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Abstract We study a game that models a market in which heterogeneous producers
of perfect substitutes make pricing decisions in a first stage, followed by consumers
that select a producer that sells at lowest price. As opposed to Cournot or Bertrand
competition, producers select prices using a supply function that maps prices to pro-
duction levels. Solutions of this type of models are normally referred to as supply
function equilibria. We consider a market where producers’ convex costs functions
are proportional to each other, depending on the efficiency of each particular producer.
We provide necessary and sufficient conditions for the existence of an equilibrium that
uses simple supply functions that replicate the cost structure. We then specialize the
model to monomial cost functions with exponent q > 0, which allows us to reinterpret
the simple supply functions as a markup applied to the production cost. We prove that
an equilibrium for the markups exists if and only if the number of producers in the
market is strictly larger than 1 + q, and if an equilibrium exists, it is unique. The main
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result for monomials is that the equilibrium nearly minimizes the total production cost
when the market is competitive. The result holds because when there is enough compe-
tition, markups are bounded, thus preventing prices to be significantly distorted from
costs. Focusing on the case of linear unit-cost functions on the production quantities,
we characterize the equilibrium accurately and refine the previous result to establish
an almost tight bound on the worst-case inefficiency of equilibria. Finally, we derive
explicitly the producers’ best response for series-parallel networks with linear unit-
cost functions, extending our previous result to more general topologies. We prove
that a unique equilibrium exists if and only if the network that captures the market
structure is 3-edge-connected. For non-series-parallel markets, we provide an example
that does not admit an equilibrium on markups.

Keywords Imperfect competition · Supply function equilibrium · Pricing ·
Game theory · Allocation efficiency

Mathematics Subject Classification 90B10 · 90B06 · 91B24 · 91B26

1 Introduction

Even though in most markets one can only observe the quantities produced and the
prices chosen by firms, as represented by the most traditional competitive models of
perfect substitutes like Bertrand’s and Cournot’s [30], the underlying strategic deci-
sions that firms face need not be this simple. Because market conditions affect prices,
firms can be thought as choosing a function that maps how much to charge for different
demands. In some cases, these functions take a specific role in the mechanism that
clears the market but in other cases, firms make this consideration internally and an
outside observer only sees the realized quantities and prices after the market clears.
This seminal model where firms consider supply functions (or equivalently price func-
tions) was popularized by the work of Klemperer and Meyer [26] and its outcomes have
been referred to as supply function equilibria (SFE). Because SFE accommodates both
Cournot and Bertrand competition as special cases, SFE allows for price and quantity
competition to appear endogenously, as the result of strategic decisions taken by firms.

While Klemperer and Meyer [26] emphasized the importance of these strategies
in environments with uncertainty, supply function equilibria are relevant to various
production and service industries even when uncertainty is not modeled explicitly.
One obvious example is the case of centralized markets, where firms have to submit an
actual supply function to a coordinating agency. The agency dynamically adjusts prices
to the market-clearing ones, which in turn fixes the quantities transacted by all partici-
pants. The most prominent example is given by an electricity market in which genera-
tors quote prices contingent on the amount of electricity it will produce. However, many
decentralized markets also fit this framework although the interactions among agents
may not be defined precisely. For example, in freight transportation, firms can strate-
gically choose a supply function that relates quantity demanded to the price charged
for the services. A last example, suggested by Klemperer and Meyer [26] and further
discussed by Vives [39] is the consulting industry, where the firm has some flexibility
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when deciding whether some tasks are part of the project or not. In all these situations,
it is particularly important to understand the effect of the strategic behavior of firms.

In this paper we consider an industry with an arbitrary number of asymmetric and
strategic firms that produce perfect substitutes of an homogeneous good. Many mod-
els of market competition assume constant marginal costs, which does not capture
scarce capacity. Instead, we assume that producers have decreasing returns to scale
(or increasing marginal costs) and use a similar “technology” although some may be
more efficient than others. A typical example of this is electricity generation, where
firms use their efficient generators first, and turn on their less efficient ones only when
the demand is high enough to deplete the capacity of the more efficient generators.
Similarly, freight transportation companies mainly differ in the size of their fleet and
in their ability to operate efficiently. Marginal costs are increasing because new ships
are expensive, and to go over capacity they need to lease additional space incurring in
larger marginal costs. To elaborate further, even if demand is deterministic, a mech-
anism based on supply functions has advantages over classic mechanisms such as
Bertrand or Cournot competition. In those classic mechanisms, each firm has to sub-
mit a scalar which is optimal only if competitors also behave exactly as specified by the
equilibrium of the game. Instead, a supply function allows the firm to exploit others’
deviations from the equilibrium prediction to get to a better outcome for them, and a
more robust solution for the mechanism.

