
Math. Program., Ser. B (2015) 154:305–328
DOI 10.1007/s10107-014-0831-8

FULL LENGTH PAPER

Strong LP formulations for scheduling splittable jobs
on unrelated machines

José Correa · Alberto Marchetti-Spaccamela ·
Jannik Matuschke · Leen Stougie · Ola Svensson ·
Víctor Verdugo · José Verschae

Received: 30 April 2014 / Accepted: 11 October 2014 / Published online: 24 October 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract A natural extension of the makespan minimization problem on unrelated
machines is to allow jobs to be partially processed by different machines while
incurring an arbitrary setup time. In this paper we present increasingly stronger

J. Correa · V. Verdugo
Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile
e-mail: correa@uchile.cl

V. Verdugo
e-mail: vicverdu@gmail.com

A. Marchetti-Spaccamela
Department of Computer and System Sciences, Sapienza University of Rome, Rome, Italy
e-mail: alberto@dis.uniroma1.it

J. Matuschke
Institut für Mathematik, TU Berlin, Berlin, Germany
e-mail: matuschke@math.tu-berlin.de

L. Stougie (B)
Department of Econometrics and Operations Research, VU Amsterdam & CWI,
Amsterdam, The Netherlands
e-mail: l.stougie@vu.nl

O. Svensson
School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
e-mail: ola.svensson@epfl.ch

J. Verschae
Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
e-mail: jverschae@uc.cl

J. Verschae
Departamento de Ingeniería Industrial y de Sistemas, Pontificia Universidad
Católica de Chile, Santiago, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-014-0831-8&domain=pdf

306 J. Correa et al.

LP-relaxations for this problem and their implications on the approximability of the
problem. First we show that the straightforward LP, extending the approach for the
original problem, has an integrality gap of 3 and yields an approximation algorithm
of the same factor. By applying a lift-and-project procedure, we are able to improve
both the integrality gap and the implied approximation factor to 1 + φ, where φ is
the golden ratio. Since this bound remains tight for the seemingly stronger machine
configuration LP, we propose a new job configuration LP that is based on an infinite
continuum of fractional assignments of each job to the machines. We prove that this
LP has a finite representation and can be solved in polynomial time up to any accuracy.
Interestingly, we show that our problem cannot be approximated within a factor bet-
ter than e

e−1 ≈ 1.582 (unless P = NP), which is larger than the inapproximability
bound of 1.5 for the original problem.

Mathematics Subject Classification Primary 90B35 · 68W25; Secondary 68Q25 ·
90C10

1 Introduction

The unrelated machine scheduling problem, R||Cmax in the three-field notation of [9],
has attracted significant attention within the scientific community. The problem is to
find a schedule of jobs with machine-dependent processing times that minimizes the
makespan, i.e., the maximum machine load. Lenstra et al. [14] designed a polynomial
time linear programming based rounding algorithm and showed that the algorithm has
a worst-case approximation ratio of 2, and that the existence of a polynomial time
algorithm with ratio smaller than 3/2 would prove that P = NP .

A natural generalization of this problem is to allow jobs to be split and processed on
multiple machines simultaneously, where in addition a setup has to be performed on
every machine processing the job. This generalized scheduling problem finds appli-
cations in production planning, e.g., in textile and semiconductor industries [13,22],
and disaster relief operations [25]. Formally, we are given a set of m machines M and
a set of n jobs J with processing times pi j ∈ Z+ and setup times si j ∈ Z+ for every
i ∈ M and j ∈ J . A schedule corresponds to a vector x ∈ [0, 1]M×J , where xi j
denotes the fraction of job j that is assigned to machine i , satisfying

∑
i∈M xi j = 1

for all j ∈ J . If job j is processed (partially) on machine i then a setup of length
si j has to be performed on the machine. During the setup of a job the machine is
occupied and thus no other job can be processed nor be set up. This results in the
definition of load of machine i ∈ M as

∑
j :xi j>0(xi j pi j + si j). The objective is to

minimize the makespan, the maximum load of the schedule. We denote this problem
by R|split,setup|Cmax. Note that by setting pi j = 0 and interpreting the setup times
si j as processing requirements we obtain the classical problem without job splitting,
R||Cmax.

Relatedwork Reducing the approximability gap for R||Cmax is a prominent openques-
tion [27]. Since the seminal work by Lenstra et al. [14] there has been a considerable
amount of effort leading to partial solutions to this question. In the restricted assign-

123

Strong LP formulations for scheduling splittable jobs 307

ment problem, the processing times are of the form pi j ∈ {p j ,∞} for all i, j ∈ J . A
special case of this setting, in which each job can only be assigned to two machines,
was considered by Ebenlendr et al. [6]. They note that while the lower bound of 3/2
still holds, a 7/4-approximation can be obtained. For the general restricted assignment
problem Svensson [23] broke the barrier of 2, by showing that the optimal makespan
can be estimated within a factor of 33/17+ ε ≈ 1.9412+ ε by an algorithm based on
amachine configuration linear programming relaxation where each variable indicates
the subset of jobs assigned to a given machine. It is worth mentioning that this result
only shows that the objective value can be approximated within said precision, but no
polynomial time algorithm is known to find a schedule with this guarantee.

On the negative side, the machine configuration LP has an integrality gap of 2
for general unrelated machines [26], as was the case for the linear programming
relaxation in [14]. This even holds for another special case called unrelated graph
balancing, where each job has (possibly different) finite processing times on at most
two machines [6,26]. Configuration LPs have also been studied extensively for the
max-min version of the problem [2,3,8,11,17,26], which has become known as the
Santa Claus problem.

The literature on scheduling problems with splittable jobs is significantly less abun-
dant. To the best of our knowledge such a problem has been presented for the first
time in a production problem in the textile industry [22]. It was modeled as a restricted
assignment version, in which each job is associated to a specific subset of compati-
ble machines on which it can be processed and can be split arbitrarily and processed
independently on these machines. However no setup times are considered. The jobs
are released over time and the goal is minimizing the maximum (weighted) tardiness.
It turns out that this problem is solvable in polynomial time if machines are iden-
tical or uniform; the paper considers also the case of unrelated machines providing
pseudopolynomial time algorithms. Another application of splittable jobs appears in
production scheduling for semiconductor wafers [13], again with the objective of min-
imizing the total weighted tardiness. The authors provide different variants of a local
search heuristic to solve the problem in practice.

Theoretical results on the subject are not only scarce, but also restricted to the special
case of identicalmachines. In particular, Xing andZhang [28] describe a (1.75−1/m)-
approximation for makespan minimization, which was later improved to 5/3 by Chen
et al. [4]. The problemwith splittable jobs, setup times, and the objective ofminimizing
the sum of completion times, having arisen in modeling a problem on disaster relief
operations [25], is studied by Schalekamp et al. [19]. They give a polynomial time
algorithm in the case of two machines and job- and machine-independent setup times,
and a 2.781-approximation algorithm for arbitrarym. This was later improved to 2+ε

in [5], even in the presence of weights, in which case the problem is NP-hard [19].
Another setting that comes close to job splitting is preemptive scheduling with

setup times [15,18,21], which does not allow simultaneous processing of parts of the
same job. We also refer to the survey [1] and references therein for results on other
scheduling problems with setup costs.

Our contribution Due to the novelty of the considered problem, our aim is to advance
the understanding of its approximability, in particular in comparison to R||Cmax. We

123

308 J. Correa et al.

first study the integrality gap of a natural generalization of the LP relaxation by Lenstra
et al. [14] to our setting and notice that their rounding technique does not work in
our case. This is because it might assign a job with very large processing time to a
single machine, while the optimal solution splits this job. On the other hand, assigning
jobs by only following the fractional solution given by the LP might incur a large
number of setups (belonging to different jobs) to a single machine. We get around
these two extreme cases by adapting the technique from [14] so as to only round
variables exceeding a certain threshold while guaranteeing that only one additional
setup time is required per machine. This yields a 3-approximation algorithm presented
in Sect. 2. Additionally, we show that the integrality gap of this LP is 3, and therefore
our algorithm is best possible for this LP.

