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Abstract Given a set of n axis-parallel rectangles in the plane, finding a maximum
independent set (MIS), a maximum weighted independent set (WMIS), and a minimum
hitting set (MHS), are basic problems in computational geometry and combinatorics.
They have attracted significant attention since the sixties, when Wegner conjectured
that the duality gap, equal to the ratio between the size of MIS and the size of MHS,
is always bounded by a universal constant. An interesting case is when there exists a
diagonal line that intersects each of the given rectangles. Indeed, Chepoi and Felsner
recently gave a 6-approximation algorithm for MHS in this setting, and showed that the
duality gap is between 3/2 and 6. We consider the same setting and improve upon these
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results. First, we derive an O(n2)-time algorithm for the WMIS when, in addition,
every pair of intersecting rectangles have a common point below the diagonal. This
improves and extends a classic result of Lubiw, and gives a 2-approximation algorithm
for WMIS. Second, we show that MIS is NP-hard. Finally, we prove that the duality
gap is between 2 and 4. The upper bound, which implies a 4-approximation algorithm
for MHS, follows from simple combinatorial arguments, whereas the lower bound
represents the best known lower bound on the duality gap, even in the general setting
of the rectangles.

Keywords Independent sets · Rectangle selection · Duality gap

1 Introduction

Given a set of n weighted axis-parallel rectangles in the plane, a subset of rectangles
is called independent if the rectangles in the subset are pairwise disjoint. A finite
point set is called a hitting set if the points stab all the rectangles. In this paper, we
are concerned with three natural problems: finding a maximum independent set of
rectangles (MIS); finding a maximum weight independent set of rectangles (WMIS);
and finding a minimum hitting set (MHS). As these problems appear to be basic
questions with important applications, they have attracted significant attention from
combinatorial and computational viewpoints.

All MIS, WMIS, and MHS have long been known to be strongly NP-hard [12,18].
Consequently, efforts have been put in designing approximation algorithms and
polynomial-time exact algorithms for special cases. The current best known approx-
imation factors are O(log log n) for MIS [7] and O(log n/ log log n) for WMIS [8].
Recently, Adamaszek and Wiese [1] designed a pseudo-polynomial time algorithm that
finds a (1+ε)-approximate solution for WMIS, however, the existence of polynomial-
time approximation algorithms with constant performance guarantee remains largely
open. A similar situation occurs for MHS where the current champion is an algorithm
with an approximation factor of O(log log n) [3], while polynomial-time constant-
factor approximation algorithms are unknown. In more restricted settings, polynomial-
time exact algorithms do exist. For instance, if all rectangles are intervals, the underly-
ing intersection graph1 is an interval graph and even linear-time algorithms, assuming
that the input is sorted beforehand, are known for all three problems [13]. Beyond
interval graphs, Lubiw [22] devised a cubic-time algorithm for computing a maxi-
mum weight independent set of point-intervals, which can be seen as a set of rectan-
gles having their upper-right corners along the same diagonal. More recently, Soto
and Telha [24] considered the case where, given two prescribed points sets A and
B on the plane with total size m, the set of rectangles consists of all the rectangles
whose upper-right corner and lower-left corner belong to A and B, respectively. They
designed an algorithm that computes both MIS and MHS in the time required to do
matrix multiplication on m × m matrices, and showed that WMIS is NP-hard. On the

1 Given a finite set of rectangles in the plane, the intersection graph is the graph with the rectangles as
vertices, and two rectangles are adjacent if and only if they intersect.
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other hand, Caraballo et al. [5] considered the same setting with prescribed points sets
A and B, although the set of rectangles consists of all the rectangles having a diagonal
connecting a point in A with a point in B. They proved that MIS is NP-hard and admits
a polynomial-time 4-approximation. Very recently, Ahmadinejad and Zarrabi-Zadeh
[2] considered the case where all rectangles are attached to the boundary of a rec-
tangular region and give an O(n4) time exact algorithm for WMIS, improving on a
result of Kong et al. [15]. Finally, there are also known polynomial-time approxima-
tion schemes for special cases, including the results of Chan and Har-Peled [8] for
pseudo-disks, and Mustafa and Ray [23] for unit-height rectangles.

From a more combinatorial perspective, research has mostly focused on understand-
ing the relation between the size of a maximum independent set and that of a minimum
hitting set. Obviously, the former one is at most the latter one since a different point will
be needed to hit each rectangle in an independent set. Furthermore, if all the rectangles
have height zero (i.e. the intersection graph is an interval graphs), this inequality is
actually an equality and this still holds in the case studied by Soto and Telha [24]. In
general, the duality gap, denoted δGAP, is the maximum ratio between these quantities,
and the term arises as MHS is the integral version of the dual of the natural linear pro-
gramming relaxation of MIS. Then, δGAP = 1 in interval graphs and in the framework
of Soto and Telha. A natural question is whether δGAP is bounded for general sets of
rectangles. Indeed, already in the sixties, Wegner [26] conjectured δGAP ≤ 2 for arbi-
trary rectangle sets, whereas Gyárfás and Lehel [14] proposed the weaker conjecture
that δGAP is bounded by a universal constant. The largest known lower bound on the
duality gap is 5/3, and was obtained by Fon-Der-Flass and Kostochka [11]. To date, the
best known upper bound is only super-constant and was obtained by Károlyi [19] who
proved that δGAP = O(log α), where α denotes the size of the maximum independent
set. For some special sets of rectangles, δGAP is indeed a constant. In particular, when
all rectangles intersect a given diagonal line, Chepoi and Felsner [9] proved δGAP ≤ 6,
and obtained further improvements for more restricted classes [9,16].

In this paper, we study the problems MIS, WMIS, and MHS for restricted sets of
rectangles in which a given diagonal pierces every rectangle. Informally speaking, our
main results are: a quadratic-time algorithm for WMIS when every pair of intersecting
rectangles have a common point below the diagonal, improving and extending the
work of Lubiw [22]; an NP-hardness proof for MIS in this class of rectangles; and
new lower and upper bounds on the duality gap of 2 and 4, respectively. For a more
precise description, we first need some definitions.

