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Abstract. We consider a generalization of edge coloring bipartite graphs in which every edge
has a weight in [0, 1] and the coloring of the edges must satisfy that the sum of the weights of the
edges incident to a vertex v of any color must be at most 1. For unit weights, König’s theorem
says that the number of colors needed is exactly the maximum degree. For this generalization, we
show that 2.557n + o(n) colors are sufficient, where n is the maximum total weight adjacent to
any vertex, improving the previously best bound of 2.833n + O(1) due to Du et al. Our analysis
is interesting on its own and involves a novel decomposition result for bipartite graphs and the
introduction of an associated continuous one-dimensional bin packing instance which we can prove
allows perfect packing. This question is motivated by the question of the rearrangeability of 3-stage
Clos networks. In that context, the corresponding parameter n of interest in the edge coloring
problem is the maximum over all vertices of the number of unit-sized bins needed to pack the
weights of the incident edges. In that setting, we are able to improve the bound to 2.5480n + o(n),
also improving a bound of 2.5625n + O(1) of Du et al. We also consider the online version of this
problem in which edges have to be colored as soon as they are revealed. In this context, we can
show that 5n colors are enough. This contrasts with the best known lower bound of 3n− 2 by Tsai,
Wang, and Hwang but improves upon the previous best upper bound of 5.75n obtained by Gao and
Hwang. Additionally, we show several improved bounds for more restricted versions of the problem.
These online bounds are achieved by simple and easy-to-implement algorithms, inspired by the first
fit heuristic for bin packing.
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1. Introduction.

1.1. Clos networks. Suppose we need to connect a set of inlets i1, . . . , ik—
which may represent telephone calls, parallel machines, or any kind of connection
request—to a set of outlets j1, . . . , jk, through an interconnection network, in such a
way that any request permutation (i.e., a permutation of {1, . . . , k}) can be routed
simultaneously. More precisely, let us define a connection request as a pair, (i, j),
where i is an inlet and j an outlet, and a request frame as any collection of requests
such that every inlet and every outlet are associated with at most one request. The
goal is to design a network that can route any request frame; such a network is called
nonblocking.

Naturally, the simplest way to achieve this is to directly connect every inlet to
every outlet by a different link. This solution, called crossbar, was already developed
and implemented for telephone communications in the late 1930’s by Western Electric
(the Bell System). Despite the simplicity and nice properties of crossbar networks,
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their main drawback is that they require too many links to achieve their goal: If
we have k inlets and k outlets, they require k2 links. In 1953, Clos [9] introduced a
new type of interconnection network with the same property but that requires only
O(k3/2) links. These networks have been widely used for data communications and
parallel computing systems (see, e.g., [3, 16]).

Formally, a 3-stage Clos network C(n1, r1,m, n2, r2) is an interconnection network
where the first stage consists of r1 crossbars of size n1 × m, the last stage has r2
crossbars of size m×n2, and the middle stage has m crossbars of size r1×r2. Moreover,
each of the r1 input switches is connected to each of the m middle switches. Similarly,
the middle stage and the last stage are fully connected. We focus on the case in which
n1 = n2 = n; i.e., the number of inlets or inputs of the input stage switches is equal
to the number of outlets or outputs of the output stage switches. We also assume that
r1 = r2 = r, even though all our results hold independently of what r1 and r2 are.
The resulting Clos network is denoted by C(n,m, r).

In a Clos network, a request frame is said to be routable if all requests can be
routed through a middle switch so that no two requests share a link. The main
question related to 3-stage Clos networks is to determine the number m of middle
switches (crossbars) needed to route any request frame, i.e., for the network to be
nonblocking. The answer, however, depends on the model we consider. Essentially
there are three settings in which this question has been studied and used:

• Rearrangeably nonblocking: An interconnection network is rearrangeably non-
blocking (or just rearrangeable) if every request frame is routable. This is the
relevant question in an offline setting.

• Strictly nonblocking: An interconnection network is strictly nonblocking if
any new connection request, compatible with a request frame, can be routed,
independent of how the rest of the request frame is routed (i.e., independent
of the state of the network). This is a relevant question in an online setting.

• Wide-sense nonblocking: If connection requests are revealed over time, an
interconnection network is wide-sense nonblocking if any new connection re-
quest, compatible with a request frame, can be routed, provided that the
rest of the request frame was routed according to a given routing algorithm.
This question is the most important in practice, since it is motivated by the
online environment, but it is less restrictive than the strictly nonblocking
requirement. It is important to mention that several authors consider the
more restrictive definition of wide-sense nonblocking in which the algorithm
has to be able to route new connection requests even if previous connections
terminate (see, e.g., Benes’ original book [5]).

Clos himself noted that C(n, 2n−1, r) is strictly nonblocking (which implies that
it is wide-sense nonblocking as well), while, shortly after, Slepian [29] (see also [5])
proved that C(n, n, r) is rearrangeable. Moreover, both results are best possible. It
is then clear that if the total number of inlets is k and we choose n = r =

√
k, the

number of links required in a 3-stage Clos network is 5× k3/2 or 8× k3/2, depending
on whether we need it to be rearrangeably or strictly nonblocking.

Although our focus here will be the study of 3-stage Clos networks, let us briefly
mention a few results for general interconnection networks. Shannon [27] showed that
Ω(k log k) links are needed for an interconnection network to even be rearrangeable.
Surprisingly, this lower bound was matched by Benes [6] and Beizer [4], who designed
rearrangeable networks of size O(k log k). Later, Bassalygo and Pinsker [2] construc-
tively showed the existence of strictly nonblocking networks of size O(k log k).
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The multirate environment. We just described the classic switching environ-
ment, in which connection requests fully use a link and have all the same bandwidth.
However, in modern communications, different requests may have different band-
widths and may be combined in a given link if the “link capacity” is large enough to
carry both requests. This setting is usually called the multirate environment. In such
a setting, a connection request is a triple (i, j, w), where i is an inlet, j an outlet, and
w the weight (thus, the classic environment corresponds to the special case in which
all weights are 1). A request frame is a collection of requests such that the total weight
of all requests in the frame involving a fixed inlet or outlet does not exceed 1. In a
Clos network, all r×m links between the input switches and middle switches and all
m×r links between the middle switches and the output switches also have capacity 1.
A request frame is said to be routable if all requests can be routed through a middle
switch so that none of the link capacities is violated. For a recent survey on multirate
Clos networks, we refer the reader to the excellent survey by Turner and Melen [30],
who also initiated the research on multirate switching networks [23]. As in the classic
environment, the question is to determine the minimum value of m of middle switches
such that any request frame can be routed; the network is then said to be multirate
nonblocking. Again, the answer depends on whether the problem is considered online
or offline. However, the questions are still wide open and need further investigations.

• Rearrangeably nonblocking (offline): An interconnection network is said to be
multirate rearrangeably nonblocking (or just rearrangeable) if every request
frame is routable. The question is thus to determine the minimum value of m
of middle switches such that C(n,m, r) is multirate rearrangeable, and this
minimum value is denoted by m(n, r). It is particularly interesting to obtain
bounds that are independent of r.

• Wide-sense nonblocking (online): If connection requests are revealed over
time (both the inlet-outlet pair and its weight), an interconnection network
is said to be wide-sense nonblocking if any new connection request, compatible
with a request frame, can be routed, provided that all the rest of the request
frame was routed according to a given routing algorithm. Thus, the question
is again to determine the minimum value m of middle switches such that
C(n,m, r) is wide-sense nonblocking, and this value is denoted by mW (n, r).
Let us emphasize again that we assume that the requests never terminate,
i.e., that we have no deletions during the execution; this is the same weaker
setting as in [13], for example.

• Strictly nonblocking: In the multirate environment, we say that an intercon-
nection network is strictly nonblocking if any new connection request, com-
patible with a request frame, can be routed, independent of how the rest of
the request frame is routed (i.e., independent of the state of the network).

1.2. Problem definition. The question of rearrangeability and nonblocking
properties of a 3-stage Clos network can be translated in graph-theoretic terms in
the following way. We are given a bipartite (multi)graph G = (V,E) with bipartition
A,B (say with |A| = |B| = r); in what follows, all our graphs will be multigraphs.
A and B represent the input and output switches, respectively. Edge e = (i, j)
represents a request between input switch i and output switch j and carries a weight
0 ≤ w(e) ≤ 1. The assumption of the requests being a request frame can be translated
into the assumption that the weights on the edges incident to v ∈ V can be packed
into n unit-sized bins. That is, for all v ∈ V , the set δ(v) of edges incident to v can
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be partitioned into n groups Cv
i , i = 1, . . . , n, satisfying

(1)
∑
e∈Cv

i

w(e) ≤ 1 for all i = 1 . . . , n.