In Sect. 3 we improve the approximation ratio by tightening our LP relaxation with
a lift-and-project approach. We refine our previous analysis by balancing the rounding
threshold, resulting in a (1 + φ + ε)-approximation for any ε > 0, where φ ≈ 1.618
is the golden ratio. Surprisingly, we can show that this number is best possible for
this LP; even for the seemingly stronger machine configuration LP mentioned above.
This suggests that considerably different techniques are necessary to match the 2-
approximation algorithm for R||Cmax. Indeed, we also show in Sect. 5 that it is NP-
hard to approximate within a factor e

e−1 ≈ 1.582, a larger lower bound than the
3/2 hardness result known for R||Cmax. For the restricted assignment case, where
si j ∈ {s j ,∞} and pi j ∈ {p j ,∞}, we obtain a (2 + ε)-approximation algorithm,
for any ε > 0, matching the 2-approximation of [14] in Sect. 4. We remark that the
solutions produced by all our algorithms have the property that at most one split job
is processed on each machine. This property may be desirable in practice since in
manufacturing systems setups require labor causing additional expenses.

As the integrality gaps of all mentioned relaxations are no better than 1 + φ, we
propose a novel job based configuration LP relaxation in Sect. 6.2 that has the potential
to lead to better guarantees. Instead of considering machine configurations that assign
jobs to machines, we introduce job configurations, describing the assignment of a
particular job to the machines. The resulting LP cuts away worst-case solutions of the
other LPs considered in this paper, rendering it a promising candidate for obtaining
better approximation ratios. While the set of job configurations is infinite, we show
that we can restrict a priori to a finite subset of so-called maximal configurations.
Applying discretization techniques we can approximately solve the LP within a factor
of (1 + ε) by separation over the dual constraints. Finally, we study the projection of
this polytope to the assignment space and derive an explicit set of inequalities that
defines this polytope. An interesting open problem is to determine the integrality gap
of the job configuration LP.

2 A 3-approximation algorithm

Our 3-approximation algorithm is based on a generalization of the LP by Lenstra,
Shmoys, and Tardos [14]. Let C∗ be a guess on the optimal makespan. Consider the
following feasibility LP, whose variable xi j denotes the fraction of job j assigned to
machine i .

123

Strong LP formulations for scheduling splittable jobs 309

[LST] :
∑

i∈M
xi j = 1 for all j ∈ J, (1)

∑

j∈J

xi j (pi j + si j) ≤ C∗ for all i ∈ M, (2)

xi j = 0 for all i ∈ M, j ∈ J : si j > C∗,
xi j ≥ 0 for all i ∈ M, j ∈ J. (3)

Notice that the smallest value of C∗ such that [LST] is feasible can be computed in
polynomial time. Indeed, there are atmost n ·m different thresholds forC∗ that changes
the subset of equalities considered in (3). We solve one linear program for each of
them, where C∗ is treated as a variable and the objective function is to minimize C∗.
Among all these linear programs we select the one of the smallest C∗ and such that
it is consistent with the corresponding threshold for the si j ’s. The computed C∗ value
satisfies that C∗ ≤ OPT, where OPT is the optimal solution of the original problem
R|split,setup|Cmax.

Let x be a feasible extreme point of [LST]. We define the bipartite graph G(x) =
(J ∪ M, E(x)), where E(x) = {i j : 0 < xi j }. Using the same arguments as in [14],
not repeated here, we can show the following property.

Lemma 1 For every extreme point x of [LST], each connected component of G(x) is
a pseudotree; a tree plus at most one edge that creates a single cycle.

We devise a procedure for rounding the extreme point x . To this end, we define

E+ = {i j ∈ E(x) : xi j > 1/2}

and
J+ = { j ∈ J : there exists i ∈ M with i j ∈ E+},

i.e., those jobs that the fractional solution x assigns to some machine by a factor of
more than 1/2. In our rounding procedure each job j ∈ J+ is completely assigned to
the machine i ∈ M for which xi j > 1/2. We now show how to assign the remaining
jobs.

Let us call G ′(x) the subgraph of G(x) induced by (J ∪ M)\J+. Notice that every
edge i j in G ′(x) satisfies 0 < xi j ≤ 1/2. Also, since G ′(x) is a subgraph of G(x)
every connected component of G ′(x) is a pseudotree.

Definition 1 Given A ⊆ E(G ′(x)), we say that a machine i ∈ M is A -balanced, if
there exists at most one job j ∈ J\J+ such that i j ∈ A. We say that a job j ∈ J\J+
is A -processed if there is at most one machine i ∈ M such that i j /∈ A and xi j > 0.

Inwhat followswe seek to find a subset A ⊆ E(G ′(x)) such that each job j ∈ J\J+
is A-processed and each machine is A-balanced. We will show that this is enough for
a 3-approximation, by assigning each job j ∈ J\J+ to machine i by a fraction of
at most 2xi j for each i j ∈ A, and not assigning it anywhere else. Since every job
j ∈ J\J+ is A-processed and xi j ≤ 1/2 for all i ∈ M (including the only machine i
with i j /∈ A, if it exists), job j will be completely assigned. Also, since each machine

123

310 J. Correa et al.

Fig. 1 Construction of set A. Circles represent job nodes, squares represent machines. Solid lines represent
the edges in A, dashed lines represent edges deleted in the construction, double dashed lines represent the
edges in KC

is A-balanced, the load of each machine i will be affected by at most the setup-time of
one job j . This setup time si j is at most C∗ by restriction (3). This and the fact that the
processing time of a job on each machine is at most doubled are the basic ingredients
to show the approximation factor of 3.

Construction of the set A In the following, we denote by (T, r) a rooted tree T with
root r . Consider a connected component T of G ′(x). Since G ′(x) is a subgraph of
G(x), Lemma 1 implies that T is a pseudotree. We denote by C = j1i1 j2i2 · · · j�i� j1
the only cycle of T (if it exists), which must be of even length. If such a cycle does
not exist we choose any path in T from j1 to some i�. The jobs in the cycle are
J (C) = { j1, . . . , j�} and the machines are M(C) = {i1, . . . , i�}. In the cycle, we
define the matching KC = {(jk, ik) : k ∈ {1, . . . , �}}. In the forest T \KC , we denote
by (Tu, u) the tree rooted in u, for every u ∈ J (C). Notice that by deleting the
matching, no two vertices of J (C) will be in the same component of T \KC .

For every u ∈ J (C), by directing the edges of (Tu, u) away from the root, we obtain
a directed tree, each level of which consists either entirely ofmachine-nodes or entirely
of job-nodes. We delete all edges going out of machine nodes, i.e., all edges entering
job-nodes. The remaining edges we denote by Au . We define A := ⋃

u∈J (C) Au ; see
Fig. 1 for a depiction of the situation. The following two lemmas show that the set A
is indeed A-processed and A-balanced.

Lemma 2 Every job j ∈ J\J+ is A-processed.

Proof Consider first a job jk ∈ J (C). Since jk is the root of the tree Tjk , the set A
contains all its incident edges apart from the edge (ik, jk), which was removed as part
of the matching KC . Therefore jk is A-processed for all k ∈ {1, . . . , �}. Now consider
a job j /∈ J (C). This job j is part of a directed tree Tu and has exactly 1 incoming edge
in that tree. By construction of Au , this edge is the only edge incident to the job-node
that is deleted, hence it is A-processed. ��

123

Strong LP formulations for scheduling splittable jobs 311

Lemma 3 Every machine i ∈ M is A-balanced.

Proof Any machine i ∈ M is a node of some tree Tu . By construction, the single
incoming edge into i of Tu is the only edge incident to i that survives in A, hence i is
A-balanced. ��

Given set A, we apply the following rounding algorithm that constructs a new
assignment x̃ . The algorithm also outputs a binary vector ỹi j ∈ {0, 1} which indicates
whether job j is (partially) assigned to machine i or not.