1.1 Notation and Classes of Rectangle Sets

Let D be the diagonal line defined by the equation y = −x . We call the closed
halfplanes y ≥ −x and y ≤ −x , the halfplanes of D, whose intersection is D. The
points in the bottom (resp. top) halfplane are said to be below (resp. above) D. Let R
be a set of n closed axis-parallel rectangles in R

2, so that the diagonal D pierces each
rectangles of R.2 Given r ∈ R, let �r and ur denote the lower-left and upper-right

2 We observe that the line D can be replaced by any decreasing bijective real function, so that the boundary
of each r ∈ R intersects the curve of that function in at most two points. By applying a suitable piecewise
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(A) (B) (C) (D) (E)

Fig. 1 Examples of rectangle sets: a diagonal-pierced, Gpierce, b diagonal-side-pierced, Gside, c diagonal-
corner-separated, Gc-sep, d diagonal-touched, Gtouch, e sub-diagonal-intersecting, Gsub-int

corners of r , respectively, and let wr denote the weight of r . For a point v ∈ R
2, let

vx and vy denote the x- and y-coordinates of v, respectively. We assume without loss
of generality that no two corners in the set {�r, ur | r ∈ R} have the same x- or y-
coordinate. Here, we consider five classes of rectangle sets intersected by D, depicted
in Fig. 1.

Definition 1 (Classes of rectangle sets and intersection graphs)

(1) R is diagonal-pierced if r ∩ D �= ∅ for all r ∈ R.
(2) R is diagonal-side-pierced if there is a side (upper, lower, left, or right) such that

D intersects all r ∈ R on that particular side.
(3) R is diagonal-corner-separated if there is a halfplane of D containing the same

three corners of all rectangles of R.
(4) R is diagonal-touched if either all the upper-right corners, or all the lower-left

corners, of the rectangles in R are in D.
(5) A diagonal-pierced set R is sub-diagonal-intersecting if every pair of intersecting

rectangles have a common point in the bottom halfplane of D.

Let Gpierce be the class (i.e. set) of the intersection graphs of all diagonal-pierced
rectangle sets. Analogously, let Gside, Gc-sep, Gtouch, and Gsub-int denote the intersec-
tion graph classes for the diagonal-side-pierced, diagonal-corner-separated, diagonal-
touched, and sub-diagonal-intersecting sets of rectangles, respectively.

By rotating or reflecting the plane, we can make the following assumptions: In
the diagonal-side-pierced rectangle sets, we assume that the common side of inter-
section is the upper one; in the diagonal-corner-separated rectangle sets, that the
upper-right corner is on the top halfplane of D and the other three corners are in
the bottom one; and in the diagonal-touched rectangle sets, that the corner contained
in D is the upper-right one. Under these assumptions, the diagonal-pierced sets gen-
eralize the diagonal-side-pierced sets; the diagonal-side-pierced sets generalize the
diagonal-corner-separated sets; and the diagonal-corner-separated sets generalize the
diagonal-touched sets. We observe that these classes have appeared in the literature
under different names. Hixon [16] calls the graphs in Gtouch hook graphs, Catan-
zaroa et al. [6] call them max point-tolerance graphs, Soto and Thraves [25] call

Footnote 2 continued
linear transformations on both coordinates, we can transform the rectangle set into one with the same
intersection graph such that every rectangle is pierced by D.
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Fig. 2 G2C6 , the doubled
6-cycle and its diagonal
touching representation

Fig. 3 The cube graph and
diagonal intersecting
representation

them And(1) graphs, whereas Chepoi and Felsner [9] call those in Gpierce separable
rectangle graphs.

Although we work directly with the rectangle representation of these classes, it
is worth noting that the underlying intersection graphs satisfy the following inclu-
sions. Furthermore, given a graph, we do not know of polynomial-time algorithms to
recognize the classes defined here.

Gtouch � Gc-sep = Gside = Gsub-int � Gpierce.

Indeed, note first that Gc-sep ⊆ Gside ⊆ Gsub-int, where the first inclusion is straightfor-
ward, and for the second one we note that two rectangles of a diagonal-side-pierced
set intersect if and only if they have a point in common in the bottom halfplane of
D. Note also that by replacing each rectangle r of a sub-diagonal-intersecting set
with the minimum rectangle containing the region of r that is below the diagonal,
we get a diagonal-corner-separated set with the same intersection graph. By the pre-
vious discussion we conclude that Gc-sep = Gside = Gsub-int. As mentioned earlier,
Gtouch ⊆ Gsub-int and that Gc-sep ⊆ Gpierce are direct consequences of the definitions of
the classes.

To prove that Gtouch �= Gsub-int, consider the graph G2C6 of Fig. 2 together with a
universal vertex. This new graph still belongs to Gsub-int since in Gsub-int one can always
create a rectangle intersecting all other rectangles and being a universal vertex of the
underlying graph. However, although G2C6 is in Gtouch (see the rectangle representation
on the right of the figure), when a universal vertex is added the graph is not in Gtouch
anymore. This can be proved by case analysis and using the following characterization
of Gtouch, independently found by Hixon [16] and Soto and Thraves [25]: A graph
G = (V, E) belongs to Gtouch if and only if there exists a total order < on V such that:
for all a < b < c < d in V , if both (a, c) ∈ E and (b, d) ∈ E then (b, c) ∈ E .

Finally, to see that Gc-sep � Gpierce, consider the cube depicted in Fig. 3, which
is in Gpierce but not in Gsub-int. The first assertion follows directly from the figure on
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the right, while the second one follows again by distinguishing the possible cases
describing how the rectangles intersect the diagonal.

1.2 Our Results

In this paper, we study the problems MIS, WMIS, and MHS with input R drawn for
Definition 1. We thus denote the corresponding solutions as MIS(R), WMIS(R), and
MHS(R), respectively, and let mis(R) = |MIS(R)|, wmis(R) = ∑

r∈WMIS(R) wr ,
and mhs(R) = |MHS(R)|.

