrium.2

The ratio between the cost at equilibrium and that under no utilization is usually referred to
as the travel time index in studies of transportation systems. It measures the congestion level in
a given urban area. According to the Texas Transportation Institute (2005), the most congested
city in the United States is Los Angeles, which has a travel time index of 1.75. The average index
among very large urban areas in the United States is 1.48.

A different instance of this concept may be found in production processes, where the fixed cost
of any one resource accounts for a non-negligible fraction of the total cost (fixed plus variable
costs) in equilibrium.

The next result makes the technical assumption that the family C of allowable cost functions
is closed under the subtraction of costs at utilization rate zero; i.e., c − c(0) ∈ C for all c ∈
C . Without this assumption, the improvement resulting from explicitly considering fixed costs
would remain hidden in the value of β(C).

Theorem 4.5. Let C be a family of cost functions that is closed under the subtraction of costs
at utilization rate zero. Let xEQ be an equilibrium of a nonatomic congestion game with cost
functions drawn from C that satisfy c(0) � ηc(xEQ), for some 0 � η < 1.

(a) If xOPT is a social optimum for this game, then C(xEQ) � (1 − (1 − η)β(C))−1C(xOPT).
(b) If yOPT is a social optimum of the same game with 1 + (1 − η)β(C) as many players of each

type, then C(xEQ) � C(yOPT).

Proof. Consider a game with cost functions as specified in the hypothesis. Let us write c(x) =
M(x) + c(0). Note that M ∈ C , and 〈c(xEQ), xEQ〉 � 〈M(xEQ), xEQ〉/(1 − η). Thus,

β
(
c, xEQ

) = max
x∈R

A
�0

〈c(xEQ) − c(x), x〉
〈c(xEQ), xEQ〉

� (1 − η) max
x∈R

A
�0

〈M(xEQ) − M(x), x〉
〈M(xEQ), xEQ〉

� (1 − η)β(C).

We can therefore replace Lemma 4.1 with 〈c(xEQ), x〉 � C(x) + (1 − η)β(C)C(xEQ). The rest of
the proof is then identical to that of Theorem 4.2. �

We illustrate this result by computing the new bounds for the class of separable polynomi-
als that have nonnegative coefficients and maximum degree d . The interesting aspect of this
particular case is that we can use again the picture introduced in Section 3. Indeed, because
ca(0) � ηca(x

EQ
a ), the area (ca(x

EQ
a ) − ca(xa))xa of the small shaded rectangle in Fig. 3 is at

most β(C) times that of the rectangle with upper-left corner point (0, ca(x
EQ
a )) and lower-right

corner point (x
EQ
a , ca(0)), which itself is of size at most (1 − η)ca(x

EQ
a )x

EQ
a .

Fig. 4 (a) displays the relationship between η and the refined bound on the price of anarchy
established by Theorem 4.5 for polynomials of various degrees. It is worth mentioning that the

2 To be formally correct, this assumption requires that the equilibrium utilization rates of all resources are unique, as
it is the case when c is strictly monotone (de Palma and Nesterov, 1998). To circumvent this problem, we formulate the
following results in terms of a specific equilibrium.



466 J.R. Correa et al. / Games and Economic Behavior 64 (2008) 457–469
Fig. 3. Illustration of the proof of Theorem 4.5 for separable cost functions.

(a) (b)

Fig. 4. (a) Price of anarchy as a function of fixed to total cost. (b) Minimum values for which the pseudo-approximation
results hold. Each curve refers to a family of polynomials of a certain degree with nonnegative coefficients.

price of anarchy is at most 1/η, even if we do not place any additional restriction on C . This
observation qualifies the discussion by Roughgarden and Tardos (2002, 2004) on the unbound-
edness of the price of anarchy for instances with general cost functions.

As another example, consider a vehicular network in which users travel at most twice as long
on each arc when the network is congested compared to the situation when it is not. Following
the recommendation of the Bureau of Public Roads (1964), we let cost functions be polynomials
of degree 4. Hence, Theorem 4.2 (a) gives an upper bound of 2.151 on the price of anarchy,
if we do not take the congestion level into account. In contrast, Theorem 4.5 (a) gives a more
accurate bound of 1.365. More generally, the bounds provided by Theorem 4.5 may offer a good
explanation of the satisfactory performance of equilibria in many practical situations. Fig. 4 (b)
illustrates Theorem 4.5 (b).