Algorithm 1 Rounding(x)
1: Construct the graphs G(x), G′(x), and the set A as above.
2: For all i j ∈ E+, x̃i j ← 1 and ỹi j ← 1;

3: For all i j ∈ A, x̃i j ← xi j
∑

k:k j∈A xk j
and ỹi j ← 1;

4: For all i j ∈ E \ (E+ ∪ A), x̃i j ← 0 and ỹi j ← 0.

Theorem 1 There exists a 3-approximation algorithm for R|split,setup|Cmax.

Proof Let x be an extreme point of [LST] and consider the output x̃, ỹ of algorithm
Rounding(x). Clearly x̃, ỹ can be computed in polynomial time. We show that the
schedule that assigns a fraction x̃i j of job j to machine i has a makespan of at most
3C∗. This implies the theorem since, as discussed before, C∗ ≤ OPT.

First we show that x̃ ≥ 0 defines a valid assignment, i.e.,
∑

i∈M x̃i j = 1 for all
j . Indeed, this follows directly by the algorithm Rounding(x): If j ∈ J+, then there
exists a unique machine i ∈ M with i j ∈ E+ and therefore j is completely assigned
to machine i . If j /∈ J+, then

∑

i∈M
x̃i j =

∑

i :i j∈A

xi j
∑

k:k j∈A xk j
= 1.

Now we show that the makespan of the solution is at most 3C∗. First notice that
for every i j ∈ E+ we have that 1 = x̃i j = ỹi j ≤ 2xi j , because i j ∈ E+ implies that
xi j > 1/2. On the other hand, for every j ∈ J\J+ we have that

∑
k:k j∈A xk j ≥ 1/2,

because at most one machine that processes j fractionally is not considered in A. We
conclude that x̃ ≤ 2x . Then for every i ∈ M it holds that

∑

j∈J

(x̃i j pi j + ỹi j si j) =
∑

j :i j∈E+
(x̃i j pi j + ỹi j si j) +

∑

j :i j∈A

(x̃i j pi j + ỹi j si j)

≤
∑

j :i j∈E+
2xi j (pi j + si j) +

∑

j :i j∈A

(
2xi j pi j + si j

)

≤ 2C∗ +
∑

j :i j∈A

si j .

123

312 J. Correa et al.

j1

j

j2k 1

M1

M

M2k 1

J

M

k

k

k

k

pij 2k
sij 1

pij 0
sij 1

Fig. 2 Example showing that [LST] has a gap of 3

Recall that machine i is A-balanced, and therefore there is at most one job j with
i j ∈ A. Also, i j ∈ A implies that i j ∈ E(x) = {i j : xi j > 0}, and hence, by (3) in
[LST], si j ≤ C∗. We conclude that

∑
j :i j∈A si j ≤ C∗, and the theorem follows. ��

Wefinish this section bynoting that our analysis is tight. Specifically, it can be shown
that the gap between the LP solution and the optimum can be arbitrarily close to 3.

Theorem 2 For any ε > 0, there exists an instance such that (3 − ε)C∗ ≤ OPT,
where C∗ is the smallest number such that [LST] is feasible.
Proof We give a family of instances {Ik}k∈N such that OPT/C∗ approaches 3 as k
goes to infinity. This suffices for showing the theorem.

Instance Ik has a set J of 2k + 1 jobs. For each job j ∈ J we introduce its own
set of k identical machines Mj , i.e., Mj ∩ Mj ′ = ∅ if j �= j ′. We define si j = 1 and
pi j = 2k for each j ∈ J and i ∈ Mj , and si j = pi j = ∞ if i ∈ Mj ′ with j ′ �= j .
Additionally, we introduce a new family of k machines M ′, where for all j ∈ J and
i ∈ M ′ we have pi j = 0 and si j = 1. See Fig. 2 for a depiction of the construction.

We claim that the LP has a solution with C∗ = 1 + 1
2k while OPT = 3.

To see that OPT = 3, notice that there are two possible cases. If all jobs in J are
completely assigned to machines in M ′ then the makespan is clearly 3 since there
are k machines in M ′ and 2k + 1 jobs, and each job has to use a setup time of 1 on
each machine. Otherwise, there exists one job j ∈ J that is completely assigned to
machines in Mj . It is easy to see that the solution that minimizes the makespan on
these machines assigns job j up to a fraction of 1/k to each machine in Mj . Then the
load on each machine i ∈ Mj is 1 + pi j/k = 3. Therefore OPT = 3.

We now give a feasible solution to [LST] with C∗ := 1+ 1
2k . This is obtained with

the following fractional assignment,

xi j :=
{

1
2k for each j ∈ J and i ∈ Mj ∪ M ′,
0 otherwise.

123

Strong LP formulations for scheduling splittable jobs 313

Since |Mj ∪ M ′| = 2k it is clear that every job is completely assigned. Then, to see
that in [LST] (2) is satisfied, notice that for i ∈ M ′ we have that

∑

j∈J

xi j (pi j + si j) =
∑

j∈J

xi j = 2k + 1

2k
= 1 + 1

2k
= C∗,

and similarly, for i ∈ Mj ,

∑

j ′∈J

xi j ′(pi j ′ + si j ′) = xi j (pi j + si j) = 2k + 1

2k
= C∗.

We conclude that the gap for instance Ik is 3
1+ 1

2k
, which converges to 3 when k goes

to infinity. ��

3 An LP with integrality gap 1 + φ

In this section we refine the previous algorithm and improve the approximation ratio.
Since [LST] has a gap of 3, we strengthen it in order to obtain a stronger LP. To this end
notice that inequalities (2) in [LST] are the LP relaxation of the following constraints
of the mixed integer linear program with binary variables yi j for machine i and job j :

∑

j∈J

(xi j pi j + yi j si j) ≤ C∗ for all i ∈ M, (4)

xi j ≤ yi j for all i ∈ M and j ∈ J. (5)

A stronger relaxation is obtained by applying a lift-and-project step [16] to the first
inequality. For some fixed choice i j multiplying both sides of the i-th inequality (4)
by the corresponding variable yi j implies (by leaving out terms)

yi j xi j pi j + y2i j si j ≤ yi jC
∗.

In case C∗ − si j > 0, this inequality implies the valid linear inequality

xi j
pi j

C∗ − si j
≤ yi j , (6)

since every feasible integer solution has yi j xi j = xi j and y2i j = yi j . Note that, in
optimal solutions of the LP relaxation, yi j attains the smallest value that satisfies

(5) and (6). Therefore, we define αi j = max
{
1,

pi j
C∗−si j

}
if C∗ > si j , and αi j = 1

otherwise, and substitute yi j by αi j xi j to obtain the strengthened LP relaxation

[LSTstrong] :
∑

i∈M
xi j = 1 for all j ∈ J, (7)

123

314 J. Correa et al.

∑

j∈J

xi j (pi j + αi j si j) ≤ C∗ for all i ∈ M, (8)

xi j = 0 for all i ∈ M, j ∈ J : si j > C∗,
xi j ≥ 0 for all i ∈ M, j ∈ J. (9)

We remark that the stronger inequalities (8) obtained through the lift-and-project pro-
cedure also follow from the observation that at most a fraction of (C∗ −si j)/pi j of job
j can be processed on machine i . Notice that [LSTstrong] is at least as strong as [LST]
since αi j ≥ 1. Since the αi j variables depend on C∗, we cannot use the approach of
Sect. 3 to find the smallest C∗ value such that [LSTstrong] is feasible. Instead, for any
ε > 0, we find a value of C∗ such that [LSTstrong] is feasible and C∗ ≤ (1 + ε)OPT.
This follows by a straightforward binary search procedure on integer powers of 1+ ε.
Note that the value of C∗ that we find here might be strictly larger than the one used
in the previous section.

Let x be an extremepoint of this LP.Weuse a rounding approach similar to the one in
the previous section. Consider the graph G(x). As before, each connected component
of G(x) is a pseudotree, using the same arguments that justified Lemma 1. Also, we
define again a set of jobs J+ that the LP assigns to one machine by a sufficiently
large fraction. In the previous section this fraction was 1/2. Now we parameterize it
by β ∈ (1/2, 1), to be chosen later. We define E+ = { j ∈ E(x) : xi j > β} and
J+ = { j ∈ J : there exists i ∈ M with i j ∈ E+}.