In our model, firms make pricing decisions forecasting the demand they will face
under each combination of supply functions offered by the different producers. In
a second phase, an assignment of producers to consumers is chosen by a central
planner, as it is the case in electricity markets. Alternatively, in a decentralized market,
consumers learn the price functions chosen during the first phase and converge to an
equilibrium in which they select producers selling at lowest price (we assume that
consumers are small enough so they act as price takers). As it will become clear, both
situations are equivalent under our modeling assumptions.

The demand is deterministic, inelastic and publicly known. Because of the assump-
tion that the heterogenous firms face cost functions with a similar structure, we consider
per-unit cost functions ua(xa) := cau(xa), parameterized with a single number ca .
Here, xa is the production quantity of the firm and u is a function that describes the
cost structure of the industry.

We start by analyzing the existence of equilibria in a game where producers are
constrained to choose a supply function from a family parameterized by one parameter.
The supply functions in this family, which we refer to as “simple”, replicate the firms’
production costs. Indeed, firms choose a parameter βa and bid the supply function
Sa(p) := βau−1(p). We prove that an equilibrium has to exist if enough producers
participate in the market, where the threshold depends only on the function u. This
equilibrium is monotonic in the sense that more efficient firms bid higher production
quantities (for each given price) and capture a bigger market share. When the number
of firms is too low, an equilibrium fails to exist because the amount of competition is
not enough to curb sale prices and prevent firms from overcharging. In this situation,
a best response to the prices of other firms is to charge more, thus preventing the
existence of a fixed point. In the case of linear marginal costs and symmetric firms,
Baldick and Hogan [9] prove that the only stable equilibria are achieved with simple
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supply functions. We provide further support for simple supply functions by showing
that, under our assumptions, this equilibrium is immune to arbitrary deviations: firms
cannot increase their profits by deviating and choosing an arbitrary increasing supply
function (not necessarily simple). Therefore, an equilibrium supported by simple sup-
ply functions is also one for the larger strategy-space of increasing functions. From
a practical point of view, in electricity markets, the regulator has a good estimate of
the cost structure of generators and therefore can impose that the supply functions
generators submit mimic the cost pattern. This can be used, for instance, to disallow
hockey-stick supply functions that may lead to inefficient outcomes [37].1 On the other
hand, in decentralized markets, an equilibrium where producers adopt price functions
that imitate the shape of their production costs is justified by the widely used prac-
tice of setting prices by applying a fixed markup to the cost (normally referred to as
‘cost-plus pricing’).

It is worth mentioning that with deterministic demand there is a very large number of
equilibria. Technically speaking, any set of supply functions for the producers with the
correct value and derivative at the market clearing price will constitute an equilibrium.
This contrasts with the result of Klemperer and Meyer [26] who proved that uncertain
demand dramatically reduces multiplicity of equilibria.

After proving existence, we offer an explicit characterization of the equilibrium,
which allows us to compute it and to study its properties. For this, we focus on the
case of monomial cost functions whereby u(x) = xq for a fixed q > 0. In this
case, a simple supply function can be reinterpreted as a price function that includes
a markup applied to the production cost, and the outcome of the game can be seen
as a markup equilibrium. Multi-stage games like the one we analyze in this paper
frequently become intractable when general cost functions are used (see, e.g., [2,17,
25,41,43]). Monomials are tractable and general enough so one can still make a good
first-order approximation by fitting the value and derivative of any function close
to the equilibrium situation. Within this class, linearly-increasing marginal costs are
particularly interesting because they are relevant to practice. For instance, Baldick
e al. [8] provide a detailed explanation about why linear cost and price functions in
electricity markets provide accurate results. We prove that a markup equilibrium exists
for general q > 0 if and only if the number of competitors is strictly larger than 1 +q.
Moreover, whenever an equilibrium exists, it is unique. Note that if the decreasing
returns to scale are steeper, more firms are needed for an equilibrium to exist. As
marginal costs rise faster, firms can be less aggressive in trying to obtain large market
shares, so more of them are needed to ensure that there is a best response with bounded
prices.