Following the notation in [24], let Bn
r be the collection of such edge-weighted bipartite

multigraphs.
A Clos network C(n,m, r) is then (multirate) rearrangeable if, for every graph in

Bn
r , the edges can be colored with m colors so that the total weight of all edges of the

same color incident to a vertex v is at most 1. The question is thus to determine the
minimum number m(n, r) of colors needed to properly color every weighted bipartite
graph in Bn

r . In the online setting, we know only a priori that the graph belongs to Bn
r ,

but the edges and their weight are revealed over time. Similar to the rearrangeable
case, a Clos network C(n,m, r) is (multirate) wide-sense nonblocking if there exists
an online algorithm A such that, for every graph in Bn

r , the edges can be colored with
m colors so that the total weight of all edges of the same color incident to a vertex
v is at most 1. The question is thus to determine the minimum number mW (n, r)
for which there is an online algorithm that properly colors every weighted bipartite
graph in Bn

r using no more than mW (n, r) colors. In the same manner, C(n,m, r)
is (multirate) strictly nonblocking if, for any G = (V,E) ∈ Bn

r and any proper m-
coloring of (V,E \ {e}), for any e ∈ E, edge e can be colored without changing the
color of any already colored edge and using any extra color. Now mS(n, r) is the
minimum number of colors such that C(n,mS(n, r), r) is strictly nonblocking.

If all weights are forced to belong to a subset I ⊂ [0, 1], let Bn
r (I) denote the

natural extension of Bn
r . In this case, mI(n, r) is the smallest integer such that

every graph in Bn
r (I) admits a proper coloring with mI(n, r) colors. The quantities

mWI(n, r) and mSI(n, r) are the natural counterparts of mI(n, r) in the wide-sense
and strictly nonblocking setting.

Another special case that has attracted attention is when all edge weights can
take only k different values (known, in Clos network terminology, as the bounded rate
environment, or k-rate environment). We denote by mk(n, r) the minimum number
of middle switches so that C(mk(n, r), n, r) is multirate rearrangeable when all re-
quest frames have weights with only k different values. Similarly, mk

W (n, r) is the
corresponding counterpart of mk(n, r).

In section 3, we focus on a generalized bipartite edge-coloring problem, very
similar to the one just described, except that we require only the weights incident to
any vertex to add up to at most n. That is, condition (1) is replaced by the following
weaker condition:

(2)
∑

e∈δ(v)

w(e) ≤ n for all v ∈ V.

Here Dn
r denotes the natural counterpart of Bn

r . As Bn
r ⊆ Dn

r , the required number
of colors in this case, denoted by M(n, r), is clearly greater than or equal to m(n, r).
If all weights are forced to belong to a subset I ⊂ [0, 1], Dn

r (I) and MI(n, r) denote
the natural counterparts of Bn

r (I) and mI(n, r).

1.3. Discussion of previous work. Let us review some existing results on this
problem. We start by giving the most relevant results on rearrangeability, and later
we focus on wide-sense and strictly nonblocking properties.

Rearrangeability. The first important result was proved shortly after the introduc-
tion of 3-stage Clos networks and is due to Slepian [29] (see also [5]). He used König’s
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edge-coloring theorem [19] (see also [11]) to prove that m[1,1](n, r) = n. Melen and
Turner [23] initiated the research on multirate switching networks and proved that
m[0,1/2](n, r) ≤ M[0,1/2](n, r) ≤ 2n− 1. More generally, they proved that

m[0,B](n, r) ≤ M[0,B](n, r) ≤
n

1 −B
.

On the other hand, it is easy to prove that m[b,1](n, r) ≤ n� 1
b � and that M[b,1](n, r) ≤

n
b .

Previous to this work, the best bounds known on m(n, r) in the general setting
are 5n

4 ≤ m(n, r) ≤ 41n
16 +O(1) and were obtained by Ngo and Vu [24] (lower bound)

and Du et al. [12] (upper bound). The latter authors also obtained the previously
best bounds for M(n, r), namely 2n− 1 ≤ M(n, r) ≤ 17n

6 + O(1).
In the k-rate environment, better bounds have been proved. For k = 2, one can

actually verify the Chung–Ross conjecture, namely, that the 2n − 1 bound holds in
this case [8]. Moreover, Lin et al. [21] proved that

m3(n, r) ≤ 9n

4
+ O(1) and m3

( 1
5 ,1]

(n, r) ≤ 2n.

The first bound is an improvement over the 7n
3 bound obtained by Lin et al. [20].

Unfortunately, the proofs of all bounds for the finite rate environment rely on rather
tedious case analysis.

Wide-sense and strictly nonblocking. Let us now survey some of the most relevant
results concerning nonblocking properties of 3-stage Clos networks. In the classical en-
vironment, Clos [9] proved that C(n, 2n−1, r) is strictly nonblocking. Unfortunately,
as first noted in [23], in the multirate environment, C(n,m, r) cannot be strictly non-
blocking unless m is infinity. Indeed, consider the network C(n,m, 1) and assume that
there is a connection request of weight 1 and (n− 1)/ε connection requests of weight
ε = (n−1)/m between the only input and output switch pair in the network. A possi-
ble current state for the network is that each small connection request is routed along
a different middle switch, and thus the large request cannot be routed, implying that
the network is in a blocking state. However, if connection requests are restricted to
have weights within some interval, finite bounds can be obtained. Indeed, Melen and
Turner [23] proved that mS [b,1](n, r) ≤ 2�(n− 1)/b� + 3, which was further improved
by Chung and Ross [8] to mS [b,1](n, r) ≤ 2�1/b�(n − 1) + 1. The latter authors also

proved that mS(0,B] ≤ 2	n−B
1−B 
 + 1.

The bad example above motivated the algorithmic concept of wide-sense non-
blocking. Indeed, already in [23] it was noted that 8n middle switches are enough to
ensure the wide-sense nonblocking condition, i.e., mW (n, r) ≤ 8n. Later, Chung and
Ross [8] used their bounds on mS [b,1](n, r) and mS(0,B](n, r) to improve the bound.
Indeed, their algorithm would split connection requests according to their weight: the
smaller than or equal to 1/2 and those strictly larger than 1/2. The bound is therefore

mW (n, r) ≤ mS(1/2,1](n, r) + mS(0,1/2](n, r) ≤ 2n− 2 + 1 + 4n + 1 = 6n.

The best known bound previous to our result was obtained by Gao and Hwang [13].
They used a quota scheme, which consists of reserving some middle switches for large
connections while letting the rest carry any connection request. This approach led
them to the bound mW [0,1/2] ≤ 3.75n, implying, in the same manner as above, that

mW (n, r) ≤ 5.75n.
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The study of lower bounds for wide-sense nonblocking properties has been much
more recent. Bar-Noy, Motwani, and Naor [1] were the first to prove that in the
classical setting mW [1,1](n, r) ≥ 2n−1 for exponentially large r. This surprising result
essentially says that in the classical single-rate environment the strictly nonblocking
and wide-sense nonblocking conditions are the same. Moreover, recent work by Haxell
et al. [14] shows that this lower bound holds even for r = Ω(n2). In the multirate
environment, there is only a recent improvement on the previous bound. Tsai, Wang,
and Hwang [31] proved that mW (n, r) ≥ 3n − 2, and their proof also works in the
more restricted 2-rate environment.

1.4. Overview and main results in the paper. The main goal of this paper
is to present bounds on M(n, r), m(n, r), and mW (n, r). Indeed, we will show that
2.557n, 2.548n, and 5n are, respectively, upper bounds on these numbers.

We start in section 2 by showing a result on balanced decomposition of bipartite
graphs into matchings. In the context of Clos networks, this result becomes useful only
in section 3; however, we believe it is interesting on its own, and so we have decided to
present it in a separate section. The question that is addressed is as follows: Given a
bipartite graph G and nonnegative numbers γ1, . . . , γl summing to 1, decompose the
graph into F1, . . . , Fl such that the degree of any vertex v in Fi is approximately γi
times the degree of v in G. We show that the decomposition can be done such that
for all i and all vertices, the degree of v in Fi differs from its required value by an
additive constant less than 3. The question whether this constant can be decreased
to 1 is to the best of our knowledge open.

Our main contribution in this paper, proved in section 3, is the following result.
Theorem 1. The number of colors required to properly color every weighted

bipartite graph in Dn
r is at most 2.557n + o(n). In other words,

M(n, r) ≤ 2.557n + o(n).

Observe that this does not improve only upon Du et al.’s bound of 17
6 n+O(1) on

M(n, r) but even slightly upon their bound of 41
16n+O(1) = 2.5625n+O(1) on m(n, r).