Consider the subgraph G ′(x) of G(x) induced by the set of nodes (J ∪M)\J+. Let
A be a set constructed as in the previous section. Then, as in Sect. 2, every machine is
A-balanced and every job is A-processed. Now we apply the algorithm Rounding(x)
of the last section to obtain a new assignment x̃, ỹ. We show that for β = φ − 1 this is
a solution with makespan (1 + φ)C∗, where φ = (1 + √

5)/2 ≈ 1.618 is the golden
ratio. The following technical lemma is needed.

Lemma 4 Let β be a real number such that 1/2 < β < 1. Then

max
0≤μ≤1

{

μ + max

{
1

β
,
1 − μ

1 − β

}}

= max

{
1

1 − β
, 1 + 1

β

}

.

Proof Let f (μ) = μ+max
{
1
β
,
1−μ
1−β

}
. Clearly f is a piece-wise linear function with

at most two different slopes. Therefore, it is maximized when μ ∈ {0, 1} or when μ

is the breakpoint of the function, i. e., when μ solves the equation μ + 1/β = μ +
(1−μ)/(1−β). Let μ0 be the solution of this equation. A simple computation shows
that f (μ0) = 2, which implies that max0≤μ≤1 f (μ) = max{ f (0), f (μ0), f (1)} =
max{1/(1 − β), 2, 1 + 1/β}. Since 1/2 < β < 1, we have 1/(1 − β) > 2 and
1 + 1/β > 2, which implies the lemma. ��
Theorem 3 For any ε > 0, there exists a (1 + φ + ε)-approximation algorithm for
the problem R|split,setup|Cmax.

Proof By binary search we find C∗ such that [LSTstrong] is feasible, and such that
C∗ ≤ (1+ε′)OPT. Let x be an extreme point of [LSTstrong]with this value ofC∗, and

123

Strong LP formulations for scheduling splittable jobs 315

let x̃, ỹ be the output of algorithm Rounding(x) described in Sect. 2. The fact that x̃, ỹ
correspond to a feasible assignment follows from the same argument as in the proof
of Theorem 1. We now show that the makespan of this solution is at most (1+ φ)C∗,
which implies the approximation factor.

For any edge i j ∈ E+, we have xi j > β and hence 1 = x̃i j = ỹi j ≤ 1/β · xi j .
Additionally, for every j ∈ J\J+, we have again, by the choice of A, that it is A-
processed. Hence,

∑
k:k j /∈A xk j ≤ β, because at most one machine that processes j

fractionally is not considered in A. Thus,
∑

k:k j∈A xk j ≥ 1 − β, which implies that
x̃i j ≤ xi j/(1 − β). Hence, for machine i ,

∑

j∈J

(x̃i j pi j + ỹi j si j) =
∑

j :i j∈E+
(x̃i j pi j + ỹi j si j) +

∑

j :i j∈A

(x̃i j pi j + ỹi j si j)

≤ 1

β

∑

j :i j∈E+
xi j (pi j + si j) + 1

1 − β

∑

j :i j∈A

xi j pi j +
∑

j :i j∈A

si j .

Sincemachine i is A-balanced, there exists at most one job j with i j ∈ A (if there is no
such job then i has load at mostC∗/β). Let j (i) be that job, and defineμi = si j (i)/C∗.
Then notice that

xi j (i)(pi j (i) + αi j (i)si j (i)) ≥ xi j (i) pi j (i)

(

1 + si j (i)
C∗ − si j (i)

)

= xi j (i) pi j (i)

(

1 + μi

1 − μi

)

= xi j (i) pi j (i)
1

1 − μi
.

Combining the last two inequalities we obtain that

∑

j∈J

(x̃i j pi j + ỹi j si j) ≤ 1

β

∑

j :i j∈E+
xi j (pi j + si j) + 1

1 − β
xi j (i) pi j (i) + si j (i)

≤ 1

β

∑

j :i j∈E+
xi j (pi j +si j)+ 1−μi

1−β
xi j (i)(pi j (i)+αi j (i)si j (i))+μiC

∗

≤ max

{
1

β
,
1 − μi

1 − β

}∑

j∈J

xi j (pi j + αi j si j) + μiC
∗

≤ C∗
(

μi + max

{
1

β
,
1 − μi

1 − β

})

.

Therefore, by the previous lemma we have that the load of each machine is at most
C∗·max{1/(1−β), 1+1/β}. The latter factor isminimizedwhen 1/(1−β) = 1+1/β,
hence β = (−1 + √

5)/2 = (1 + √
5)/2 − 1 = φ − 1. Together with the fact

that C∗ ≤ (1 + ε′)OPT, the approximation ratio becomes (1 + 1/(φ − 1))(1 + ε′)
= (1 + φ)(1 + ε′) and choosing ε = (1 + φ)ε′ completes the proof. ��

We close this section by showing that 1 + φ is the best approximation ratio achiev-
able by [LSTstrong].

123

316 J. Correa et al.

jt

j1 j1 jk jk

i1p ikp

ic j1 ic j1 ic jk ic jk

pij 0
sij 1

pij 0

sij
1

2 1

pij
1

2
sij 0

Fig. 3 Example showing that [LSTstrong] has a gap of 1 + φ

Theorem 4 For any ε > 0, there exists an instance such that C∗(1+ φ − ε) ≤ OPT,
where C∗ is the smallest number such that [LSTstrong] is feasible.

Proof Consider the instance depicted in Fig. 3. It consists of two disjoint sets of jobs
J and J ′. Each job j� ∈ J forms a pair with its corresponding job j ′� ∈ J ′. Each
such pair is associated with a parent machine i p(j�) = i p(j ′�) = i�p such that both
j� and j ′� can be processed on this machine with setup time si�p j� = si�p j ′� = φ/2 and
pi�p j� = pi�p j ′� = 0. Each job j of each pair is furthermore associated with a child
machine ic(j) such that sic(j) j = 0 and pic(j) j = φ + 1 = 1/(2 − φ). In addition,
there is a single top job j t that can be processed on any of the parent machines with
setup time 1 and processing time 0. All other setup and processing times are infinite.

We will show that the makespan of any feasible solution is at least 1 + φ while
the LP relaxation has a value of 1 + 1/k. First, it is easy to check that the following
fractional assignment is a feasible solution to [LSTstrong] with C∗ = 1 + 1/k.

xi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ − 1 for j ∈ J ∪ J ′, i = i p(j),

2 − φ for j ∈ J ∪ J ′, i = ic(j),
1
k for j = j t , i = i�p for all � = 1, . . . , k,

0 otherwise.

To see that the optimal makespan of the instance is 1+φ, let i p(j�) be the machine that
receives the top job j t in an optimal solution (note that p jt i = 0 for all i , and hence
this job is never split). Similarly, jobs j� and j ′� are not split in an optimal solution.
If either of these jobs is completely assigned to its child machine, then the makespan
of the schedule is 1/(2 − φ) = 1 + φ. Otherwise, j� and j ′� are both assigned to
i p(j�) = i p(j ′�), which then has a load of 1+1/(φ −1) = 1+φ. The theorem follows
by choosing k large enough for the given ε. ��

4 A (2 + ε)-approximation algorithm for restricted assignment

In this section we consider the restricted assignment setting, i.e., for every job j
there exists a set of machines Mj such that pi j = p j and si j = s j if i ∈ Mj , and

123

Strong LP formulations for scheduling splittable jobs 317

pi j = si j = ∞ if i /∈ Mj . We use the same relaxation as in the previous section to
show that this version admits a 2-approximation algorithm,

[LSTstrong] :
∑

i∈Mj

xi j = 1 for all j ∈ J, (10)

∑

j∈J :i∈Mj

xi j (p j + α j s j) ≤ C∗ for all i ∈ M, (11)

xi j = 0 for all i ∈ M, j ∈ J : si j > C∗,
xi j ≥ 0 for all j ∈ J and i ∈ Mj , (12)

where α j = max
{
1, p j/(C

∗ − s j)
}
.