We then study the welfare implications of imperfectly-competitive markets satisfy-
ing our assumptions. An equilibrium is not necessarily efficient, meaning that it need
not minimize the total production cost because of the presence of negative external-

1 This is the case, among others, of the Chilean system, which operates with “audited costs” (a particular
case of what is known in the literature as cost-based bids). In this system, the central dispatcher may
audit firms that submit non-credible supply functions. Basically, the regulator knows the shape of the cost
function (because he knows the technology used) but not the exact values. This could be the case, for
example, because the regulator does not know the private contracts between the firm and its suppliers (coal,
fuel, etc.).
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ities. It is natural to study the extent of the inefficiency and how it depends on the
market power of producers. At equilibrium, supply functions could be overstated and
distortion in prices could lead to oversupply or undersupply to particular producers
with respect to the optimal assignment, thus inflating the total production cost for the
economy. To quantify the inefficiency, we consider the worst possible ratio between
the total production cost at equilibrium and that of an efficient allocation, taken over
all possible instances to the problem. This ratio has been referred to as the Price of
Anarchy [27], and has been studied in several games relevant to operations research,
operations management, computer science and economics. When the mentioned ratio
is small, a planner can be sure that, independently of the details of the market structure,
there is no big loss in welfare due to market power.

Our main conclusion is that the distortion in prices created by firms acting strategi-
cally create inefficiencies, but in the context of inelastic supply and an arbitrary number
of firms with monomial cost functions, this impact is limited. Actually, we compute
the inefficiency of equilibria parameterized by the competitiveness of the market, mea-
sured by the norm of a vector whose components are mini ci/ca , i.e., costs normalized
by the most efficient firm. This norm satisfies the properties expected of a measure of
competitiveness: it increases if a new firm enters the market, it increases more if the
new firm has lower costs, it increases if any incumbent which is not a leader reduces
its costs and this effect is bigger if the reduction happens to a more competitive firm.
Finally, it decreases if the leader decreases its marginal cost, since in that case the
gap between the leader and the follower decreases. Moreover, in the mergers’ litera-
ture (see, e.g., [5,31,34]), marginal costs are assumed to be ca = 1/Ka for a capital
stock of firm a’s equal to Ka . Then, a merger between two firms, which just combines
their capital stock, always decreases competitiveness. Our measure corresponds to the
aggregation of the capital of all firms, representing the market as a whole.

We provide an upper bound to the efficiency-loss for any competition level higher
than (1 + q)q , which is a sufficient condition for the existence of an equilibrium.
Although with very low competition equilibria can be arbitrarily inefficient, the price
of anarchy is bounded by a small constant if competition is competition is relatively
high. Furthermore, an equilibrium assignment is nearly efficient as the competitiveness
of the market tends to infinity. Note that, in practice, it is likely that an industry is
competitive whenever entry costs are small, since a non-competitive industry with high
profits will induce entry. A basic idea behind these results is to show that although
the most efficient producers are more profitable than less efficient ones (since the
market structure supports larger markups for them), when there is enough competition,
markups are bounded and cannot be infinitely large. For the case of linearly increasing
marginal costs, we establish a bound on the price of anarchy with an error of at most
0.3 %. Evaluating the bound numerically, we get that the production cost at equilibrium
is at most 50 % worse than the optimal one for reasonable values of competitiveness
(i.e., the price of anarchy is 3/2). The worst-case gap between the two assignments
decreases rapidly as competition increases. For instance, the inefficiency is already
below 6.2 % when the competition level equals 3. On the other hand, using this bound,
we construct (asymptotically) worst-case instances. These results come as a subproduct
of a procedure that we design to find an equilibrium in the linear case. One of the main
ideas behind it is to observe that we can normalize any instance so the equilibrium
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equations become significantly simpler. Although this normalization does not lead to
a closed-form solution for the equilibrium, it does provide an efficient procedure to
compute one. With this simplification we can write the price of anarchy of all instances
with linear costs explicitly as a nonconvex program. This can be reduced further to
a nonconvex integer programming problem that just has seven variables and a very
small integrality gap.