In fact, our approach can also be applied to bounding m(n, r) directly, and this gives
us a slightly improved bound of m(n, r) ≤ 2.5480n+ o(n). The latter improvement is
sketched in section 3.7.

For most of section 3, we consider the generalized bipartite edge coloring problem
in which the weights on edges incident to any vertex sum to at most n, i.e., graphs
in Dn

r . The approach we consider to attack this problem associates a bin packing
instance with every such generalized edge coloring instance. For this purpose, we first
decompose the edge weighted bipartite graph G = (V,E) into a union of matchings.
We then create a bin packing instance in which all bins have size 1. We create an
item of our bin packing instance for each matching in our decomposition, and we
set its size to be the maximum weight of any edge in the matching. A packing with
k bins immediately leads to a valid k-coloring by simply coloring the edges of all
matchings (items) placed in the same bin with the same unique color. As we shall
see in section 3.1, this approach needs that we first discard all edges whose weight is
less than some parameter α (to be determined). This can be done using the following
result implicit in Du et al. [12].

Lemma 2. Consider G = (V,E) ∈ Dn
r with bipartition V = A∪B and assume that

we have used at least 2n
1−α colors to color all edges except some edges e with w(e) ≤ α.

Then we can greedily color these remaining edges without using any additional color.
In particular, if M(α,1](n, r) ≤ 	2n/(1 − α)
, then M(n, r) ≤ 	2n/(1 − α)
.
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Proof. If e = (u, v) ∈ E with w(e) ≤ α cannot be colored then the total weight of
edges of a given color i incident to either u or v is greater than 1− α. Summing over
all 2n

1−α colors, we get a contradiction with sum of conditions (2) for u and v.

Therefore, we can focus on instances in which all weights are in [α, 1], provided
that we are willing to use 	 2n

1−α
 colors. As the proof of this last result used only any
greedy algorithm, the result also holds in the wide-sense nonblocking setting.

Our main contribution is to show that, for any generalized edge coloring problem
with weights in [α, 1], we can decompose the bipartite graph into matchings in such a
way that the corresponding bin packing instance can be packed into at most n+ o(n)
bins plus the number of bins required to pack a continuous bin packing instance with
density n

x2 for x ∈ [α, 1] (i.e., the number of items with size in the interval (x, x+ dx)
is n

x2 dx). We should emphasize that our bin packing instance is independent of the
given bipartite graph G; it is based only on the fact that G ∈ Dn

r . Although it
is easier to refer in the statements here to the continuous bin packing instance, we
actually deal only with an arbitrarily fine discretization of it and consider discrete bin
packing instances. Our decomposition of the graph into matchings relies on the result
of section 2 and is described in section 3.2, while the construction of our bin packing
instance is detailed in section 3.3.

Once the continuous bin packing instance with density n
x2 for x ∈ [α, 1] is con-

structed, in sections 3.4, 3.5, and 3.6, we turn to compute the number of bins it
requires. First, we observe that all items of size greater than 1− α need to be placed

alone in bins; they therefore require
∫ 1

1−α
n
x2 dx = α

1−αn bins. For the remaining
items with density n

x2 for x ∈ [α, 1 − α], we prove that they can be perfectly packed.
This means that the number of bins they require is simply their total size, up to
lower-order terms (accounting for the discretization). This means that they require∫ 1−α

α
x n
x2 dx = n ln 1−α

α additional bins. This relies on a result of Rhee and Talagrand

[26]. The total number of bins used is thus (1 + α
1−α + ln 1−α

α )n, and we choose α

so that this equals 2
1−αn in order to be able to greedily color the edges with weight

lower than α. For α = 0.217811 . . . , we obtain that the number of colors needed is
less than 2.557n.

It is worth mentioning that our main result can be done algorithmically. Indeed,
the continuous bin packing instance is independent of the input; therefore, a dis-
cretization of it can be solved optimally a priori by exhaustive search (or by using
any good algorithm for bin packing). The matching decomposition, for edges with
weight in [α, 1], can be efficiently done using network flows techniques (see Lemma 5).
Finally, the edges with weight in (0, α) can be greedily colored as in Lemma 2.

In section 4, we will use simple adaptations of the first fit (FF) heuristic for the
classical bin packing problem to obtain improved bounds on the wide-sense nonblock-
ing properties of 3-stage Clos networks. In the bin packing setting, FF places a new
item in the first bin that has space available for it; in our online setting, it will simply
color an edge with the smallest possible color (under some arbitrary order on the
colors) as long as it does not violate condition (1). Our main result, proved in sec-
tion 4.1, is to show that C(n, 5n, r) is wide-sense nonblocking, i.e., mW (n, r) ≤ 5n.
Later, in section 4.2, we show that mW (0,1/2] ≤ 3.601n + 3. Both bounds improve
upon the bounds obtained by Gao and Hwang [13] of 5.75n and 3.75n, respectively.

Additionally, in section 4.3 we are able to show that in the 2-rate environment,
there is an online algorithm that uses no more than 3n middle switches to schedule
any request frame. This not only improves the previous best known bound of 4n
[13] but also almost matches the lower bound on mW (n, r) of 3n − 2 obtained by
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Tsai, Wang, and Hwang [31] which is also valid in the 2-rate case. We can therefore
conclude that

3n− 2 ≤ m2
W (n, r) ≤ 3n.

Finally, in section 5 we prove that using an analogue of the FF decreasing heuristic
for bin packing, no more than 8n

3 middle switches are needed to route any request
frame. As sorting is needed, this bound holds only in the offline setting, and it does
not improve upon the bound of m(n, r) ≤ 2.548n+ o(n) given in section 3. However,
it has the following advantages: (i) it is a nonasymptotic result; (ii) it is a very simple
to implement algorithm; and (iii) it can be implemented to run in time O(n log n).

2. Balanced decompositions of bipartite graphs. Given a subset of edges
F of a graph G and a vertex v, we let degF (v) denote the degree of vertex v in F , that
is, |δ(v) ∩ F |, where δ(v) is the set of edges incident to v in the graph. The following
result follows easily from network flow theory.

Lemma 3 (Hoffman [15]). Consider a bipartite graph G = (V,E) and let 0 ≤
μ1, μ2 with μ1 + μ2 = 1. Then there exists a partition of E into E1 and E2 such that

�μi degE(v)� ≤ degEi
(v) ≤ 	μi degE(v)


for i = 1, 2 and all v ∈ V .
Proof. Let A,B be the bipartition of the bipartite graph G. Orient all edges

from A to B. Add a source with arcs to all vertices in A and a sink with arcs from
all vertices in B. Set the capacity of all the arcs in E to be 1, and set upper and
lower capacities on the arcs adjacent to the source and sink to be 	μ1 degE(v)
 and
�μ1 degE(v)�, where v is the corresponding adjacent vertex. As a feasible flow can
be obtained by setting the flow on every arc in E to be μ1, there exists an integer
feasible flow, and this flow corresponds to the edge set E1. The remaining edges E2

also satisfy the required property.
The next theorem is an extension of Hoffman’s result.
Theorem 4. Consider a bipartite graph G = (V,E) and let γ1, . . . , γl ∈ (0, 1)

such that
∑l

i=1 γi = 1. Then there exists a partition E1, . . . , El of E such that for all
v ∈ V and all i = 1, . . . , l,

γi degE(v) − ei(v) < degEi
(v) < γi degE(v) + ei(v).

Here ei(v) < 3, and
∑l

i=1 ei(v) ≤ 2(l − 1).
Proof. Let L = {1, . . . , l}. We construct a binary tree T with l− 1 internal nodes

and l leaves, each node being labelled by a subset of L. The root is labelled with L,
and the l leaves are labelled by a distinct singleton subset of L. If an internal node is
labelled with N , then its two children are labelled with I and N \ I, where I,N \ I is
the most balanced number partition of N ; i.e., I is such that max{γ(I), γ(N \ I)} is
minimized (for a set S, γ(S) denotes

∑
i∈S γi ).

With every node with label I, we also associate an edge set E(I). We first set
E(L) = E. Given E(N) for an internal node N , we obtain E(I) and E(N \ I)
for its children by applying Lemma 3 to the graph with edge set E(N) and with
μ1 = γ(I)/γ(N) and μ2 = 1 − μ1. The leaves are thus associated with subgraphs
E({i}) which make a partition of E. We claim that E({i}) satisfies the required
properties for Ei.