In Sect. 2, we give a quadratic-time algorithm to solve WMIS(R) when R is sub-
diagonal-intersecting, and a polynomial-time 2-approximation for WMIS(R) when R
is diagonal-pierced. The former one is the first polynomial-time algorithm for solving
WMIS on a natural class of rectangle sets which includes diagonal-corner-separated
rectangle sets, and improves upon previous work in the area. Specifically, for diagonal-
touched rectangle sets, the best known algorithm to solve WMIS is due to Lubiw [22],
who designed a cubic-time algorithm for the problem in the context of interval systems.
More precisely, a collection of point-intervals is a set Q = {(pi , Ii )}n

i=1 of n point-
interval pairs, where Ii = [left(Ii ), right(Ii )] ⊆ R is an interval and pi is a point in Ii ,
for each i ∈ [n] = {1, . . . , n}. The set Q is called independent if for k �= j , we have
pk /∈ I j or p j /∈ Ik . Given a finite set Q of weighted point-intervals, Lubiw designed a
dynamic programming based algorithm to find a maximum weight independent set of
Q. It is easy to see [24] that this problem is equivalent to that of solving WMIS(R) for
the diagonal-touched set R = {ri }n

i=1, where ri is the rectangle with upper-right corner
(pi ,−pi ), lower-left corner (left(Ii ),−right(Ii )), and weight equal to that of (pi , Ii ).
Lubiw’s algorithm was recently rediscovered by Hixon [16] and Catanzaroa et al. [6].
Our algorithm, like Lubiw’s, is based on dynamic programming. However, rather than
decomposing the instance into small triangles and computing the optimal solution for
the rectangles contained in every possible triangle, our approach involves computing
the optimal solutions restricted to what we call a harpoon, which is defined for every
pair of rectangles. We show that the amortized time cost of computing the optimal
solution for all harpoons is constant, leading to an overall quadratic time. Interestingly,
it is possible to show that our algorithm is an extension of the linear-time algorithm
for maximum weighted independent set of intervals [17]. Our polynomial-time 2-
approximation algorithm for WMIS(R), when R is diagonal-pierced, improves upon
the 6-approximation of Chepoi and Felsner [9] which solves only MIS(R).

In Sect. 3, we prove δGAP ≤ 2 for diagonal-touched sets; δGAP ≤ 3 for sub-
diagonal-intersecting sets, and δGAP ≤ 4 for diagonal-pierced sets. These bounds yield
straightforward polynomial-time 2, 3, and 4-approximation algorithms for MHS on
each class. They can also be used as approximation algorithms for MIS with the same
approximation guarantee, however, as discussed in the previous paragraph, we have an
exact algorithm for WMIS on the first two classes, and a 2-approximation for the last
one. The 4-approximation for MHS in diagonal-pierced sets is the best approximation
known, and improves upon the 6-approximation of Chepoi and Felsner [9], who also
give a 3-approximation for diagonal-side-pierced sets based on a different method. For
diagonal-touched sets, Hixon [16] independently showed δGAP ≤ 2. To complement
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the previous results, we prove δGAP ≥ 2 for diagonal-pierced sets. We do this by
exhibiting an infinite set of instances whose δGAP is arbitrarily close to 2. Similar
instances were obtained, and communicated to us, by Cibulka et al. [10]. Note that
this lower bound of 2 improves upon the 5/3 of Fon-Der-Flaass and Kostochka [11],
which was the best known lower bound for the duality gap of general rectangle sets.

In Sect. 4, we prove that solving MIS (and then WMIS) on diagonal-pierced sets is
NP-hard. In light of our polynomial-time algorithm for sub-diagonal-intersecting sets,
the latter hardness result exhibits what is, in a way, a class at the boundary between
polynomial-time solvability and NP-hardness. Three decades ago, Fowler et al. [12]
(see also Asano [4]) established that solving MIS is NP-hard, by actually showing
that this is the case even for squares. It is worth mentioning that diagonal-pierced sets
constitute the first natural subclass for which NP-hardness of MIS has been shown
since then. Our proof actually uses only rectangles that touch the diagonal line, but
that may intersect above or below it, and uses a reduction from Planar 3- sat.

Finally, combining the results of Chalermsook and Chuzhoy [7], and Aronov et
al. [3], we show in Sect. 5 that for a general set R of rectangles the duality gap is
O(log2 log mis(R)), improving upon the O(log mis(R)) bound of Károlyi [19].

2 Algorithms for WMIS

Let r1, r2, . . . , rn denote the n rectangles of R, respectively. For each i ∈ [n], let ai

and bi denote, respectively, the higher and lower intersection points between D and
the boundary of ri . W.l.o.g., we assume a1

x < a2
x < · · · < an

x . For every i ∈ [n], we

define f (i) as follows: If there exists an index j ∈ [n] such that bi
x < b j

x , then f (i)

denotes such index j with minimum b j
x . Otherwise, we let f (i) = n + 1. For ease of

notation, for every i ∈ [n], let ui = uri , �i = �ri , wi = wri . Let also sub(ri ) denote
the intersection between ri and the lower halfplane of D.

The idea behind Lubiw’s algorithm [22] for solving WMIS on diagonal-touched rec-
tangle sets is to compute the optimal independent set OPTi j restricted to the set of rec-

tangles r ∈ R such that r is contained in the triangle with vertex set {ui , u j , (ui
x , u j

y)},
for every pair i < j . The principle exploited is that in OPTi j there exists one rectan-
gle, say rk , with i < k < j and OPTi j = OPTik ∪ {rk} ∪ OPTk j . Using this idea,
Lubiw devise a dynamic programming algorithm with overall time complexity O(n3).
Below, we present a new algorithm, which works for the more general sub-diagonal-
intersecting sets and is based on more elaborate ideas, involving regions that we call
harpoons and partitions of the set R according to the incidences of the lower-left
corners in horizontal and vertical strips.