Let x be an extreme point of this LP. As the basis for the rounding procedure we
consider in this case the graph G ′(x) = (J ′(x) ∪ M, E ′(x)) defined by the set of
edges E ′(x) = {i j : 0 < xi j < 1} and the set of job-nodes J ′(x) = { j ∈ J :
j is incident to some e ∈ E ′(x)}; i.e., we fix all variables xi j that have value 0 or
1. As before, each connected component of G ′(x) is a pseudotree. Let A be the set
constructed as in Sect. 2, now based on the graph G ′(x).

As each job j ∈ J ′(x) is A-processed, there is at most one machine i−j such that

0 < xi−j j < 1 and i−j j /∈ A. For each j ∈ J ′(x) we further choose an arbitrary

machine i+j with i+j j ∈ A. We construct a new solution x̃ by defining

x̃i j :=

⎧
⎪⎨

⎪⎩

0 if i−j exists and i = i−j
xi j + xi−j j if i−j exists and i = i+j
xi j otherwise

for every i ∈ M and j ∈ J . In other words, the amount of j processed on i−j is moved

to i+j . We will show that this, together with the full setup time s j , increases the load

of i+j by at most C∗, yielding the desired approximation ratio of 2 + ε.

Theorem 5 For any ε > 0, there exists a (2+ε)-approximation algorithm for schedul-
ing splittable jobs on unrelated machines under restricted assignment.

Proof By binary search we find C∗ such that [LSTstrong] is feasible, and such that
C∗ ≤ (1+ε/2)OPT.We construct x̃ from the resulting solution x as described above.
It remains to show that

∑

j∈J : x̃i j>0

(p j x̃i j + s j) ≤ 2C∗ for every i ∈ M.

Consider a machine i ∈ M . First observe that (10), (11) and (12) imply α j xi j ≤ 1 for
all j ∈ J and that further C∗ ≥ p j/α j + s j by definition of α j . Combining these two
observations yields C∗ ≥ p j xi j + s j . Because i is A-balanced, i processes at most

123

318 J. Correa et al.

one job j with 0 < xi j < 1. Note that x̃i j ≤ xi j + xi−j j (with equality if i = i+j) and
x̃i j ′ ≤ xi j ′ for all j ′ �= j . Therefore

∑

j∈J : x̃i j>0

(p j x̃i j + s j) ≤
∑

j ′∈J

xi j ′(p j ′ + α j ′s j ′)

︸ ︷︷ ︸
≤C∗

+ p j xi−j j + s j
︸ ︷︷ ︸

≤C∗

≤ 2C∗,

where the first inequality follows from the fact that xi j ′ ∈ {0, 1} for all j ′ �= j . This
proves the lemma. ��

Finally, note that if p j = 0 for all j ∈ J , then also α j = 1 for j ∈ J , and there-
fore [LSTstrong] is equivalent to the classic LP relaxation of the restricted assignment
version of R||Cmax (with setup times fulfilling the roles of the processing times in the
latter). This implies that the integrality gap of 2 known for the latter LP also holds for
[LSTstrong] in the restricted assignment case; see [14].

5 Hardness of approximation

By reducing from Max k- Cover, we derive an inapproximability bound of e/(e −
1) ≈ 1.582 for R|split,setup|Cmax, indicating that the problemmight indeed be harder
from an approximation point of view compared to the classic R||Cmax, for which 3/2
is the best known lower bound [14].

Theorem 6 For any ε > 0, there is no
(e
e−1 − ε

)
-approximation algorithm for

R|split,setup|Cmax unless P = NP .

Proof We prove the hardness of R|split,setup|Cmax by providing a reduction from the
Max k- Cover problem defined as follows: given a universe of elements e1, . . . , em
and a family of subsets of this universe S1, . . . , Sn , find k sets that maximizes the
number of covered elements, i.e., the number of elements contained in the union of
the selected sets. In a seminal paper [7], Feige showed that it is NP-hard to distin-
guish between instances in which all elements can be covered with k disjoint sets and
instances where no k sets can cover more than a (1− 1

e) + ε′ fraction of the elements
for any ε′ > 0. In addition, this hardness holds for instances where all sets have the
same cardinality, namely m/k.

Given a Max k- Cover instance where each set has cardinality m/k we construct
an instance of our problem in polynomial time as follows. We define n jobs, one for
each set S j . We define a set of n − k generic machines with the property that on each
one of them each job j has setup time 1 and processing time 0. Next, we create an
element-machine mi for each element ei , on which each job j with ei ∈ S j requires
setup time smi j = 0 and processing time pmi j = m/k = |S j |, and each job j with
ei /∈ S j has setup time sei , j = 2 and pmi j = m/k = |S j |.

Assume all elements can be covered by k disjoint sets. In the instance of
R|split,setup|Cmax , we can schedule the k jobs corresponding to these sets on the
element-machines by assigning each of them by equal fractions k/m of length 1 on

123

Strong LP formulations for scheduling splittable jobs 319

each of its m/k element-machines. Note that, as the sets are disjoint, no element-
machine recieves more than one fraction of a job. The remaining n − k jobs can be
processed on the generic machines, yielding a makespan of 1.

Now assume every set of k sets can cover at most ((1 − 1
e) + ε′)m elements. Note

that if more than n − k jobs are scheduled on the generic machines, at least one of
these machines has to process two jobs, resulting in a makespan of 2. Thus, in order
to achieve a makespan strictly less than 2, at least k jobs have to be scheduled on
element-machines. Consider any subset of k jobs scheduled on the element-machines.
Note that we have to divide the total processing time of m of these k jobs over the at
most (1− 1

e +ε′)m element-machines covered by the corresponding k sets. In the best
case this yields a makespan of m

(1− 1
e +ε′)m = e

e−1 −ε. This proves that it isNP-hard to

distinguish between instances that have optimal makespan 1 and instances that have
optimal makespan e

e−1 − ε for any ε > 0. ��
Notice that the construction used in this lower bound makes it non-valid for the

restricted assignment version of the problem. For that version the best known lower
bound is still 3/2, resulting from the basic makespan problem without splits [14].

6 Configuration LP relaxations

A basic tool of combinatorial optimization is to design stronger linear programs based
on certain configurations. These LPs often provide improved integrality gaps and thus
lead to better approximation algorithms as long as they can be solved efficiently and be
rounded appropriately. We consider two configuration LPs in this section: a machine
configuration LP, which we show to exhibit, surprisingly, the same integrality gap of
1+ φ as already observed for [LSTstrong], and a job configuration LP, which we show
to be much more promising.

Remark 1 Observe that R|split,setup|Cmax can be formulated as a mixed integer pro-
gramwith rational coefficients. Hence there always exists an optimal solution in which
all fractions xi j are rational numbers. We therefore will restrict all configurations
throughout this section to consist only of rational numbers. In particular, although the
sets of configurations in the LPs defined below might be infinite, they will always be
countable, and we can thus define sums over these sets.

6.1 A machine configuration LP

In machine scheduling the most widely used configuration LP uses as variables the
possible configurations of jobs on a given machine. These machine configuration LPs
have been successfully studied for the unrelated machine setting since the pioneering
work of Bansal and Sviridenko [3]. Recent progress in the area includes [6,23,24,26].

The standard way to formulate a machine configuration LP relaxation for allocation
problems is to have a variable for each machine i and each subset (configuration or
bundle) B of jobs that can be feasibly assigned to i with respect to a guessed makespan
C∗. In the context of R|split,setup|Cmax the natural extension of a configuration B for
machine i is associated with a vector x B ∈ [0, 1]J that specifies what fraction of job

123

320 J. Correa et al.

j is scheduled on machine i in the configuration. Given a guessed makespan C∗, we
say a configuration B is feasible, if and only if

∑
j :x Bj >0(x

B
j pi j + si j) ≤ C∗. Note

that the number of feasible configurations is infinite. Although we shall see that the
machine configuration is in fact no stronger than [LSTstrong], we first prove that we
can restrict to a finite subset of configurations, called maximal configurations in order
to define the LP formally. A feasible configuration B is maximal if x Bj ∈ {0, 1} for
all j ∈ J , or if

∑
j :x Bj >0 pi j x

B
j + si j = C∗ and there is at most one job j ∈ J with

0 < x Bj < 1. Note that the set of maximal configurations is finite.