Fix a vertex v ∈ V (for simplicity, we just drop v when writing deg∗(v)) and an
index i ∈ L. Let {i} = A0 ⊂ A1 ⊂ · · · ⊂ Ak = L be the labels on the path from
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the leaf {i} to the root. We now derive an upper bound on degEi
(v) (and we could

proceed similarly for the lower bound). From Lemma 3, we have that

degEi
(v) = degE(A0) <

γ(A0)

γ(A1)
degE(A1) +1

<
γ(A0)

γ(A1)

(
γ(A1)

γ(A2)
degE(A2) +1

)
+ 1

<
γ(A0)

γ(A1)

(
γ(A1)

γ(A2)

(
· · ·

(
γ(Ak−1)

γ(Ak)
degE +1

)
· · ·

)
+ 1

)
+ 1

=
γ(A0)

γ(Ak)
degE +1 +

γ(A0)

γ(A1)
+

γ(A0)

γ(A2)
+ · · · + γ(A0)

γ(Ak−1)

= γi degE +ei(v),

where ei(v) = 1 + γ(A0)
γ(A1)

+ γ(A0)
γ(A2)

+ · · · + γ(A0)
γ(Ak−1)

. Let η = mini∈A1 γi and let j be

the arg min. Let a = γ(A0) ≥ η. Thus we have γ(A1) ≥ a + η. In general, when
considering Ak, we split it into Ak−1 and Ak \ Ak−1, while we could have split it
into Ak−1 \ {j} and the rest. This implies that γ(Ak−1)− η ≤ γ(Ak)− γ(Ak−1), i.e.,
γ(Ak) ≥ 2γ(Ak−1)−η. Using this repeatedly, we get γ(A2) ≥ 2a+η, γ(A3) ≥ 4a+η,
and, generally, γ(Ak−1) ≥ 2ka + η. Thus the bound becomes

ei(v) ≤ 1 +
a

a + η
+

a

2a + η
+

a

4a + η
+

a

8a + η
+ · · ·

≤ 1 +
a

a
+

a

2a
+

a

4a
+

a

8a
+ · · · < 3.

Finally, in order to get a bound on
∑

i ei(v), observe that

l∑
i=1

ei(v) =
∑

(all labels N except the root)

∑
i∈N

γi
γ(N)

= 2(l − 1),

since there are 2l−1 nodes in the binary tree. A proof of the lower bound on degEi
(v)

is identical.
We suspect that the bound can be further improved. If γi = 1/l for every i, de

Werra [10] has shown that we can impose �γi degE(v)� ≤ degEi
(v) ≤ 	γi degE(v)


for every i, while Theorem 4 implies �γi degE(v)� − 2 ≤ degEi
(v) ≤ 	γi degE(v)
 + 2

for every i (without making assumptions on the γi’s). We do not know whether the
tighter condition (without the +2) can be imposed in the general case. The proof
technique used here, however, cannot even improve the +2 term into a +1 term.
Indeed, for γi = 1/13 for i = 1, . . . , 13, one can see that no partitioning scheme would
give a bound on ei(v) (using the analysis in the proof of Theorem 4) better than
1 + 1

2 + 1
4 + 1

5 + 1
13 = 2 + 7

260 (and this can be shown to be the worst when all γi’s are
equal).

As stated, the proof of Theorem 4 is not algorithmic, since we need to solve num-
ber partition as a subroutine. However, we used in the proof only the fact that the
partitioning of N used is locally optimum in the sense that no item can be moved
to the other side of the partition while making it more balanced. A locally opti-
mum number partition can be obtained in polynomial time in several ways. Brucker,
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Hurink, and Werne [7] show (in the context of scheduling parallel machines) that
iteratively improving the partition until a local optimum is reached takes O(|N |2)
iterations. Schuurman and Vredeveld [28] noted that iteratively finding the best lo-
cal improvement requires O(|N |) iterations, which implies an overall running time of
O(|N | log |N |). One can also use the differencing method of Karmarkar and Karp
[18]. This differencing method, which also runs in O(|N | log |N |) time, consists of
repeatedly replacing the largest two items by one new item whose size (i.e., γ value)
equals the difference in sizes of these largest two items until only one item of size
say Δ remains. By inverting the process, one can easily obtain a partition (I,N \ I)
with γ(I) = γ(N \ I) + Δ. A simple inductive argument shows that all items in I
have γi ≥ Δ, and therefore the partition obtained is locally optimum. Using any of
these algorithms to find a local optimum, a partition of the edge set satisfying the
conditions of Theorem 4 can be obtained in polynomial time.

3. Rearrangeably nonblocking Clos networks. In this section, we consider
the generalized bipartite edge coloring problem in which the weights on edges incident
to any vertex sum to at most n, i.e., graphs in Dn

r . As described earlier, we associate
a bin packing instance with every such generalized edge coloring instance by decom-
posing the edge weighted bipartite graph G = (V,E) into a union of matchings. We
then create a bin packing instance in which all bins have size 1. We create an item
of our bin packing instance for each matching in our decomposition, and we set its
size to be the maximum weight of any edge in the matching. A packing with k bins
immediately leads to a valid k-coloring by simply coloring the edges of all matchings
(items) placed in the same bin with the same unique color.

3.1. Limitations. Consider the following trivial instance of our generalized edge
coloring problem. Let X be a finite subset of (0, 1] and create a vertex in A and
in B for each element x ∈ X and �n

x � edges between them. In this case, 2n − 1
colors are sufficient (and needed if 1

2 + ε ∈ X for some small ε). No matter what
decomposition into matchings we consider, our bin packing instance has at least �n

x �
items (matchings) of size at least x for every x ∈ X. If X = {x0, x1, . . . , xl} with
x0 > x1 > · · · > xl, this bin packing instance requires no fewer bins than another bin
packing instance with � n

xi
� − � n

xi−1
� items of size xi for every i ≥ 1 and � n

xi
� items

of size x0. As X gets denser in (0, 1], this bin packing instance tends to a continuous
bin packing instance with density n

x2 (i.e., the number of items of size in (x, x + dx)
is n

x2 dx) after having removed the n items of size 1. Now the number of bins required

is at least the total size of all items n +
∫ 1

0
x n
x2 dx, which is unbounded!

To overcome this problem, we first discard all edges whose weight is less than
some parameter α (to be determined) by using Lemma 2. This said, we can turn to
proving the graph partitioning result in which our work is based.

3.2. Partitioning the graph. From now on we fix a parameter 0 < α < 1
and work with graphs in Dn

r (α, 1). The decomposition we need to construct our bin
packing instance is given below.

Lemma 5. Consider the sequence α0 = 1 > α1 > α2 > · · · > αp = α ≥ 0. Let
G = (V,E) ∈ Dn

r (α, 1). Then there exist sets F1, . . . , Fp partitioning E such that the
following hold:

(i) maxe∈Fk
w(e) ≤ αk−1.
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(ii) For all vertices v ∈ V ,

degFk
(v) ≤

(
1

αk
− 1

αk−1

)
n + ak(v) for all 2 ≤ k ≤ p,

degF1
(v) ≤ n

α1
+ a1(v),

where ak(v) ≤ 3(p− k + 1).

Proof. Consider an instance G = (L,R,E) with weight function w and let

Di = {e ∈ E : w(e) ∈ (αi, αi−1]}

for i = 1, . . . , p. From inequality (2) we can easily deduce that for all v ∈ L ∪R,

(3)

p∑
i=k

αi degDi
(v) ≤ n for all k = 1 . . . , p.

If we divide the inequality (3) corresponding to k = 1 by α1 and multiply the kth
inequality (3) by ( 1

αk
− 1

αk−1
), we obtain the following set of inequalities:

(
1

α1

)
α1 degD1

(v) +

(
1

α1

)
α2 degD2

(v) + · · · +
(

1

α1

)
αp degDp

(v) ≤
(

1

α1

)
n

(
1

α2
− 1

α1

)
α2 degD2

(v) +

(
1

α2
− 1

α1

)
α3 degD3

(v) + · · · +
(

1

α2
− 1

α1

)
αp degDp

(v)

≤
(

1

α2
− 1

α1

)
n

...

(
1

αp
− 1

αp−1

)
αp degDp

(v) ≤
(

1

αp
− 1

αp−1

)
n.

Note that, for all i = 1, . . . , p, the coefficients in front of degDi
(v) over the above

inequalities sum to 1. Therefore, for each Di we can apply Theorem 4 with

γi
1 =

1

α1
αi, γ

i
2 =

(
1

α2
− 1

α1

)
αi, . . . , γ

i
i =

(
1

αi
− 1

αi−1

)
αi

to partition Di into sets D1
i , . . . , D

i
i such that for all k = 1, . . . , i and all v ∈ V ,

γi
k degDi

(v) − eik(v) < degDk
i
(v) < γi

k degDi
(v) + eik(v),

where eik(v) ≤ 3 and
∑i

k=1 e
i
k(v) ≤ 2(i− 1).