2.1 Algorithm for Sub-diagonal-Intersecting Rectangle Sets

For any pair of rectangles ri and r j (i < j) we define Hi, j and Hj,i , two shapes that
we call harpoons (see Fig. 4). Formally, the horizontal harpoon Hi, j consists of the
points below the diagonal D in the set obtained by subtracting the rectangle ri from
the closed box having the points (�i

x , ai
y) and a j as vertices. Similarly, the vertical
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Fig. 4 A The construction of the harpoon Hi, j . B Harpoon Hi, j . C Harpoon H j,i . D, E Particular degen-
erated cases of the harpoon Hi, j with i < j (the symmetric cases occur for H j,i ). F The construction of

the strips Bi
h and Bi

v

harpoon Hj,i consists of the points below D in the set obtained by subtracting r j

from the box having the points (b j
x , �

j
y) and bi as vertices. Also, for every rectangle ri

(resp. such that r f (i) is defined) we define Bi
h (resp. Bi

v) as the open horizontal strip
that goes through ai−1 and ai (resp. as the open vertical strip that goes through bi and
b f (i)).

In our algorithm, called WMIS-SubDiagonalIntersect and explained below,
we will compute S(i, j) = wmis(Ri, j ), where Ri, j = {r ∈ R | sub(r) ⊆ Hi, j }.
We define two dummy rectangles r0 and rn+1, at the two “ends” of the diagonal D,
such that the harpoons H0,n+1 and Hn+1,0 defined by these rectangles contain all other
rectangles. As previously defined, two rectangles of R intersect if and only if they
intersect below the diagonal. Therefore, we have wmis(R) = S(0, n + 1).

Algorithm WMIS-SubDiagonalIntersecting:

1. Initialization: We partition the set of rectangles according to the horizontal strips
containing their lower-left corner, and we do the same for the vertical strips. For-
mally, we compute in a preprocessing step, the sets B̂i

h = {r ∈ R | �r ∈ Bi
h} for

i = 1, . . . , n + 1, and the sets B̂i
v = {r ∈ R | �r ∈ Bi

v} for i = 0, . . . , n.
2. Main loop: We compute the values S(i, j) by using dynamic programming, starting

with S(i, i) = 0 for i = 0, . . . , n + 1. Assume that for some t ∈ {0, . . . , n} all the
values S(i, j) for every pair i, j such that |i − j | ≤ t are computed. Then, S(i, j)
with |i − j | = t + 1 is computed as follows:
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– If i < j , then initialize S(i, j) = S(i, j − 1) and let B̂i, j := B̂ j
h . Otherwise,

if i > j , then initialize S(i, j) = S(i, f ( j)) and let B̂i, j := B̂ j
v .

– For each rectangle rk ∈ B̂i, j such that rk ∈ Ri, j , we set m = wk +
max{S(i, k), S(k, i)} + S(k, j) and update S(i, j) := max{m, S(i, j)}.

3. Output: Return S(0, n + 1).

It is trivial to modify Algorithm WMIS-SubDiagonalIntersect to return not
only wmis(R) but also the solution rectangle set WMIS(R). We now establish the
running time of this algorithm.

Theorem 1 Algorithm WMIS-SubDiagonalIntersect runs in O(n2) time.

Proof The initialization stage requires O(n) time if the rectangles are already sorted,
otherwise it requires O(n log n) time. The time to compute S(i, j) for given values of
i and j is within O(1 + |B̂i, j |), since checking whether a given rectangle belongs to
Ri, j or R j,i takes constant time. Since each rectangle is at most once in some set B̂i

h ,

and at most once in some set B̂i
v , the time to fill the whole table S(·, ·) is within:

∑

(i, j)∈[n]2

O
(
1 + |B̂i, j |

) = O(n2). 
�

In order to analyze the correctness of our algorithm, we define a partial order over
the elements of R.

Definition 2 The (strict) onion ordering ≺ in R is defined as

ri ≺ r j ⇐⇒ ri ∩ r j = ∅, �i
x < �

j
x , and �i

y < �
j
y .

Clearly, ≺ is a strict partial ordering in R. We say that ri is dominated by r j if
ri ≺ r j ; in other words, ri is dominated by r j if ri ∩ r j = ∅ and �i is dominated by � j

under the standard vector dominance in R
2.

For any k such that rk ∈ Ri, j , let Wk(i, j) denote a maximum weight independent
set that contains rk and rectangles in Ri, j not dominated by rk in the onion ordering,
and Sk(i, j) denote the total weight of Wk(i, j).

Lemma 1 For any rectangle rk ∈ Ri, j , the following relation holds:

Sk(i, j) = wk + max
{

S(i, k), S(k, i)
} + S(k, j).

Proof Since rk ∈ Ri, j , we have that ri , rk and r j are pairwise disjoint and min{i, j} <

k < max{i, j}. Assume that the harpoon Hi, j is horizontal, i.e., i < j (the proof for
i > j is analogous). In particular, we know that ai , bi , ak , bk , a j , and b j appear in
this order on the diagonal. There are three cases for the relative positions of the two
rectangles ri and rk (see Fig. 5).
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ri
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Hk,i

Hk,j
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(A)
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rk

Hi,k

Hk,j
Hi,j

(B)

ri

rj

rk

Hi,k Hk,i

Hk,j
Hi,j

(C)

Fig. 5 The three cases for a rectangle rk contained in the set Ri, j induced by the horizontal harpoon Hi, j

Case 1: ri and rk are separated by a vertical line, but not separated by a horizontal
one (see Fig. 5a). Since Hi,k ⊆ Hk,i , we conclude that Wk(i, j) \ {rk} ⊆ Rk,i ∪ Rk, j .
Since Rk,i ∩ Rk, j = ∅, the correctness follows.

Case 2: ri and rk are separated by a horizontal line, but not by a vertical one (see
Fig. 5b). The proof follows almost exactly as in Case 1.

Case 3: ri and rk are separated by both a horizontal line and a vertical line (see Fig. 5c).
By geometric and minimality arguments, we have Wk(i, j)\{rk} ⊆ Ri,k ∪Rk,i ∪Rk, j .
Finally, note that every independent set contained in the union of Ri,k and Rk,i , must
be fully contained in one of them. Since these sets are disjoint from Rk, j , the result
holds. 
�
Theorem 2 Algorithm WMIS-SubDiagonalIntersect returns WMIS(R).