Theorem 7 For any configuration B for a machine i ∈ M, the corresponding vector
x B is a convex combination of vectors corresponding to maximal configurations for i .

Proof Let B ∈ Bi for some i ∈ M and let S = support(x B). Note that x B is contained
in the polytope described by

∑

j∈S
(pi j x j + si j) ≤ C∗

0 ≤ x j ≤ 1 for all j ∈ S.

Any vertex of this polytope must fulfill at least |S| − 1 of the latter inequalities with
equality and thus corresponds to a maximal configuration. Thus, any machine config-
uration is a convex combination of maximal configurations. ��
Given a guessed makespan C∗, we denote the set of maximal feasible configurations
for each machine i ∈ M by Bi . The machine configuration LP is a feasibility LP with
a variable ρB for each B ∈ ⋃̇

i∈MBi indicating whether or not the configuration B is
assigned to a machine i .

[MCLP] :
∑

B∈Bi

ρB ≤ 1 for all i ∈ M,

∑

i∈M

∑

B∈Bi

x Bj ρB ≥ 1 for all j ∈ J,

ρB ≥ 0 for all B ∈
⋃̇

i∈MBi .

The first set of constraints says that we should (fractionally) assign at most one con-
figuration to each machine and the second set of constraints says that each job should
be (fractionally) assigned (at least) once.

It is easy to see that [MCLP] is a relaxation of our problem and that the minimum
C∗ such that [MCLP] is feasible provides a lower bound on the optimal makespan
OPT. Rather surprisingly, we show that this seemingly stronger relaxation has the
same integrality gap as the strengthened assignment LP [LSTstrong].
Theorem 8 For any ε > 0, there exists an instance such that C∗(1+ φ − ε) ≤ OPT,
where C∗ is the smallest number such that [MCLP] is feasible.
Proof The construction is similar to that in the proof of Theorem 4.

123

Strong LP formulations for scheduling splittable jobs 321

We first select the parameters of the construction. Let β = φ − 1 and select k,G, d
to be large integers (dependent on ε) so that

(

1 − 1

k

)
d

G
≥ β and

G

d
≥ 1

β
− ε. (13)

Based on these parameters we construct the integrality gap instance as follows.
There are k disjoint groups of jobs J1, . . . , Jk , each containing G jobs, i.e., J1 =
{ j (1)1 , . . . , j (G)

1 }, . . . , Jk = { j (1)k , . . . , j (G)
k }. For each job j ∈ ⋃k

�=1 J� there is a
child machine ic(j) and for each group � = 1, . . . , k there is a parent machine
i p(j

(1)
�) = i p(j

(2)
�) = · · · = i p(j

(G)
�) that can process all the jobs in J�. Finally, there

is a top job j t (see Fig. 4 and notice the tree structure with j t being the root).
The processing times and setup times are as follows,

pi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for j ∈ ⋃k
�=1 J�, i = i p(j),

1
1−β

for j ∈ ⋃k
�=1 J�, i = ic(j),

0 for j = j t , i = i p(j) for any j ∈ ⋃k
�=1 J�,

∞ otherwise.

si j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
d for j ∈ ⋃k

�=1 J�, i = i p(j),

0 for j ∈ ⋃k
�=1 J�, i = ic(j),

1 for j = j t , i = i p(j) for any j ∈ ⋃k
�=1 J�,

∞ otherwise.

First we prove that an optimal solution has makespan at least 1 + φ − ε. To see
this, let i p(j

(i)
�) be the machine that receives the top job j t in an optimal solution

(since p jt i = 0 for all i , this job is never split). Similarly, jobs j (1)� , . . . , j (G)
� are

not split in an optimal solution. If either of these jobs is completely assigned to its
child machine, then the makespan of the schedule is 1/(1 − β) = 1 + φ. Otherwise,

jt

j 1
1 j G

1 j 1
k j G

k

i1p ikp

ic j 1
1 ic j G

1 ic j 1
k ic j G

k

pij 0
sij 1

pij 0
sij 1 d

pij 1 1
sij 0

Fig. 4 Example showing that [MCLP] has a gap of 1 + φ

123

322 J. Correa et al.

j (1)� , . . . j (G)
� are all assigned to i p(j

(1)
�) = · · · = i p(j

(G)
�), which will have a load of

1 + G/d ≥ 1 + 1
β

− ε = 1 + φ − ε, using that G/d ≥ 1/β − ε by (13).
Having proved that an optimal solution hasmakespan at least 1+φ−ε, we complete

the proof by showing that [MCLP] is feasible for C∗ = 1. Since jt has setup time 1
and processing time 0 on all parent machines, we have that a configuration Bi

t that
schedules jt completely on machine i and no other job is feasible for these machines.
We choose ρBi

t
= 1/k for each parent machine, i.e., for each machine i = i p(j) for

some j ∈ ⋃k
�=1 J�. Note that this will assign job jt fractionally and also leaves a

(1 − 1/k) fraction of space on each parent machine for other configurations.
It remains to assign the jobs in

⋃k
�=1 J�. For any such a job j , define the configura-

tion Bc
j , that assigns a (1−β) fraction of it to its child machine ic(j) and nothing else;

i.e., x
Bc
j

j = 1− β and x
Bc
j

j ′ = 0 for any other job j ′ �= j.Bc
j is a feasible configuration

for machine ic(j), because job j has processing time 1/(1 − β) and setup time 0
on that machine. We choose ρBc

j
= 1 for each j ∈ ⋃k

�=1 J�. Thus, so far we have

assigned a fraction 1 − β of each job j ∈ ⋃k
�=1 J�, i.e., a β fraction of these jobs

remains to be assigned. We will assign this remaining fraction to the parent machine
for each job. To construct the configurations necessary for this, we consider each group
� = 1, 2, . . . , k separately. As the jobs in J� have processing time 0 and setup time
1/d on i�p, a feasible configuration for i�p is to completely schedule any d jobs in J�.

There are
(G
d

)
different ways of forming such a configuration, i.e., by selecting d jobs

out of the G jobs in J�. Recall that i�p has a (1− 1/k) fraction of remaining space for
processing such configurations. We use this space completely, by assigning an equal
fraction to each of the

(G
d

)
configurations containing exactly d jobs, i.e., we choose

ρB = (1 − 1/k)/
(G
d

)
for each configuration B ∈ Bi�p

that completely schedules d of

the jobs in J� on machine i�p. This will schedule the remaining β fraction of a job in

J� because it is part of exactly
(G−1
d−1

)
such configurations and

(

1 − 1

k

) (G−1
d−1

)

(G
d

) =
(

1 − 1

k

)
d

G
≥ β,

where the last inequality follows from (13). Since this holds for every group �, each
job is completely assigned and each machine receives (fractionally) a configuration
of makespan 1. We have thus proved that [MCLP] is feasible for C∗ = 1 and the
statement follows. ��

6.2 A job configuration LP

As the machine configuration LP does not provide any improvement over the assign-
mentLP [LSTstrong], we introduce a new family of configurationLPs,whichwe call job
configuration LPs. A configuration f for a given job j specifies the fraction of j that
is scheduled on each machine. The configuration consists of two vectors x f ∈ [0, 1]M
and y f ∈ {0, 1}M such that

∑
i∈M x f

i = 1 and y f
i = 1 if and only if x f

i > 0. On

123

Strong LP formulations for scheduling splittable jobs 323

machine i ∈ M configuration f requires time t fi := pi j x
f
i + si j y

f
i . Given a guess on

the makespanC∗, configuration f is feasible if t fi ≤ C∗ for all i ∈ M . A feasible con-

figuration f is maximal if there is at most one machine i ∈ M with 0 < x f
i < xmax

i j ,
where xmax

i j := (C∗ − si j)/pi j .
Note that the number ofmaximal configurations is finite because each configuration

is uniquely determined by the set of machines to which the job is fully assigned
and additionally the machine to which it is fractionally assigned if the configuration
contains such a machine. The following theorem shows that we can restrict to the
finite set of maximal configurations, which we denote by F j for each j ∈ J . We say
a vector f̃ (not necessarily a configuration) dominates another one f if and only if
x f ≥ x f̃ and y f ≥ y f̃ .