We are now ready to finish the proof. Define Fk = Dk
k ∪Dk

k+1 ∪ · · · ∪Dk
p for all
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k = 1, . . . , p. Thus letting ak(v) =
∑p

i=k e
i
k(v) ≤ 3(p− k + 1), we have the following:

degF1
(v) ≤

p∑
i=1

(
γi
1 degDi

(v) + ei1(v)
)

≤
(

1

α1

)
n + a1(v);

degFk
(v) ≤

p∑
i=k

(
γi
k degDi

(v) + eik(v)
)

≤
(

1

αk
− 1

αk−1

)
n + ak(v), 2 ≤ k ≤ p.

3.3. The associated bin packing problem. Let us now consider a bipartite
graph G = (V,E) ∈ Dn

r (α, 1) and F1, . . . , Fp as in Lemma 5. By König’s theorem, Fk

can be decomposed into no more than

(
1

αk
− 1

αk−1

)
n + max

v∈V
ak(v)

matchings, for all k = 2, . . . , p and F1 can be decomposed into n
α1

+ maxv∈V a1(v)
matchings. We now construct an instance of the one-dimensional bin packing problem
with unit-sized bins. Arbitrarily select ( 1

αk
− 1

αk−1
)n matchings (or, more formally,

the floor of this quantity) in the decomposition of Fk for k = 2, . . . , p and assign
each of them an item of size αk−1. Similarly, arbitrarily select n

α1
matchings in the

decomposition of F1 and assign each of them an item of size α0. Let M be those
matchings selected in F1, . . . , Fp, and, by construction, we have an item for each
element of M. Our bin packing instance is thus the following:

Input: n
α1

items of size 1 and ( 1
αk

− 1
αk−1

)n items of size αk−1 for k = 2, . . . , p.

Output: A packing of the items into the minimum number of bins.
Observe that this bin packing instance is independent of G = (V,E) ∈ Dn

r (α, 1) and
depends only on n and the values of αi selected.

Given any solution to this bin packing instance, say with k opened bins, we can
easily obtain a coloring of all the edges in the union of the matchings in M using
just k colors. Indeed, we can simply color an edge belonging to a matching by a color
representing the bin in which the corresponding item is packed. In constructing the
bin packing instance, we have discarded at most

p∑
k=1

max
v∈V

ak(v) ≤ 3

p∑
k=1

(p− k + 1) =
3

2
p(p + 1)

matchings, and they can be colored with a new color for each of them. In summary,
the number of colors we need is at most the optimal number of bins of our bin packing
instance plus 3

2p(p + 1). An interesting feature of the results on the previous section
is that they do not assume any conditions on p. We will see later that the optimal
value for p is Θ(n1/3), which implies that the number of additional colors we need
to accommodate the matchings not in M is 3

2p(p + 1) = O(n2/3) = o(n) and hence
negligible.
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As an example of the associated bin packing instance, consider the case with
p = 3 and α1 = 1

2 , α2 = 1
3 , and α3 = α = 1

4 . The bin packing instance then consists
of 2n items of size 1, n items of size 1

2 , and n items of size 1
3 , and these items can

be packed into 2n + n
2 + n

3 = 17
6 n bins (plus O(1) bins for fractionally opened bins).

The argument above regarding discarded items shows that we need O(p2) = O(1)
additional bins. Using Lemma 2, we then obtain that M(n, r) ≤ 17

6 n + O(1). This
derivation is essentially identical to the result of Du et al. [12], and the approach taken
here can be viewed as an extension of it.

Our goal now is to focus on our general bin packing instance and analyze the
number of bins it requires. Since all items in the bin packing instance have size at
least α = αp, it is clear that items whose size is more that 1−α are forced to use a full
bin in any feasible packing. Hence, without loss of generality, we can let α1 = 1 − α.
With this, an optimal packing always needs n/(1 − α) bins to pack items of size 1
plus a certain number of bins to pack the remaining items (of size α1, . . . , αp).

3.4. A lower bound. A trivial lower bound on the number of unit bins required
to pack our discrete instance is n/(1−α) bins (for the items of size greater than 1−α)
plus the total size of the remaining items:

n

1 − α
+

p∑
k=2

αk−1

(
1

αk
− 1

αk−1

)
n.

This can be lower bounded in the following way. Let g : [α, 1− α] → R be defined by
g(x) = 1/x2. As n

∫ αk−1

αk
g(x)dx = ( 1

αk
− 1

αk−1
)n is the number of items of size αk−1

and αk−1 ≥ x for any x ∈ [αk, αk−1], we have that

p∑
k=2

αk−1

(
1

αk
− 1

αk−1

)
n ≥ n

∫ 1−α

α

xg(x)dx

=

∫ 1−α

α

(n
x

)
dx = n ln

1 − α

α
.

Therefore, from Lemma 2, we derive that our analysis cannot give an upper bound
on M[α,1](n, r) better than

min
α∈(0,1]

max

{
2n

1 − α
,

n

1 − α
+ n ln

1 − α

α

}
= M · n,

with 2.5569 ≤ M ≤ 2.5570. The term 2n
1−α comes from Lemma 2, while the other

term is the bound just obtained. The value of α for which the minimum is attained
is α ≈ 0.2178117. From now on, we fix α to be the argmin of the above expression.
In what follows, we show that this lower bound is actually achievable by relating
the number of bins required by our bin packing instance to a continuous bin packing
instance and analyzing it. For this purpose, we assume that the αi’s in the definition
of our bin packing instance are equally spaced in [α, 1−α], i.e., αk−1−αk = Δ = 1−2α

p−1
with α1 = 1 − α and αp = α.

3.5. The continuous packing problem. We round our bin packing instance
to a continuous bin packing problem for which packing strategies with sublinear waste
exist. We first define what we mean by a continuous bin packing instance. Consider
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a finite positive measure μ with density g defined over [a, b] (with 0 ≤ a ≤ b ≤ 1)
and, for any integer q, consider a uniform discretization a = x1 < · · · < xq = b of the
interval [a, b]. Let Qq

n be the optimal number of bins needed to pack the bin packing
instance in which, for all 1 ≤ i < q, there are 	nμ([xi, xi+1))
 items of size xi+1. The

value of our bin packing instance is then defined as limq→∞ limn→∞
Qq

n

n . By simply
considering the total size of the items, we see that the value of a continuous instance
is never smaller than ∫ b

a

xdμ(x) =

∫ b

a

xg(x)dx.

We say that μ admits a perfect packing if we have equality

lim
q→∞

lim
n→∞

Qq
n

n
=

∫ b

a

xdμ(x) =

∫ b

a

xg(x)dx.

The lower bound in the previous section suggests that we consider the continuous
bin packing instance with the continuous density g(x) = 1

x2 over x ∈ [α, 1 − α]. In
the next section, we show that a result of Rhee and Talagrand [26] can be applied
to prove that g actually admits a perfect packing. What we show now is that the
difference between the number of bins we need in our discrete instance and the value
of this continuous instance times n is O(np ) and hence sublinear whenever p grows

with n. For this purpose, we show that we can discard O(n/p) items in our discrete
instance and obtain an instance which is dominated by discrete realizations of our
continuous instance. Indeed, as

∫ αk−2

αk−1
g(x)dx = 1

αk−1
− 1

αk−2
, the continuous instance

would dominate the discrete instance if we had only ( 1
αk−1

− 1
αk−2

)n items of size

αk−1. We therefore need to discard a number of items of size αk−1 equal to(
1

αk
− 1

αk−1

)
n−

(
1

αk−1
− 1

αk−2

)
n

=
2Δ2

αkαk−1αk−2
n ≤ 2Δ2

α3
n.

Over all values of k, this amounts to discarding p 2Δ2

α3 n = Θ(np ) items, and they can
each be packed in a separate bin.

As announced, we show in the next section that g admits a perfect packing. This
implies that the total number of colors needed to color any graph G ∈ Dn

r (α, 1) is
at most M · n + O(p2) + O (n/p) , which is optimized choosing p = Θ(n1/3). For the
optimal choice of α, which is approximately 0.2178117, the previous quantity becomes

M · n + O(n
2
3 ) < 2.557 · n + O(n

2
3 ),

concluding the proof of Theorem 1.

3.6. Perfect packing. Consider the positive measure μ defined over the interval
[α, 1 − α] with density g(x) = 1/x2 for the optimal parameter α just obtained. To
show that a perfect packing exists, we decompose g as the sum of three other positive
functions, f1, f2 and f3, all of which allow perfect packing. Furthermore, all bins used
for the items corresponding to fi will contain exactly i + 1 items. With this, μ is a
mixture of the corresponding measures μ1, μ2 and μ3. The decomposition is depicted
in Figure 1.