Proof We use induction. For the trivial sets Ri,i , the maximum weight independent set
has weight 0, since it is the empty set. The correctness follows directly from Lemma 1
and the next implications: For i �= j ,

i < j �⇒ S(i, j) = max{S(i, j − 1), max{Sk(i, j) | rk ∈ B̂ j
h ∩ Ri, j }},

i > j �⇒ S(i, j) = max{S(i, f ( j)), max{Sk(i, j) | rk ∈ B̂ j
v ∩ Ri, j }}.

Indeed, assume that i < j (the case where i > j is analogous). Let S be the WMIS
corresponding to S(i, j). Suppose there exists rm ∈ B̂ j

h ∩S and assume w.l.o.g. that rm
is minimal in S with respect to domination. Since S \ {rm} does not contain rectangles
dominated by rm, S(i, j) = Sm(i, j). Otherwise, B̂ j

h ∩S = ∅, in which case it follows
that S(i, j) = S(i, j − 1). 
�

2.2 A 2-Approximation for WMIS on Diagonal-Pierced Sets

We use the previous algorithm to obtain a 2-approximation for diagonal-pierced rec-
tangle sets.

Theorem 3 There exists a polynomial-time 2-approximation algorithm for WMIS on
diagonal-pierced rectangle sets.
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Proof Let Rupper ⊆ R denote the set of rectangles whose upper side is pierced by D,
and letRleft = R\Rupper. Observe that D pierces the left side of each rectangle inRleft.
More importantly, Rupper is a sub-diagonal-intersecting set of rectangles, and Rleft is
in fact another sub-diagonal-intersecting set of rectangles in the instance obtained
by reflecting R with respect to D. Using Theorems 1 and 2, each of WMIS(Rupper)

and WMIS(Rleft) can be computed in O(n2) time. We return the set of maximum
total weight between WMIS(Rupper) and WMIS(Rleft), which is a 2-approximation
of WMIS(R). 
�

3 Duality Gap and Other Approximation Algorithms

In this section, we study the duality gap, that is, the largest possible ratio between the
size of the minimum hitting set and the size of the maximum independent set, on some
of the classes of rectangle sets defined before.

Theorem 4 The duality gap for diagonal-touched rectangle sets is between 3/2 and 2.
For sub-diagonal-intersecting rectangle sets, it is between 3/2 and 3, and for diagonal-
pierced sets it is between 2 and 4.

We will prove the upper bounds and the lower bounds separately.

Proof of the Upper Bounds in Theorem 4 Let R be a rectangle set in the plane, that
can be in one of the three classes described in the theorem. In the case in which R
is sub-diagonal-intersecting we first replace each rectangle r ∈ R by the minimal
one containing the region of r that is below the diagonal. The modified set has the
same intersection graph as before, but it is diagonal-corner-separated. In particular,
the region of each rectangle that is above the diagonal is a triangle or a single point.

Let Rx and Ry denote the projections of the rectangles in R on the x- and y-axis,
respectively, which can be regarded as sets of intervals. Let Ix and Iy denote maximum
independent sets of Rx and Ry , respectively, and Px and Py denote minimum hitting
sets of Rx and Ry , respectively. Since interval graphs are perfect, we have |Px | = |Ix |
and |Py | = |Iy |. Further, since rectangles with disjoint projections on the x-axis (resp.
on the y-axis) are disjoint, we have

mis(R) ≥ max{|Ix |, |Iy |} = max{|Px |, |Py |}.

Let P = Px × Py ⊂ R
2, which is a hitting set of R, and let the set P− (resp.

P+) denote the points in P that are below (resp. above) the diagonal D. Consider the
following subsets of P:

F− = {p ∈ P− : �q ∈ P−, px < qx and py < qy},
F+ = {p ∈ P+ : �q ∈ P+, qx < px and qy < py},
F∗ = {p ∈ P+ : �q ∈ P+ \ {p}, qx ≤ px and qy ≤ py}.

The set F− (resp. F+) forms the closest “staircase” to the diagonal D that is
below (resp. above) D. The set F∗ corresponds to the lower-left bending points of the
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Fig. 6 We do not represent the
rectangles but Px and Py (the
plus into circles, along the axis).
The points of P \ (F+ ∪ F−)

are the dots, F− corresponds to
the triangles, F+ corresponds to
the ‘x’-s, and F∗ corresponds to
the circles. We note that a point
can be in several sets among
F−, F+, and F∗

×
× ×

×
×

×
×

⊕ ⊕ ⊕ ⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

staircase defined by F+. The situation is depicted in Fig. 6. It is easy then to see that

max{|F−|, |F+|} ≤ |Px | + |Py | − 1 ≤ 2 · mis(R) − 1,

and

|F∗| ≤ max{|Px |, |Py |} ≤ mis(R).

If r ∈ R is hit by a point of P−, let p1(r) be the point of P− ∩r closest to the diagonal
(in the L1-distance). Since r intersects the diagonal, and the points of P form a grid,
we conclude that p1(r) ∈ F−. Similarly, if r ∈ R is hit by a point of P+, let p2(r)

be the point of P+ ∩ r closest to the diagonal. Since r intersects the diagonal, we
conclude that p2(r) ∈ F+. Furthermore, if the region of r that is above the diagonal
is a triangle or a single point, then p2(r) ∈ F∗.
If R is diagonal-touched, then every rectangle is hit by a point of F−. Thus we have

mhs(R) ≤ |F−| ≤ 2 · mis(R) − 1.

If R is sub-diagonal-intersecting (and, after the modification discussed at the beginning
of this proof, diagonal-corner-separated), then every rectangle is hit by a point of
F− ∪ F∗. Hence

mhs(R) ≤ |F−| + |F∗| ≤ 3 · mis(R) − 1.