Theorem 9 For any feasible configuration f of job j ∈ J , there exists a convex
combination of maximal configurations for j which dominates f .

Proof Take any feasible configuration f for job j . Then the corresponding vector x f

is contained in the polytope described by

∑

i∈M
xi = 1

0 ≤ xi ≤ xmax
i j for all i ∈ M.

Any vertex of this polytope must satisfy at least |M | − 1 of the latter inequalities with
equality and thus corresponds to amaximal configuration. Therefore there exists a con-

vex combination
∑

f ′∈F j
μ f ′x f ′ = x f . In particular, this implies

∑
f ′∈F j

μ f ′ y f ′
i ≤

y f
i for all i ∈ M . ��
Thus, in a feasibility LP, we can replace any job configuration by a convex combination
of maximal configurations. This makes the following feasibility LP well-defined and
there is a one-to-one correspondence between its integer solutions and every feasible
solution to R|split,setup|Cmax with makespan at most C∗:

[CLP] :
∑

f ∈F j

λ f = 1 for all j ∈ J,

∑

j∈J

∑

f ∈F j

λ f t
f
i ≤ C∗ for all i ∈ M,

λ f ≥ 0 for all f ∈
⋃̇

j∈J
F j .

Note that, though finite, the set of maximal configurations is still exponential in the
input size. Also it is not hard to show that the separation problem for the dual is
NP-complete. In order to approximately solve the LP in polynomial time, we will
discretize [CLP]. Given ε > 0, the discretization will violate the makespan C∗ by
a factor of 1 + ε: If [CLP] is feasible then the discretized LP, [CLP]d , will also be

123

324 J. Correa et al.

feasible, while if [CLP]d is feasible then [CLP] is feasible for configurations with
makespan C∗(1 + ε).

Given a maximal configuration f ∈ F j , we define the corresponding discretized
configuration f̃ by

x f̃
i :=

⌊
x f
i · m
ε

⌋

· ε

m
and y f̃

i = y f
i for all i ∈ M.

Note that each value x f̃
i is a multiple of ε

m , but that the discretized configuration might

not process the job completely. However, observe that x f̃
i ≥ x f

i − ε/m and therefore
∑

i∈M x f̃
i ≥ 1 − ε. We denote the set of all discretized configurations by Fd

j and

define the discretized configuration LP [CLP]d exactly as [CLP], only replacing F j

by Fd
j . We now prove [CLP]d indeed approximates [CLP] arbitrarily well.

Lemma 5 If [CLP] is feasible for makespanC∗, then [CLP]d is feasible for makespan
C∗. Also, if [CLP]d is feasible for makespan C∗, then [CLP] is feasible for makespan
(1 + O(ε))C∗.

Proof Consider anymaximal configuration f ∈ F j and the corresponding discretized

configuration f̃ . Observe that x f̃
i ≤ x f

i and therefore t f̃i ≤ t fi . This implies that any
feasible solution to [CLP] yields a feasible solution to [CLP]d by replacing every con-
figuration in its support with the corresponding discretized configuration. Conversely,
given a solution to [CLP]d note that we can multiply the vector (x f

i)i∈M for each

f ∈ Fd
j by a factor of 1/(1− ε) = 1+ O(ε), because

∑
i∈M x f̃

i ≥ 1− ε. This yields
configurations that violate the makespan C∗ by a factor of 1 + O(ε), and thus [CLP]
is feasible for this increased makespan. ��
Lemma 6 The program [CLP]d can be solved in polynomial time.

Proof ByFarkas’ Lemma (see e.g. [20]), [CLP]d is feasible if and only if the following
LP is infeasible,

0 >
∑

i∈M
C∗ · δi +

∑

j∈J

μ j ,

0 ≤ μ j +
∑

i∈M
t fi δi for all j ∈ J, f ∈ Fd

j ,

δi ∈ R+, μ j ∈ Q for all i ∈ M, j ∈ J.

To determine the feasibility of this dual program we use the equivalence of separation
and optimization [10]. Given a solution μ, δ the separation problem can be solved by
fixing j ∈ J and solving the minimization problem

[Pj] : min

{
∑

i∈M
t fi δi : f ∈ Fd

j

}

.

123

Strong LP formulations for scheduling splittable jobs 325

We use the maximality of the configurations in Fd
j to solve [Pj] efficiently. First,

we guess the machine i∗ ∈ M with 0 < x f
i∗ < xmax

i∗ j together with the fraction

x f
i∗ . Recall that x

f
i∗ must be one of only �m/ε� + 1 different values, thus this guess-

ing takes only polynomial time. For a given i∗ and x f
i∗ , problem [Pj] reduces to

finding a set S ⊆ M\{i∗} such that
∑

i∈S xmax
i j ≥ 1 − ε − x f

i∗ while minimizing
∑

i∈S δi (xmax
i j pi j + si j). Observe that this is a Knapsack Cover problem, which can

be solved in pseudo-polynomial by adapting the dynamic program for the standard
Knapsack problem [12]. This yields a polynomial algorithm in our case since the
values xmax

i j are of the form ki · m/ε for some ki ∈ {0, . . . , �m/ε�}. ��

Projection of the job configuration LP Observe that any convex combination of job
configurations λ can be translated into a pair of vectors xλ, yλ ∈ [0, 1]M×J in the
assignment space by setting

xλ
i j :=

∑

f ∈F j

λ f x
f
i and yλ

i j :=
∑

f ∈F j

λ f y
f
i .

We show that applying this projection to [CLP] leads to assignment vectors described
by the following set of inequalities:

[CLPproj] :
∑

j∈J

(pi j xi j + si j yi j) ≤ C∗ for all i ∈ M, (14)

∑

i∈M
(βi xi j + γi yi j) ≥ K (j, β, γ) for all j ∈ J, β, γ ∈ Q

M ,

(15)

with K (j, β, γ) := min
{∑

i∈M (βi x
f
i + γi y

f
i) : f ∈ F j

}
.

Theorem 10 If λ ∈ [CLP] then (xλ, yλ) ∈ [CLPproj]. Conversely, if (x, y) ∈
[CLPproj] then there exists λ ∈ [CLP] such that x = xλ and y = yλ.

Proof Let λ be a feasible solution to [CLP] and let β, γ ∈ Q
M+ . By definition of

K (j, β, γ) for any j ∈ J we have that

∑

i∈M
βi x

λ
i j + γi y

λ
i j =

∑

i∈M

∑

f ∈F j

λ f
(
βi x

f
i + γi y

f
i

)
≥ K (j, β, γ).

Furthermore by feasibility of λ we obtain the following inequality, proving that
(xλ, yλ) is a feasible solution to [CLPproj]:
∑

j∈J

(
pi j x

λ
i j + si j y

λ
i j

)
=

∑

j∈J

∑

f ∈F j

(
pi jλ

f x f
i + si jλ

f y f
i

)
=

∑

j∈J

∑

f ∈F j

λ f t fi ≤ C∗.

123

326 J. Correa et al.

To prove the converse consider a feasible solution (x, y) to [CLPproj]. Clearly, there
exists λ ∈ [CLP] with x = xλ, y = yλ if and only if the following LP has a feasible
solution.

∑

f ∈F j

x f
i λ f = xi j for all i ∈ M, j ∈ J,

∑

f ∈F j

y f
i λ f = yi j for all i ∈ M, j ∈ J,

∑

f ∈F j

λ f = 1 for all j ∈ J,

∑

j∈J

∑

f ∈F j

t fi λ f ≤ C∗ for all i ∈ M,

λ f ≥ 0 for all f ∈
⋃̇

j∈J
F j .