Consider the following functions:
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1. f1(x) =

⎧⎪⎨
⎪⎩
g(1 − x) if x ∈ [α, 1/2),

g(x) if x ∈ [1/2, 1 − α],

0 otherwise,

2. f2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(x) − f1(x) − c if x ∈ [1/4, β),

d if x ∈ [β, δ),

g(x) − f1(x) if x ∈ [δ, 1/2),

0 otherwise,

3. f3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(x) − f1(x) if x ∈ [α, 1/4),

c if x ∈ [1/4, β),

g(x) − f1(x) − d if x ∈ [β, δ),

0 otherwise.

0.2 0.60.4 0.80.3 0.5 0.7
0

5

15

20

10

f1

f1 + f2

g = f1 + f2 + f3

Fig. 1. Decomposition of g into f1, f2, and f3.

Here c = g(β)−f1(β)−d and d = g(δ)−f1(δ) (so that f2 is continuous). Clearly,
for all x ∈ [α, 1−α], g(x) = f1(x)+ f2(x)+ f3(x). The values of β and δ are uniquely
determined by imposing that the average value of f2 is 1/3 and that of f3 is 1/4.
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Namely, if β ≈ 0.2900708 and δ ≈ 0.3465256, then

∫ 1−α

α
xf1(x)dx∫ 1−α

α
f1(x)dx

=
1

2
,

∫ 1/2

1/4
xf2(x)dx∫ 1/2

1/4
f2(x)dx

=
1

3
,

∫ δ

α
xf3(x)dx∫ δ

α
f3(x)dx

=
1

4
.

To prove that all f1, f2, and f3 allow perfect packing, we use a perfect packing
result proved by Karmarkar [17] and by Loulou [22] and a powerful theorem by Rhee
and Talagrand [26]. The former result says that measures that are symmetric around
1/2k for some integer k allow perfect packing. The latter can be stated as follows.

Theorem 6 (Rhee and Talagrand [26]). Consider a decreasing measure μ defined
over [a, b] (with 0 ≤ a ≤ b ≤ 1) and an integer p ≥ 3 such that 1/p ∈ [a, b]. Then μ
allows perfect packing if the following are satisfied:

(i) (p− 1)a + b ≤ 1.

(ii)
∫ b

a
xdμ(x) = 1

p

∫ b

a
dμ(x).

In what follows, we briefly outline this result. Let 0 ≤ a ≤ b ≤ c ≤ 1 be such
that (p − 1)a + c ≤ 1 and a + b < 2/p < a + c. The L-shaped function, denoted by
L(a, b, c), is the unique (up to a multiplicative constant) nondecreasing real function
defined over [a, c], which is constant on [a, b] and constant on (b, c], and whose average
value is 1/p, i.e.,

∫ c

a
xL(a, b, c)(x)dx∫ c

a
L(a, b, c)(x)dx

=
1

p
.

In order to prove Theorem 6, Rhee and Talagrand first showed how to decompose
a density satisfying the assumptions of the theorem as the limit of sum of L-shaped
functions with the above properties. Then the central part of their work was to show
that all such L-shaped functions do allow perfect packing. Unfortunately, they did
not find a simple perfect packing strategy, and so they overcame the problem using
a perfect packing characterization by Rhee [25], together with a complicated (and
implicit) “exhaustion method,” that decomposes an L-shaped function into possibly
uncountably many perfectly packable functions.

Let us mention, however, that although the previous result was proved in a prob-
abilistic setting (namely, under the following definition: μ allows perfect packing if
and only if the expected number of bins needed to pack n independent and identi-
cally distributed random variables drawn according to μ divided by n approaches the
expected size of an item), the proof also applies to our setting here.

Lemma 7. The measure μ with density function g : [α, 1 − α] → R with g(x) =
1/x2 allows perfect packing.

Proof. As g = f1 + f2 + f3, we need only show that each fi, i = 1, 2, 3, allows
perfect packing. The result follows immediately for f1. Indeed, f1 is symmetric
around 1/2. It remains to prove that both f2 and f3 satisfy the conditions of the
previous theorem.
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(1) The density f2 is clearly decreasing in [1/4, 1/2]. Moreover,

∫ 1/2

1/4

xf2(x)dx =
1

3

∫ 1/2

1/4

f2(x)dx.

Finally, (3 − 1) 1
4 + 1

2 = 1. Thus all conditions are satisfied.
(2) Again, the density f3 is decreasing in [α, δ]. In this case,

∫ δ

α

xf3(x)dx =
1

4

∫ δ

α

f3(x)dx,

and (4 − 1)α + δ < 1 (indeed, (4 − 1)α + δ ≈ 0.9999607).

3.7. Improved analysis for the rearrangeability of 3-stage Clos net-
works. In this section, we briefly discuss how a slight improvement of the 2.557n
bound can be achieved when considering graphs belonging to Bn

r . Specifically, we
establish that m(n, r) ≤ 2.5480n + o(n). The analysis is essentially the same as the
one for the bound on M(n, r); therefore, we give only the main differences.

Let G = (V,E) ∈ Bn
r . Since the weights satisfy condition (1), we can strengthen

the main inequality used in Lemma 5 to be
∑p

i=k degDi
(v) ≤ 4n whenever αp > 1/5

(this is a strengthening only for αk ≤ 1/4). This inequality, combined with the ideas
in Lemma 5, can be used to prove the following result.

Lemma 8. Let G = (V,E) ∈ Bn
r (α, 1) and consider a sequence α0 = 1 > α1 >

· · · > αl = 1/4 > · · · > αp = α > 1/5. Then there exist sets F1, . . . , Fp partitioning E
such that the following hold:

(i) maxe∈Fk
w(e) ≤ αk−1.

(ii) For all vertices v ∈ V ,

degF1
(v) ≤ n

α1
+ a1(v),

degFk
(v) ≤

(
1

αk
− 1

αk−1

)
n + ak(v), 2 ≤ k ≤ l,

degFk
(v) ≤ 16 (αk−1 − αk)n + ak(v), l + 1 ≤ k ≤ p,

where ak(v) ≤ 3(p− k + 1).

By mimicking the analysis in section 3.3, the problem now translates into packing
the function g : [α, 1 − α] → R such that g(x) = 16 if x ∈ [α, 1/4], and g(x) = 1/x2

otherwise. The value of α now has to be taken a bit smaller than it used to be:
α ≈ 0.2151 is the optimal choice. For that value of α, a decomposition of g very
similar to that in section 3.6 can be found. Applying again the result in [26], such
decomposition amounts to concluding that g allows perfect packing. The total number
of colors needed is therefore

n

∫ 1−α

α

xg(x)dx +
n

1 − α
+ o(n) =

2n

1 − α
+ o(n)

< 2.5480 · n + o(n),

where the inequality comes from the choice of α.
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4. Wide-sense nonblocking Clos networks. In what follows, we consider
the online coloring formulation of the problem, assuming that edge weights satisfy
condition (1). We start by describing two variants of the FF heuristic in the context
of wide-sense nonblocking 3-stage Clos networks. Let G = (V,E) be the bipartite
graph with bipartition V = A∪B such that edge weights satisfy (1). Let {1, . . . ,M}
be the colors with which we attempt to find a valid coloring of G. Assume all edges
in Ẽ ⊂ E have been revealed and colored so far, and a new edge e = (u, v) �∈ Ẽ
is revealed. The first-fit-min (FF-Min) heuristic assigns c(e) = j (i.e., colors e with
color j), where j is the smallest color for which adding e does not violate the valid
coloring condition. In other words,

c(e) = j = min

{
1 ≤ i ≤ M : w(e) +

∑
f : f∈δ(v)∩Ẽ, c(f)=i

w(f) ≤ 1,

w(e) +
∑

f : f∈δ(u)∩Ẽ, c(f)=i

w(f) ≤ 1

}
.

In the first-fit-max (FF-Max) heuristic, the above minimization is replaced by a max-
imization.

The main issue now is to determine the smallest M such that FF-Min can always
assign a color to a given edge. In order to establish our main result, we need a
preliminary definition regarding the blocking number of Bn

r ([0, 1]) under algorithm
FF-Min. For an interval I ⊂ [0, 1], we define the blocking number of Bn

r (I) under
algorithm A (or simply the blocking number of algorithm A) as the maximum over
all vertices v ∈ V and over any graph G = (V,E) ∈ Bn

r (I) of the number of colors
whose total weight adjacent to v is more than 1/2. We denote it by BI(A):

BI(A) = max
G=(V,E)∈Bn

r (I)
max
v∈V

⎧⎨
⎩number of colors i :

∑
f : f∈δ(v) c(f)=i

w(f) >
1

2
under A

⎫⎬
⎭ .