Finally, if R is diagonal-pierced, then every rectangle is hit by a point of F− ∪ F+.
Thus we have

mhs(R) ≤ |F−| + |F+| ≤ 4 · mis(R) − 2. 
�

Proof of the Lower Bounds of Theorem 4 The lower bound of 3/2 is achieved by any
set R whose intersection graph G is a 5-cycle. It is easy to see that R can be realized
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Fig. 7 The set R4. The
diagonal line shows that this set
is diagonal-pierced L (1)

L (2)

L (3)

L (4)

R (1)

R (2)

R (3)

R (4)

U(1) U(2) U(3) U(4)

D (1) D (2) D (3) D (4)

as a diagonal-touched set, that mis(R) = 2 and mhs(R) = 3, and so the claim holds.
Of course this lower bound applies also to sub-diagonal-intersecting sets.

The lower bound of 2 for diagonal-pierced sets is asymptotically attained by a
sequence of rectangle sets {Rk}k∈Z+ . We will describe the sequence in terms of
unbounded 3-sided rectangles which intersect the diagonal, but it is easy to trans-
form each Rk into a set of bounded rectangles by confining them to a big enough
bounding box.

For i ∈ Z
+, define the i th layer as Li = {U (i), D(i), L(i), R(i)}, and for k ∈ Z

+,
define the kth instance as Rk = ⋃k

i=1 Li , where:

U (i) = [2i, 2i + 1] × [−(2i + 1
3 ),+∞),

D(i) = [
2i + 2

3 , 2i + 5
3

] × (−∞,−2i],
L(i) = (−∞, 2i + 1

3 ] × [−2i − 1,−2i],
R(i) = [2i,∞) × [−(

2i + 5
3

)
,−(

2i + 2
3

)].

Consider the instance Rk (see Fig. 7 for R4) with k layers of rectangles. It is
immediately clear that mhs(R) ≥ 2k, since every point of the plane hits at most two
rectangles.

Let us prove that I = MIS(Rk) satisfies |I | ≤ k + 2, which implies that δGAP =
mhs(Rk)/mis(Rk) ≥ 2 − 4/(k + 2) is arbitrarily close to 2. To this end, let iD =
min{i : D(i) ∈ I or i = k + 1} and iR = min{i : R(i) ∈ I or i = k + 1}. When
iD = iR = k + 1, it is immediate that |I | ≤ k. Then, assume w.l.o.g. that iD < iR .
Since for i = 1, . . . , iD − 1 the set I contains neither D(i) nor R(i), we have that I
contains at most one rectangle on each of the layers L1, . . . ,LiD−1. It then follows
that

iD−1∑

i=1

|I ∩ Li | ≤ iD − 1.
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Similarly, for i = iD + 1, . . . , iR − 1, I contains neither L(i) nor R(i), thus

iR−1∑

i=iD+1

|I ∩ Li | ≤ iR − iD − 1.

Finally, we have for i = iR + 1, . . . , k that I contains neither L(i) nor U (i), and of
the layer LiR , I contains at most two rectangles; thus

k∑

i=iR

|I ∩ Li | ≤ k − iR + 2.

To conclude, note that I may contain at most two rectangles of the layer LiD . Hence,
we have

|I | =
k∑

i=1

|I ∩ Li | ≤ (iD − 1) + 2 + (iR − iD − 1) + (k − iR + 2) = k + 2. 
�

Corollary 1 There is a simple polynomial-time 2-approximation algorithm for MHS
on diagonal-touched sets, a 3-approximation for MHS on sub-diagonal-intersecting
sets, and a 4-approximation polynomial time algorithm for MHS on diagonal-pierced
sets.

Proof The algorithm consists in computing and returning F− for the first case,
F− ∪ F∗ for the second case, and F− ∪ F+ for the third case. 
�

4 NP-Hardness of MIS on Diagonal-Pierced Sets

In this section, we prove the following theorem. It is worth noting that the class of
rectangles referred to in the theorem is not the class of diagonal-touched rectangles:
the diagonal may touch some rectangles on their lower-left corners and others on their
upper-right corners.

Theorem 5 Solving MIS is NP-hard on diagonal-pierced sets of rectangles, even if
the diagonal intersects each rectangle on a corner.

Proof We use a reduction from the Planar 3-sat which is NP-complete [21]. Given a
Boolean formula ϕ, its associated graph G(ϕ) is the bipartite graph having one vertex
per variable and one vertex per clause, and in which a variable vertex is connected to
a clause vertex if either the variable or its negation appears as a literal in the clause.
The input of the Planar 3-sat consists of a Boolean formula ϕ in 3-CNF whose
associated graph G(ϕ) is planar, and the formula is accepted if and only if there
exists an assignment to its variables such that in each clause at least one literal is
satisfied. Let ϕ be a Planar 3-sat formula. Note that G(ϕ) can be represented in
the plane as in Fig. 8, where all variables lie on an horizontal line, and all clauses
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υ υ υ υ υυ1 2 3 4 5 6

Fig. 8 Planar embedding of ϕ = (v1 ∨ v2 ∨ v3) ∧ (v3 ∨ v4 ∨ v5) ∧ (v1 ∨ v3 ∨ v5) ∧ (v1 ∨ v2 ∨ v4) ∧
(v2 ∨ v3 ∨ v4) ∧ (v4 ∨ v5 ∨ v6) ∧ (v1 ∨ v5 ∨ v6)

1

2

3

4

5

6

υ

υ

υ

υ

υ

υ

Fig. 9 The embedding E1 obtained (essentially) from E0 by arranging the variables as segments in the
diagonal D and extending the combs. For clarity, each variable segment is represented by a parallelogram

are represented by non-intersecting three-legged combs [20]. We identify each clause
with its corresponding comb, and vice versa. Using this embedding as base, which can
be constructed in a grid of polynomial size [20], we construct a set R of rectangles
intersecting the diagonal D, such that there exists in R an independent set of some
given number of rectangles if and only if ϕ is accepted.