Let us also point out that the bounds in Theorem 4.5 (and, therefore, Theorem 4.2) are tight,
for separable cost functions. Consider the traffic assignment instance in Fig. 5, where v units
of flow must be routed from one node to the other over two parallel arcs a and a′. The cost
functions are ca(xa) = c(v) (a constant) and ca′(xa′) = ηc(v)+ (1−η)c(xa′), respectively. Here,
the function c : R�0 → R�0 and the scalar v are chosen such that β(C) = β(c, v). Both bounds
given in Theorem 4.5 are simultaneously tight for this instance.



J.R. Correa et al. / Games and Economic Behavior 64 (2008) 457–469 467
Fig. 5. Instance for which the bounds provided by Theorem 4.5 are tight.

5. Discussion and concluding remarks

Most of the preceding results and proof techniques can almost effortlessly be carried forward
to a variety of different settings. As an example to illustrate this, we sketch two extensions: a
different type of social cost function, and general side constraints on the utilization rates. Let us
also mention that the proof-by-picture idea put forward in Section 3 has recently been used by
others to derive bounds on the price of anarchy in a variety of noncooperative games (e.g., Yang
and Huang, 2005; Farzad et al., 2006; Acemoglu et al., 2007; Harks, 2007).

Another social cost function that is relevant in a variety of contextual areas such as evacuation
planning, telecommunication networks, and supply chain management is the maximum cost of a
used strategy (Roughgarden, 2004; Correa et al., 2007). For a given strategy distribution x, let us
denote by L(x) the maximum cost cS(x) over all strategies S ∈ S for which xS > 0. The results
of Correa et al. (2007) and Theorem 4.5 imply that the price of anarchy does not change.

Corollary 5.1. Let xEQ be an equilibrium of a nonatomic congestion game with a single player
type and cost functions drawn from a class C of nonseparable cost functions such that ca(0) �
ηca(x

EQ), for some 0 � η < 1.

(a) If x is the vector of utilization rates of a feasible strategy distribution, then L(xEQ) �
(1 − (1 − η)β(C))−1L(x).

(b) If y is a feasible utilization rate vector of the same game with 1+ (1−η)β(C) times as many
players, then L(xEQ) � L(y).

For the original social cost function, all results presented here can be extended to the setting
with arbitrary side constraints in the space of resources. (The same is true if one were to con-
sider side constraints in the space of strategies.) From a practical standpoint, capacity constraints
are the simplest and perhaps most useful type of side constraints. In the context of traffic as-
signment, Hearn (1980), Larsson and Patriksson (1994, 1995, 1999), and Marcotte et al. (2004),
among others, have advocated the explicit inclusion of resource capacities as an obvious way
of improving the quality of models. An equilibrium with side constraints is an equilibrium in
the same game without side constraints, but where players experience infinite disutilities when
their actions would result in infeasible solutions. For formal definitions, details, and references
on these equilibria, we refer the reader to Correa et al. (2004) and Stier-Moses (2004).

In the conference version of this article (Correa et al., 2005), we also considered instances for
which the cost of each resource at utilization rate zero is equal to zero. This assumption helps



468 J.R. Correa et al. / Games and Economic Behavior 64 (2008) 457–469
to capture situations in which variable costs dominate fixed costs, or where fixed costs can be
neglected altogether. Subsequently, Dumrauf and Gairing (2006) computed the exact price of an-
archy for polynomial cost functions of this kind. It turns out that when variable costs dominate,
the price of anarchy is smaller than in the general case. Together with the results of Section 4.2,
this suggests that the price of anarchy is largest in instances with intermediate levels of conges-
tion: when congestion is low, players are aligned with the system, and when congestion is high,
the system does poorly anyway because the problem is not the alignment of incentives, but the
lack of capacity.
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