By definition of Bn
r (I), we have that, for any algorithm A and for any I ⊆ [0, 1],

BI(A) ≤ 2n− 1. This bound, for interval [0, 1], is exactly what we need to establish
our main result.

We remark that our results do not hold for the more restrictive definition of
wide-sense nonblocking in which the algorithm has to be able to route new connec-
tion requests even if previous connections terminate. In terms of the graph coloring
problem, the more restrictive condition allows not only additions but also deletions
of edges over time.

4.1. Wide-sense nonblocking for general connection requests. We now
give the main result of this section, namely the bound on mW (n, r) in the general
case.

Theorem 9. The number of colors needed to color any graph in Bn
r using algo-

rithm FF-Min is at most 5n, i.e.,

mW (n, r) ≤ 5n.

Proof. Consider algorithm FF-Min, with M = 5n, applied to G ∈ Bn
r . Let A,

B be the bipartition of V , i.e., V = A ∪ B. Let us say that an edge e is large if
w(e) > 1/2 and small if w(e) ≤ 1/2.
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Consider iteration k of the algorithm and assume ek = e = (u, v) for some u ∈ A,
v ∈ B. To see that the algorithm indeed works, we prove that edge e can be colored
with some of 5n available colors. For this we consider two cases:

• Edge e = ek is small (w(e) ≤ 1/2). Since FF-Min is a greedy-type heuristic,
by Lemma 2, 2n

1−1/2 = 4n colors are enough; and thus a color smaller than or

equal to 4n is assigned to e.
• Edge e = ek is large (w(e) > 1/2). In this case, assume e cannot be colored.

Let Sk
uv be the set of colors 1 ≤ i ≤ 5n such that there exists an edge et with

t < k satisfying that
– et is colored with i,
– w(et) > 1/2, and
– et is adjacent to either u or v.

The bound BI(A) ≤ 2n−1 for any algorithm implies that |Sk
uv| ≤ 2(2n−1) =

4n − 2. Now consider s, the smallest color in Sk
uv, such that i > s implies

that i ∈ Sk
uv. Since |Sk

uv| ≤ 4n − 2, we have that s ≥ n + 3. By definition,
there is a small edge, say f = (u, t), colored with s − 1. The fact that f is
small amounts to concluding that for all i < s− 1, either

∑
e: e∈δ(u),c(e)=i

w(e) >
1

2
or

∑
e: e∈δ(t),c(e)=i

w(e) >
1

2
.

The latter can happen for at most 2n−1 colors (see the bound on the blocking
number above), and therefore the former holds for at least s− 2− (2n− 1) =
s− 2n− 1 colors. (As the former can happen only for at most 2n− 1 colors,
this actually also implies s ≤ 4n.) On the other hand, the number of large
edges adjacent to u or v which are colored with j ≥ s is at least 5n− s + 1.
Since, by condition (1), at most n of these can be adjacent to v, at least
5n− s− n + 1 = 4n− s + 1 are adjacent to u.
Overall we have that∑

e: e∈δ(u)

w(e) >
s− 2n− 1

2
+

4n− s + 1

2
= n,

which contradicts (1).

4.2. Improved bounds for the case of small connection requests. We
now turn to the case in which all connection requests have weights in [0, 1/2]. In
terms of our graph coloring problem, this means considering graphs in Bn

r ([0, 1/2]).
Gao and Hwang [13] have proved that mW [0,1/2](n, r) ≤ 3.75n. Let us now see how
an improvement of this result can be obtained.

Lemma 10. The number of colors needed to color any graph in Bn
r ([0, 1/2]) using

algorithm FF-Min is at most 3.601n + 3, i.e.,

mW [0,1/2](n, r) ≤ 3.601n + 3.

Proof. Observe first that from Lemma 2, if e is an edge with weight w(e), FF-Min
actually assigns to it a color c(e) satisfying c(e) ≤ 2n

1−w(e) + 1, or

(4) w(e) ≥ 1 − 2n

c(e) − 1
.

This immediately implies that edges with weight below 1
4 are assigned to the first

	 8n
3 
 colors.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONBLOCKING 3-STAGE CLOS NETWORKS 889

Let M be the number of colors needed by FF-Min and let e = (u, v) be an edge
that could not be assigned to any of the first M−1 colors. Consider a color j ≤ M−1,
since e was not assigned to j (and w(e) ≤ 1/2); then

∑
f : f∈δ(u),c(f)=j w(f) > 1/2 or∑

f : f∈δ(v),c(f)=j w(f) > 1/2. Assume, without loss of generality, that the latter holds.

Since all weights are at most 1/2, at least two edges in δ(v) are colored j, and thus

∑
f : f∈δ(v),c(f)=j

w(f) ≥ 2

(
1 − 2n

j − 1

)
.

We can now compute
∑

g∈δ(v) w(g) +
∑

g∈δ(u) w(g) using the previous equation, the

fact that for a color j ≤ 	 8n
3 
 either

∑
f : f∈δ(u),c(f)=j w(f) > 1/2 or

∑
f : f∈δ(v),c(f)=j

w(f) > 1/2, and (4):

∑
g∈δ(v)

w(g) +
∑

g∈δ(u)

w(g) > 2w(e) +

⌈
8n

3

⌉
1

2
+

M−1∑
j=	 8n

3 
+1

2

(
1 − 2n

j − 1

)

≥
⌈

8n

3

⌉
1

2
+

M∑
j=	 8n

3 
+1

2

(
1 − 2n

j − 1

)

≥ 2M − 3

2

⌈
8n

3

⌉
− 4n

∫ M−1

�8n/3	−1

1

x
dx

≥ 2M − 4n− 3

2
− 4n

∫ M−1

8n/3−1

1

x
dx

= 2M − 4n− 3

2
+ 4n ln

(
8n− 3

3M − 3

)

= 2M − 4n− 3

2
+ 4n ln

(
8n

3M − 9

)

+ 4n ln

(
(3M − 9)(8n− 3)

(3M − 3)8n

)
.

However, for M ≥ 3.601n + 3, the above quantity surpasses 2n, leading to a contra-
diction. Indeed, for this choice of M , the last term is greater than −4, and so the
previous quantity is greater than 2 · 3.601n− 4n + 4n ln(8/10.803) > 2n.

4.3. The 2-rate environment. We now prove the bound on mW (n, r) when
connection requests can take only two values, which are known beforehand. As men-
tioned before, this result almost closes the gap with the best known lower bound in
this environment. Indeed, the result in this section, together with results in [13, 31],
implies that

3n− 2 ≤ m2
W (n, r) ≤ 3n.

In what follows, we denote by b and B the two rates (or edge weights) and assume
that 0 < b < B ≤ 1. Gao and Hwang [13] already proved the bound in the case
B ≤ 1/2.
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Lemma 11 (Gao and Hwang [13]). If 0 < b < B ≤ 1/2 are the two rates, then
m2

W (n, r) ≤ 3n.

We complete Gao and Hwang’s result by proving a slightly better bound when
B > 1/2. Of course, we may assume b ≤ 1/2, for otherwise condition (1) allows us to
reason that every vertex has degree at most n, and thus an even stronger bound of
2n holds for any online algorithm. Let k be the largest integer such that B + kb ≤ 1
and 	 be the largest integer such that 	b ≤ 1. Let us associate a height of 1 with every
edge of weight b and a height of (	−k) to every edge of weight B; and denote by h(e)
the height of an edge. As at most one item of size B can fit into a bin, (1) implies
that the height of edges in any bin is at most l, and thus

∑
e∈δ(v) h(e) ≤ n	.

The algorithm we need to consider is the following.

Algorithm FF-Min-Max

(1) Assume the edges are revealed in the order {e1, . . . , em}.
(2) For p = 1 to m do:

(a) If w(ep) = B, assign a color 1 ≤ i ≤ 3n−1 to ep using FF-Max.
(b) If w(ep) = b:

∗ Assign any color 1 ≤ i ≤ 3n − 1 to ep such that at most
k − 1 small edges adjacent to u have been colored i, and
at most k − 1 small edges adjacent to v have been colored
i, if one such color exists.

∗ Otherwise, assign a color 1 ≤ i ≤ 3n − 1 to ep using FF-
Min.

Lemma 12. The number of colors needed to color any graph in Bn
r ({b,B}), with

0 < b ≤ 1/2 < B ≤ 1, using Algorithm FF-Min-Max is at most 3n− 1.

Proof. Consider the graph G = (V,E) ∈ Bn
r ({b,B}) and assume the set of colors

is {1, . . . , 3n − 1}. For the purpose of this proof, let us say that an edge e is large if
w(e) = B and small if w(e) = b.