Let ϕ be an instance of the Planar 3-sat, with n variables and m clauses, and let
E0 denote the above embedding of ϕ. For any variable v, let d(v) denote the number
of clauses in which v appears. We assume that every variable appears in each clause at
most once. Given any clause C with variables u, v, and w, such that u, v, and w appear
in this order from left to right in the embedding E0, we say that u is the left variable of
C , and that w is the right variable. Given E0, using simple geometric transformations
we can obtain the next slightly different planar embedding E1 of ϕ. Essentially, E1
can be obtained from E0 by arranging the variables in the diagonal D and extending
the combs. Such an embedding E1 has the next further properties (see Fig. 9):
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Fig. 10 The embedding E2 obtained from E1 by modifying the combs and inverting one leg in each comb

(1) Each variable v is represented by a segment Sv ⊂ D, divided into three equal
parts: S�

v is the left part, Sm
v the middle one, and Sr

v the right one. The segments
S = {Sv | v is a variable}, are pairwise disjoint and equally spaced in D, and
appear in D from left to right in the same order as the variables appear in E0. Let
δ denote the vertical gap between successive segments in S.

(2) If v is the left variable of a clause C above D, then the left leg of C (i.e. the one
corresponding to v) contacts the interior of Sr

v . Otherwise, it contacts the interior
of Sm

v .
(3) If v is the right variable of a clause C below D, then the right leg of C (i.e. the one

corresponding to v) contacts the interior of S�
v . Otherwise, it contacts the interior

of Sm
v .

The above properties (1)–(3) of E1 allow us to obtain the next embedding E2 of ϕ

(refer to Fig. 10). Let v be any variable and let C1, C2, . . . , Ck be the clauses above
the diagonal having v as left variable, sorted according to the left-to-right order of the
contact points of their left legs with Sr

v . Let s1, s2, . . . , sk denote the horizontal seg-
ments of C1, C2, . . . , Ck , respectively. Assume w.l.o.g. that s1, s2, . . . , sk are equally
spaced at a distance less than δ/2k. Push downwards simultaneously s1, s2, . . . , sk to
modify C1, C2, . . . , Ck so that s1 is now below Sv , the vertical gap between sk and
Sv is less than δ/2, and the left legs of C1, C2, . . . , Ck are inverted and make contact
with Sr

v from below. Further, by inverting the left-to-right order of the contact points
of C1, C2, . . . , Ck with Sr

v , the clauses C1, C2, . . . , Ck become pairwise disjoint. Pro-
ceed similarly (and symmetrically) with the clauses below the diagonal having v as
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Fig. 11 The variable gadget for
the variable v. The even
numbered squares are shaded

Q3

Q4

Q2

Q1
υ

υ

υ

υ

right variable. It can be verified that this new embedding E2 has no crossings among
the combs and variable segments.

Using the embedding E2, we construct a set R or rectangles via variable gadgets
and clause gadgets.
Variable gadgets For each variablev, the segment Sv is replaced by a necklace Qv of 12·
d(v)+2 squares (their intersection graph is a cycle), so that each square intersects the
diagonal D on a corner and only consecutive squares pairwise intersect (see Fig. 11).
We number these squares consecutively in clockwise order, starting from the topmost
one which is numbered 0. Let Q1

v ⊂ Qv be the first top-down 2 · d(v) squares above
D, Q2

v ⊂ Qv the second top-down 2 · d(v) squares above D, Q3
v ⊂ Qv the first

bottom-up 2 · d(v) squares below D, and Q4
v ⊂ Qv the second bottom-up 2 · d(v)

squares below D. Since any clause can contact: S�
v from above, Sr

v from below, and Sm
v

from either above or below, we identify S�
v with Q1

v , Sm
v with Q2

v ∪ Q4
v , and Sr

v with
Q3

v .
Clause gadgets Let C be a clause with variables u, v, and w, appearing in this order
from left to right in E0. We represent C by the set QC of nine thin rectangles, three
vertical and six horizontal, as in Fig. 12. The vertical rectangles of QC represent
the three legs of C , and for z = u, v, w the vertical rectangle corresponding to z
intersects a unique rectangle Rz of Qv , and D as well, so that Rz is even numbered
if and only if z appears as positive in C . Furthermore, if C is above D in E1 then
Ru ∈ Q3

u , Rv ∈ Q2
v , and Rw ∈ Q2

w. Otherwise, if C is below D in E1 then Ru ∈ Q4
u ,

Rv ∈ Q4
v , and Rw ∈ Q1

w. Observe that since for every variable z each of the sets
Q1

z , Q2
z , Q3

z , Q4
z contains 2 · d(z) squares, we can guarantee that each square of

the variable gadgets is intersected by at most one vertical rectangle of the clause
gadgets.
Reduction Observe that in each variable v, the set Qv has exactly two maximum
independent sets of rectangles of size 6 · d(v) + 1: the set Qv,0 ⊂ Qv of the even-
numbered squares and the set Qv,1 ⊂ Qv of the odd-numbered squares. We consider
that v = 1 (i.e. v is true) if we select Qv,1 as a maximum independent set of rectangles
of Qv , and consider v = 0 (i.e. v is false) if Qv,0 is selected.
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C = ( )

u

υ

υu

Fig. 12 Clause gadget for C = (u ∨ v ∨ w). The variable u is positive in C and the vertical rectangle of
C corresponding to u intersects D and an even numbered square of Q3

u . The variable v appears negative
and the vertical rectangle of C corresponding to v intersects D and an odd numbered square of Q4

v . The
variable w appears positive and the vertical rectangle of C corresponding to w intersects D and an even
numbered square of Q3

w

Observe that the next statements are satisfied:

(1) if v = 1 then the vertical rectangles of the clause gadgets in which v appears as
positive, together with Qv,1, form an independent set of rectangles.

(2) if v = 0 then the vertical rectangles of the clause gadgets in which v appears as
negative, together with Qv,0, form an independent set of rectangles.

(3) For each clause C , any maximum independent set of rectangles of QC has size 4,
and among its elements there must be a vertical rectangle.

(4) For each clause C and each variable v in C : there exists an independent set of size
(6 ·d(v)+1)+4 in Qv ∪ QC , such that the vertical rectangle of C corresponding
to v is selected, if and only if either v appears as positive in C and Qv,1 is selected
or v appears as negative in C and Qv,0 is selected.