It is important to note that the ratio between profits that firms experience at equilib-
rium and those that would be achieved if producers were non-strategic can be much
larger than the ratio between the corresponding social costs. In that case, there is
surplus extraction by the producers from the consumers, but since demand is inelas-
tic, there is little efficiency loss. Indeed, for the linear case, we prove that when the
competitiveness of an instance tends to 2, the ratio of the social cost at equilibrium
to that of the social optimum remains bounded by 3/2 although markups and prof-
its may grow to infinity. This is of course is caused by our assumption of inelastic
demand.

One of the limitations of our model, particularly relevant in the transportation
industry, is that so far we only considered producers that provide substitute goods.
To address this we extend our model to allow competition among producers that
supply complements, in addition to substitutes, leading to a network that captures the
market structure (applications with this structure are discussed further in Sect. 6). In
this extension, producers facing linear marginal costs compete to provide all or some
portion of the product to customers, who choose a set of producers offering the lowest
combined price (path in the network). For arbitrary series-parallel networks (in graph
theoretic terms), we derive explicitly the producers’ best response, using a network
transformation. This allows us to fully characterize the markups chosen by producers
at equilibrium. We prove that a unique equilibrium exists if and only if the network
that captures the market structure is 3-edge-connected, extending our earlier result for
substitute goods. For non-series-parallel markets, we provide an example that does
not admit an equilibrium on markups. We acknowledge these results only apply to the
case of linear marginal cost. The main difficulty in extending this to more general cost
functions relies in solving the second stage game in closed form (which is not hard in
the substitutes case).

The rest of the paper is structured as follows. We now discuss the relations to the
literature. Section 2 introduces the supply function equilibrium model. In Sect. 3 we
look at the case of general cost functions, while in Sect. 4, we concentrate on monomial
cost functions. The analysis of the efficiency-loss incurred by solutions at equilibrium
is done in Sect. 5. We generalize our model so it can handle complements besides
substitutes in Sect. 6. Finally, Sect. 7 concludes by presenting directions for future
research.

1.1 Related literature

The literature of supply function equilibria goes back to the conjectural variations
model of Bowley [11], re-emerging with papers by Grossman [20], Robson [35],
Wilson [42], and Turnbull [38]. This early literature on supply function equilibria
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focus mainly on divisible goods auctions and assumes that demand is deterministic.
Robson [35] and Turnbull [38], and the influential paper by Klemperer and Meyer
[26] incorporate uncertain demand. Although demand uncertainty is an important
motivation of supply function equilibrium models, this paper—like those mentioned
earlier, and like others such as Yang and Hajek [44] and Johari and Tsitsiklis [24]—
assumes that demand is deterministic.

Klemperer and Meyer [26] consider a supply function equilibrium model with
uncertain demand and prove that the infinitely-many equilibria that exist in the space
of supply functions with deterministic demand collapse into a single one inside the
support of the uncertain demand. Furthermore, they prove that the equilibrium has the
same structure as costs functions.

Rudkevich et al. [36] and Anderson and Philpott [7] study a supply function equi-
librium model with uncertain but inelastic demand and find the explicit form of
an equilibrium for symmetric firms. The former considers piecewise linear convex
costs functions, while the latter generalizes the assumptions to arbitrary convex ones.
Baldick et al. [8] and Anderson and Hu [6] consider the case of asymmetric firms, and
study procedures to find supply function equilibria. The asymmetry and computational
focus are features in common with our work, although they also consider stochastic
demand and capacity constraints.

Related to our definition of competitiveness, Akgün [5] models a merger as the
appearance of a new firm with a reduced cost function, since the new firm can avoid
more easily the decreasing returns to scale by allocating production efficiently among
different plants. His model specification considers linear unit cost functions and elastic
demand, and in such a context, he finds that equilibria always exist and that mergers
decrease total welfare but increase the profits of merging firms. Hendricks and McAfee
[21] consider a more general framework where producers and consumers have market
power and submit supply/demand functions. They develop a new measure of con-
centration, which can be related to equilibrium markups, profits and market shares.
Acemoglu et al. [1], Acemoglu and Ozdaglar [2], and Johari et al. [25] also make the
pricing decisions endogenous in the game and consider other elements like supply
quantities, investment, or entry. Although they do not consider supply functions, they
study a question similar to ours in spirit and provide bounds for the efficiency loss in
their games.