Consider step (1) of the algorithm and let ei = (u, v) ∈ E be the edge currently
considered.

Let us first see that in step (2)(b) of the algorithm, FF-Min does not attempt to
color ei using a color larger than 2n− 1 (assuming thus that no color could be found
such that either u or v has at most k − 1 edges adjacent to it of that color). Indeed,
it is enough to observe that FF-Min is a greedy-type algorithm. With this in mind,
assume that FF-Min could not color ei (which is a small edge) with a color j ≤ 2n−1.
Then, for any color j ≤ 2n− 1, one of the following is satisfied:

• There are 	 small edges f1 . . . , f� such that c(fr) = j for all r = 1, . . . , 	, and
either {f1, . . . , f�} ⊆ δ(u) or {f1, . . . , f�} ⊆ δ(u).

• There are k small edges f1, . . . , fk and one large edge f such that c(fr) =
c(f) = j for all r = 1 . . . , k, and either {f1, . . . , fk, f} ⊆ δ(u) or {f1, . . . ,
fk, f} ⊆ δ(u).

We can therefore assume that there is a set of n colors c1, . . . , cn such that for each
cr, 	 small edges or k small and one large edge are colored with cr and are adjacent
to u (otherwise, the property is true with v). Since also ei is adjacent to u, we obtain
that the total height of edges adjacent to u is at least n	 + 1 > n	, a contradiction
with condition (1).

We conclude that the algorithm will always find a feasible color for a small edge.
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Suppose now that the algorithm cannot assign any color to ei = (u, v) because ei
is a large edge (w(ei) = B). Then Algorithm FF-Min-Max attempted to color ei in
step (2)(a) using FF-Max, but no color was found. We see in what follows that this
is impossible.

Let j be the largest color having at least k + 1 small edges adjacent to either u
or v. From the analysis above, no color i with i ≥ 2n has more than k small edges
adjacent to it, and thus j < 2n. In addition, for any color i with i > j, there must
already be a large edge colored i adjacent to either u or v, and as this can happen to
at most 2n− 2 edges, we have j > n. Thus, n < j < 2n. Without loss of generality,
assume that at least k + 1 small edges of color j are adjacent to u and let f = (u, t)
be one of those edges that was colored using FF-min (there is at least one such f ,
since there are at least k+1 edges in total). Since f was colored by FF-min, for every
color 1 ≤ r ≤ 3n − 1, at least k small edges of color r are adjacent to u or t. Also,
by definition of FF-min, for every color 1 ≤ r < j, there is a set of edges colored with
r, of total height 	, adjacent to u or t (such a set consists of either 	 small edges or k
small and one large edge). Overall we have that

∑
e∈δ(u)∪δ(t):w(e)=b

h(e)+
∑

e∈δ(u)∪δ(t):w(e)=B and c(e)<j

h(e) ≥ (3n−1)k+(j−1)(	−k)+1,

where the final +1 comes from the fact that k+1 small edges adjacent to u are colored
with j. Thus, since n	 is the maximum total height of edges adjacent to t,

(5)
∑

e∈δ(u):w(e)=b

h(e)+
∑

e∈δ(u):w(e)=B and c(e)<j

h(e) ≥ (3n−1)k+(j−1)(	−k)+1−n	.

On the other hand, for every color r with j < r ≤ 3n− 1, there is a large edge of
color r adjacent to u or v. Since at most n − 1 (already colored) large edges can be
adjacent to v, at least 3n− 1− j − (n− 1) = 2n− j large edges of color larger than j
are adjacent to u. Thus,

∑
e∈δ(u):w(e)=B and c(e)>j

h(e) ≥ (2n− j)(	− k).

Combining this with (5) and the fact that ei is large, we conclude that the total height
of edges adjacent to u is at least

[	− k] + [(3n− 1)k + (j − 1)(	− k) + 1 − nl] + [(	− k)(2n− j)],

where the first term corresponds to the height of ei, the second to inequality (5),
and the third to large edges adjacent to u of color r > j. The above quantity equals
(3n− 1)k − n	 + 2n(	− k) + 1 = (n− 1)k + n	 + 1 > n	, which is impossible.

5. A simple algorithm for multirate rearrangeability. In this section, we
reconsider the offline setting and present a simple algorithm that is multirate rear-
rangeably nonblocking and that uses no more than 8n/3 colors. In comparison, the
algorithm of section 3 uses 2.548n + o(n) colors but is more complex. The algorithm
we consider is the following.
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Algorithm FF-Min-Decreasing

(1) Sort the edges according to their weight such that w(e1) ≥ w(e2) ≥
· · · ≥ w(em). Let k = 1.

(2) While k ≤ m do:
(a) Assign a color 1 ≤ i ≤ 	8n/3
 to ek using FF-Min.
(b) k = k + 1.

As is the case for FF decreasing for bin packing, Algorithm FF-Min-Decreasing
can be implemented in time O(n log n). As it involves sorting, it is applicable only to
the offline setting. We have the following result.

Theorem 13. The number of colors needed to color any graph in Bn
r using

Algorithm FF-Min-Decreasing is at most 	8n/3
.
Proof. Consider the graph G = (V,E) ∈ Bn

r and let k be the smallest index such
that w(ek) ≤ 1

4 . As FF-Min-Decreasing is a greedy algorithm, we know from Lemma 2
that our algorithm will always be able to color {ek, . . . , em}. Thus we can assume
that w(ei) >

1
4 for all i = 1 . . . ,m; i.e., we can assume G = (V,E) ∈ Bn

r (]1/4, 1]).

Let e = e� = (u, v) be the first edge that could not be colored by FF-Min-
Decreasing. We distinguish two cases:

(i) w(e) = α > 1/3. In this case, we will prove that FF-Min-Decreasing colors e
with a color no larger than 2n. We define the function gα : [0, 1] → [0, 1] as

gα(x) =

⎧⎪⎨
⎪⎩

1 if 1 − α < x,

1/2 if α ≤ x ≤ 1 − α,

0 if x < α

and consider the modified edge weights w′(ei) = gα(w(ei)). We know that
G� = (V, {e1, . . . , e�}) together with w satisfies condition (1), and from the
sorting step w(ei) ≥ α for all i = 1, . . . , 	. Thus, G, together with w′, also
satisfies condition (1). Now, as e could not be colored using the first 2n colors,
for all 1 ≤ i ≤ 2n either

∑
e:e∈δ(u),c(e)=i

w(e) > 1 − α or
∑

e:e∈δ(v),c(e)=i

w(e) > 1 − α.

We can then assume that for a set B ⊂ {1, . . . , 2n} with |B| ≥ n the first
inequality holds. For i ∈ B, the previous condition implies that the edges in
δ(u) colored with i are either one edge f with w(f) > 1−α or two edges f, g
with w(f) ≥ α and w(g) ≥ α. In both cases,

∑
e:e∈δ(u),c(e)=i

w′(e) = 1.

It follows that

∑
e:e∈δ(u)

w′(e) >
∑

e:e∈δ(u),c(e)∈B

w′(e) ≥ n,

a contradiction with condition (1).
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(ii) 1/3 ≥ w(e) = α > 1
4 . We define the function fα : [0, 1] → [0, 1] as

fα(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 1 − α < x,

1/2 if 1−α
2 < x ≤ 1 − α,

1/4 if α ≤ x ≤ 1−α
2 ,

0 if x < α

and consider the modified edge weights w′(ei) = fα(w(ei)). As in the previous
case, G� = (V, {e1, . . . , e�}), together with w, satisfies condition (1). Thus,
from the sorting step w(ei) ≥ α for all i = 1, . . . , 	, and it is easy to check
that G�, together with w′, also satisfies condition (1).
Additionally, as e could not be colored using the 	 8n

3 
 colors, for all 1 ≤ i ≤
	 8n

3 
 either

∑
e:e∈δ(u),c(e)=i

w(e) > 1 − α or
∑

e:e∈δ(v),c(e)=i

w(e) > 1 − α.

We can then assume that for a set B ⊂ {1, . . . , 	8n/3
} with |B| ≥ 4n/3 the
first inequality holds. For i ∈ B, the previous condition implies that the edges
in δ(u) colored with i are either one edge f with w(f) > 1 − α; two edges
f, g with at least one of them (the largest), say f , satisfying w(f) > 1−α

2 ; or
three edges f, g, h (all with weights greater than α). In any case,

∑
e:e∈δ(u),c(e)=i

w′(e) ≥ 3

4
.

It follows that

∑
e:e∈δ(u)

w′(e) >
∑

e:e∈δ(u),c(e)∈B

w′(e) ≥ |B| · 3

4
≥ n.
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