Let R be the set of the rectangles of all variable gadgets and clause gadgets. From
the above observations, we claim that ϕ can be accepted if and only if R has an
independent set of exactly

∑
v(6 · d(v) + 1) + 4m rectangles.

Therefore, MIS is NP-hard on diagonal-pierced sets of rectangles, even if the diag-
onal intersects each rectangle on a corner. 
�
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5 Duality Gap of General Rectangle Sets

In this section, we prove that the duality gap of general rectangle sets R is
O(log2 log mis(R)), improving on the best known bound of O(log mis(R)) [19].
Surprisingly, this new bound follows by combining known ideas [3,7].

Theorem 6 For every rectangle set R we have mhs(R)
mis(R)

≤ O
(
log2 log mis(R)

)
.

In order to prove this bound, we need to briefly recall the natural linear programming
formulations for MIS and MHS. A point p in the plane is called a witness of an inclusion
maximal clique of the intersection graph of R if it hits every rectangle of this clique.
Given any (possibly infinite) hitting set H ⊆ R

2 containing the witness points of all
maximal cliques in R, define the following polytopes:

PolH (R) =
{

x ∈ R
R :

∑

r∈R: p∈r

xr ≤ 1 for all p ∈ H, x ≥ 0
}
,

DualH (R) =
{

y ∈ R
H :

∑

p∈H∩r

yp ≥ 1 for all r ∈ R, y ≥ 0
}
.

and the following dual linear programs:

LPH (R) = max
{ ∑

r∈R
xr : x ∈ PolH (R)

}
,

LP′
H (R) = min

{ ∑

p∈H

yp : y ∈ DualH (R)
}
.

It is easy to see that the previous linear programs are relaxations of MIS and MHS
respectively. Therefore,

mis(R) ≤ LPH (R) = LP′
H (R) ≤ mhs(R). (1)

Furthermore, the value LPH (R) does not depend on the hitting set H chosen, and so,
we can drop the subindex H in (1).

Chalermsook and Chuzhoy [7] showed that for any set of rectangles R having their
corners in the grid [t]2 = [t] × [t], it is possible to find an independent set Q with

mis(R) ≤ LP[t]2(R) ≤ |Q| · O
(
log log t

)
. (2)

On the other hand, Aronov et al. [3] proved that for every set R of rectangles, there
exist a polynomial-time computable hitting set P with

|P| ≤ O
(
LP(R) · log log LP(R)

)
. (3)

To prove Theorem 6, we require the following lemma.
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Lemma 2 For every set of rectangles R, with α = mis(R), there is another set R′
of rectangles with corners in the grid [α]2 such that

mis(R′) ≤ mis(R) ≤ LP(R) ≤ 9 · LP(R′). (4)

Proof Let Rx (resp. Ry) be the set of intervals obtained by projecting R on the x-axis
(resp. y-axis), and let Px (resp. Py) be minimum hitting sets for Rx (resp. Ry). Similar
to the proof of the upper bounds of Theorem 4, we have

max{|Px |, |Py |} = max{mis(Rx ), mis(Ry)} ≤ mis(R) = α.

Consider the grid Px × Py of size at most α × α. By translating and piece-wise
scaling the plane, we can identify Px with the set {(i, 0) : 1 ≤ i ≤ |Px |} and Py with
the set {(0, j) : 1 ≤ j ≤ |Py |} without changing the intersection graph associated with
R. Thus, we can identify the grid Px × Py with a subgrid of [α] × [α]. Note that this
grid is a hitting set of R.

Further, consider the set R̃ = {R ∩ [1, α] × [1, α] : R ∈ R}. That is, R̃ is obtained
by trimming the rectangles to the rectangular region [1, α] × [1, α]. It is easy to see
that this operation does not change the intersection graph of the set either. So, for our
purposes, we will assume w.l.o.g. that R = R̃.

Let R′ be the set of rectangles obtained by replacing each rectangle r of R by the
minimum possible rectangle in the plane containing r and having all its corners in the
grid [α]×[α]. That is, we replace the rectangle r defined by �r and ur by the rectangle
r+ defined by �̃r = (��r

x�, ��r
y�) and ũr = (�ur

x�, �ur
y�), where �·� and �·� are the

floor and ceiling functions, respectively.
The first inequality of (4) follows since any independent set of R′ induces an

independent set of R of the same size. The second inequality follows from (1). The
only non-trivial inequality is the last one.

Since [α]2 is a set hitting all maximal cliques of R and R′, we have LP[α]2(R) =
LP(R) and LP[α]2(R′) = LP(R). Consider a fractional optimal solution y′ for
LP′

[α]2(R′) and recall that the support of y′ is contained in [α]2. Observe that if p
is a point in the support of y that fractionally hits some grown rectangle r+, then either
p, one of its four immediate neighbors in the grid, or one of its four diagonal neighbors
in the grid will hit the original rectangle r . Define y as

yq = y′
q +

∑

p∈Nq

y′
p, for all q ∈ [α]2, (5)

where Nq ⊆ [α]2 denotes the set of points p such that p is an immediate or diagonal
neighbor of q. By the previous observation, y is a fractional feasible solution for the
dual of LP[α]2(R), and by definition, its value is at most nine times the value of y′. 
�

Proof of Theorem 6. Let R be a set of rectangles with mis(R) = α and R′ the set
guaranteed by Lemma 2. Then, by combining (2) with (3), we have:
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mhs(R) ≤ O(LP(R) · log log LP(R))

≤ O(LP(R′) · log log LP(R′))
= O(LP[α]2(R′) · log log LP[α]2(R′))
≤ O(α(log log α) · log log(α log log α))

= O(α(log log α)2). 
�

6 Discussion

To conclude the paper, we mention open problems that are worth further investigation.
First, note that the computational complexity of MHS is open for all classes of rectangle
sets considered in this paper. The complexity of recognizing the intersection graphs
of different rectangle sets is also open. It is known that the most general version of
this problem, that is, to recognize whether a given graph is the intersection graph of a
set of rectangles, is NP-complete [27]. However, little is known for restricted classes.
Finally, it would be interesting to determine the duality gap for the classes of rectangle
sets studied here.
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