Closest to our work is the paper by Johari and Tsitsiklis [24], who also consider
supply function equilibria from the perspective of studying the worst-case inefficiency
at equilibrium. They consider a model in which producers, also facing a unit inelastic
demand, are restricted by a mechanism designer to choose a parameter w and submit
a supply function of the form S(p) = 1 −w/p. By restricting the strategy space, they
are able to prove existence of equilibrium for any market with more than three firms
and very general cost functions, and to prove that both welfare and profits are close to
those of the efficient assignment. In contrast, we do not restrict a firm’s strategy space,
but impose more restrictions on the cost functions. Allowing firms to use general
supply functions is in line with our assumption of a decentralized market, since in that
case a predefined form for the supply functions is hard to enforce. For the unrestricted
space of supply functions, it is harder to prove the existence of equilibrium since there
are more possible deviations. Nevertheless, we prove the existence of an equilibrium
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where each firm submits a supply function that mimics its cost structure. Another
significant difference is that if the strategy space is not restricted a priori, firms’
profits can be arbitrarily larger than in the socially efficient allocation. Allowing for
arbitrary supply functions effectively allows more market power, but the welfare loss
associated to this (which comes from the distortion in market shares, since the demand
is inelastic) remains bounded. In a regulated market, where a mechanism designer can
choose the “rules of the game,” imposing a parameterized family of supply functions
as a strategy space is reasonable, and the work of Johari and Tsitsiklis [24] shows that
this can curb the firm’s market power. In decentralized markets, such a restriction may
be unfeasible, and our work shows that anyhow the welfare loss associated to firms
acting strategically is bounded.

Finally, our work with series-parallel network structures relates to prior literature
involving complementarities. A classic result of Cournot [15] states that price-setting
monopolists split profits equally among them. Some recent work achieves more general
outcomes through the use of network structures. For example, the model of Casadesus-
Masanell et al. [12] expands on Cournot’s original model by allowing competition
and vertical differentiation in one of the markets. Closer to our setup is the literature
on decentralized assembly systems (see, e.g., [19,40], and the references therein), in
which an assembler purchases a set of components from multiple strategic suppliers. In
particular, Jiang and Wang [22] avoid profit symmetry by allowing competition within
individual component markets. In their model, competition is Bertrand, as suppliers
compete by fixing their wholesale price. Constant marginal costs ensure that a single
firm produces each component. Lastly, there is a growing literature on competition
in networks that is focused on the role of prices in guiding users towards efficient
selection of paths through the network. The literature on centralized pricing strategies
has recently expanded to include work on price competition by decentralized firms.
See, e.g., Acemoglu Ozdaglar [3], Chawla and Roughgarden [14], and Papadimitriou
and Valiant [33] for market structures involving complementarities.

2 The model

We consider a market in which producers in A = {1, . . . , n} sell identical goods. The
per-unit production cost for each producer a ∈ A is an increasing and differentiable
function ua : R+ → R+ that depends on the production quantity xa � 0. We assume
that all producers make use of similar ‘technology’ but some are more efficient than
others. This is modeled by letting the cost function be equal to ua(xa) := cau(xa)

where the function u(xa) is an indication of the industry’s unit cost for production
level xa , and the parameter ca measures the efficiency of producer a ∈ A. Without
loss of generality, we order producers such that c1 � · · · � cn .

Since we consider the case of industries with increasing marginal production
costs—which is the case, e.g., when labor or production capacity is scarce or when
there is congestion—we also assume that xu(x) is convex. Furthermore, we consider a
market coverage condition to simplify the characterization of equilibria in the second
stage of the game, which prompts us to assume that u is bijective (i.e., evaluates to zero
at zero and grows to infinity). The restriction that the cost at zero is zero is technical
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but not very restrictive because companies face positive demands at equilibrium; it
amounts to considering only big-enough firms (modeling entry and endogenous par-
ticipation would add another layer of complexity that would easily make the model
intractable). Note that as u is bijective, its inverse u−1 is well defined. To guarantee that
producers’ optimal welfare is achieved when the derivative of their utility vanishes,
we make the additional technical assumption that pu−1(p) is convex. This is equiva-
lent to the following two conditions: u(x)u′′(x) < 2(u′(x))2 and u2/u′ is increasing.
Some examples of unit cost functions that satisfy all assumptions are polynomials
with nonnegative coefficients, the exponential function ex − 1, and the logarithmic
function ln(1 + x). Putting all the elements together, the total cost of producing xa

units of the good is κa(xa) := xaua(xa) = ca xau(xa), which is convex.
The game we consider consists of two stages. The first stage is a pricing game among