By duality, the latter holds if and only if the following LP is bounded.

min
∑

i∈M

∑

j∈J

(xi jβi j + yi jγi j) +
∑

j∈J

μ j +
∑

i∈M
C∗δi

s.t.
∑

i∈M

(
x f
i βi j + y f

i γi j

)
+ μ j +

∑

i∈M
t fi δi ≥ 0 for all j ∈ J, f ∈F j ,

δi ≥ 0 for all i ∈M.

Applying inequality (14) to the term C∗ in the objective function of this dual, we
obtain the lower bound

∑

i∈M

∑

j∈J

(
xi j (βi j + pi jδi) + yi j (γi j + si jδi)

) +
∑

j∈J

μ j .

This, in turn, can be lower bounded using inequalities (15) by

∑

j∈J

K
(
j, (βi j + pi jδi)i∈M , (γi j + si jδi)i∈M

) +
∑

j∈J

μ j .

To conclude observe that the constraints of the dual guarantee that each of the sum-
mands is non-negative, implying that the dual is bounded. ��
The following lemma shows that all inequalities of [LSTstrong] are special cases of the
inequalities of [CLPproj] and therefore the latter linear program is at least as strong as
the former.

Lemma 7 Let x, y be a feasible solution to [CLPproj] for some value of C∗. Then x
is a feasible solution to [LSTstrong] for the same value of C∗.

123

Strong LP formulations for scheduling splittable jobs 327

Proof Let x, y be a feasible solution to [CLPproj] for the given value of C∗. For any
j ∈ J and any f ∈ F j , observe that

∑
i∈M x f

i = 1 and also x f
i ≥ 0 for all i ∈ M .

Therefore (15) implies
∑

i∈M xi j = 1 and xi j ≥ 0 for all i ∈ M . Now assume

si j > C∗ for some i ∈ M and j ∈ J . Then x f
i = 0 in all configurations f ∈ F j and

therefore (15) implies xi j = 0 for any such pair of job and machine. Finally, observe

that x f
i ≤ xmax

i j in all configurations and therefore −αi j x
f
i + y f

i ≥ 0 for all f ∈ F j

with αi j as defined in Sect. 3. Therefore, inequalities (15) imply αi j xi j ≤ yi j for all
i ∈ M and j ∈ J and thus inequalities (14) imply

∑
j∈J xi j (pi j + αi j si j) ≤ C∗ for

all i ∈ M . Hence x is a feasible solution for [LSTstrong] with makespan C∗. ��

In particular, Lemma 7 implies that the integrality gap of [CLP] is at most that
of [LSTstrong]. We conclude this section by showing that already a very special
class of inequalities (15) from [CLPproj] is sufficient to eliminate the gap in the
worst-case instances of [LSTstrong]. For a set of machines S ⊆ M let L(j, S) :=
∑

i∈M\S max
{C∗−si j

pi j
, 0

}
be the maximum fraction of job j that can be processed

within time C∗ by the machines in M\S. The following inequalities are satisfied by
the vector x, y induced by any feasible solution to R|split,setup|C∗

max with makespan
at most C∗.

∑
i∈S′ xi j

1 − L(j, S ∪ S′)
+

∑

i∈S
yi j ≥ 1 for all j ∈ J and S, S′ ⊆ M with L(j, S ∪ S′) < 1.

One way to validate these inequalities is to observe that they are a special case of
inequalities (15), obtained by setting βi = 1

1−L(j,S∪S′) for j ∈ S′ and 0 everywhere
else, and γi = 1 for i ∈ S and 0 everywhere else. The corresponding value K (j, β, γ)

can be verified to be at least 1. However, for an alternative and more direct argument
for the validity of the inequalities, observe that any feasible solution must process a
total fraction of at least 1 − L(j, S ∪ S′) on the machines in S ∪ S′. Therefore, either∑

i∈S′ xi j ≥ 1− L(j, S ∪ S′) or at least one machine in S is used to process job j . In
either case, the left hand side of the corresponding inequality is at least 1.

Now consider the example instance given in the proof of Theorem 4 and depicted in
Fig. 3. If C∗ < 1+ φ, then L(j, {i p(j)}) = C∗/pic(j) j < 1 and therefore yi p(j) j = 1
for all j ∈ J ∪ J ′ in any feasible solution to [CLPproj]. This immediately implies
infeasibility of [CLPproj] for any C∗ < φ. We also note that the exact same argument
applies to the worst-case instance of the machine configuration LP.

It will be interesting to find out if this job configuration LP will indeed have a better
integrality gap and accompanying approximation algorithm.

Acknowledgments We would like to thank two anonymous referees for their insightful remarks, which
helped improving the presentation of Sects. 4 and 6. This work was partially supported by Nucleo Milenio
Información y Coordinación en Redes ICM/FIC P10-024F, by EU-IRSES Grant EUSACOU, by the DFG
Priority Programme “Algorithm Engineering” (SPP 1307), by ERC Starting Grant 335288-OptApprox,
by FONDECYT Project 3130407, by the Berlin Mathematical School and by the Tinbergen Institute and
ABRI-VU.

123

328 J. Correa et al.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems with setup times or
costs. Eur. J. Oper. Res. 187, 985–1032 (2008)

2. Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. ACMTrans. Algorithms
8, 24:1–24:9 (2012)

3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40 (2006)
4. Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. J. Sched. 9, 299–310 (2006)
5. Correa, J.R., Verdugo, V., Verschae, J.: Approximation algorithms for scheduling splitting jobs with

setup times (2013). Talk in MAPSP
6. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel

machines. Algorithmica 68, 62–80 (2014)
7. Feige, U.: A threshold of log(n) for approximating set cover. J. ACM 45, 634–652 (1998)
8. Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293 (2008)
9. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic sequenc-

ing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)
10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.

Springer, Berlin (1988)
11. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovász local lemma. J. ACM

58(28), 1–28 (2011)
12. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems.

J. ACM 22, 463–468 (1975)
13. Kim, D.W., Na, D.G., Frank Chen, F.: Unrelated parallel machine scheduling with setup times and a

total weighted tardiness objective. Robot. Comut. Integr. Manuf. 19, 173–181 (2003)
14. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel

machines. Math. Program. 46, 259–271 (1990)
15. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release dates and preemption

penalties. J. Sched. 7, 313–327 (2004)
16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optimiz.

1, 166–190 (1991)
17. Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min fair allocation. In:

ICALP, pp. 726–737 (2012)
18. Potts, C.N., Wassenhove, L.N.V.: Integrating scheduling with batching and lot-sizing: a review of

algorithms and complexity. J. Oper. Res. Soc. 43, 395–406 (1992)
19. Schalekamp, F., Sitters, R., van der Ster, S., Stougie, L., Verdugo, V., van Zuylen, A.: Split scheduling

with uniform setup times. J. Sched. 1–11 (2014). doi:10.1007/s10951-014-0370-4
20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
21. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: SODA,

pp. 759–767 (1999)
22. Serafini, P.: Scheduling jobs on severalmachineswith the job splitting property. Oper. Res. 44, 617–628

(1996)
23. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41, 1318–1341

(2012)
24. Sviridenko, M., Wiese, A.: Approximating the configuration-lp for minimizing weighted sum of com-

pletion times on unrelated machines. IPCO 2013, 387–398 (2013)
25. van der Ster, S.: The allocation of scarce resources in disaster relief (2010). MSc-Thesis in Operations

Research at VU University Amsterdam
26. Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. J. Sched. 7,

371–383 (2014)
27. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University

Press, Cambridge (2011)
28. Xing,W., Zhang, J.: Parallelmachine schedulingwith splitting jobs.DiscreteAppl.Math. 103, 259–269

(2000)

123

http://dx.doi.org/10.1007/s10951-014-0370-4

	Strong LP formulations for scheduling splittable jobs on unrelated machines
	Abstract
	1 Introduction
	2 A 3-approximation algorithm
	3 An LP with integrality gap 1+φ
	4 A (2+ε)-approximation algorithm for restricted assignment
	5 Hardness of approximation
	6 Configuration LP relaxations
	6.1 A machine configuration LP
	6.2 A job configuration LP

	Acknowledgments
	References