the producers and the second stage is an assignment game among the consumers,
who decide from whom to buy. In the first stage of the game, producers select a
supply function Sa(p) which maps the quantity they are willing to produce to the
corresponding unit price and inform consumers of their supply function. Equivalently,
producers could consider a price function pa(x) = S−1

a (x) because, being the inverse
of the supply function, it provides the same information. If producer a receives a
total order of xa units of the good from the consumers, each unit will be sold at price
S−1

a (xa). Our only assumption is that producers are limited to choose supply functions
that are increasing and concave. The supply function is chosen to balance the tradeoff
between high per-unit revenue and low demand, or vice-versa. The goal of the producer
is to maximize its profit, which equals xa(S−1

a (xa)− cau(xa)) � 0.
In the second stage, consumers select their suppliers. We assume that there are infi-

nitely many consumers that require an aggregated demand of one unit. The assump-
tion of a unit demand is just for simplicity; the structure of cost functions makes
the choice of total demand irrelevant. Furthermore, we assume that each consumer is
small compared to the market—implying that all of them act as price takers—and that
the demand is inelastic, although both assumptions can be relaxed. Consumers satisfy
their demands with producers that sell at minimal price, taking the supply functions
of each firm as given. Throughout the paper we represent the aggregate consumption
decisions by the vector x ∈ R

A, which can be viewed as the market shares of the
producers.

2.1 Nash equilibria

A supply function equilibrium of the producers’ game is a vector of supply functions
(Sa)a∈A that satisfies the Nash equilibrium condition: no producer can increase the
profit by switching to another supply function when the rest of the supply functions
are fixed. An equilibrium in the consumers’ game is an assignment xNE such that
all consumers are buying at minimal price. These two games are played sequentially,
making it a Stackelberg game in which producers are the leaders and consumers are
the followers.

The second stage is simply a market-clearing game, in which the quantity xa that
producer a sells equals Sa(p∗), where p∗ is the market-clearing price. Since the total
demand equals one, the market-clearing price p∗ is the unique solution to the equation
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∑

a∈A

Sa(p
∗) = 1.

Anticipating the market-clearing process, producers choose supply functions to
maximize their profits, which can be written as a function of p∗:

xNE
a (S−1

a (xNE
a )− cau(xNE

a )) = Sa(p
∗)(p∗ − cau(Sa(p

∗))).

Interestingly, the previous equation implies that an equilibrium is completely deter-
mined by the choice of supply functions. Indeed, the vector of functions determines
a unique market-clearing price p∗, which in turn determines unique market shares
xNE

a = Sa(p∗) for the producers. We thus have the following definition.

Definition 1 A vector of supply functions (S̄a)a∈A is a Nash equilibrium for the
producers’ game if and only if

S̄a( p̄)( p̄ − cau(S̄a( p̄))) � Sa(p)(p − cau(Sa(p))), (2.1)

for all a ∈ A and for all increasing and concave supply functions Sa(·). Here, the
market-clearing price at equilibrium p̄ satisfies

∑
a∈A S̄a( p̄) = 1, while the price p

under the alternative strategy Sa(·) is the unique solution to Sa(p)+∑
i �=a S̄i (p) = 1.

2.2 Optimal assignment

To quantify the quality of an assignment, we let the total production cost C(x) :=∑
a∈A κa(xa) = ∑

a∈A ca xau(xa) be our social cost function. This function captures
whether consumers are matched to the most efficient producers. Payments are not
considered in this function because they are internal transfers that do not affect the
welfare of the system. The socially-optimal assignment xOPT is the unique minimizer
of C(x) given by

xOPT := arg min

{
C(x) :

∑

a∈A

xa = 1, xa � 0

}
.

It is worth observing that an optimal assignment is achieved if producers charge their
marginal cost. Indeed, producer a charges its marginal cost when its supply function
is the inverse of κ ′

a(xa). Indeed, Sa(p) = (κ ′
a)

−1(p) leads to a market-clearing price
p∗ satisfying

∑
a∈A(κ

′
a)

−1(p∗) = 1. A simple calculation shows that the optimal
assignment xOPT

a = (κ ′
a)

−1(p∗). However, the distortion of costs introduced by supply
functions at equilibrium can lead to an assignment that does not necessarily minimize
C(x) because of the existence of negative externalities. One of our goals is to find
conditions under which the distortions of costs and the increase of the total cost at
equilibrium are not too large.

123



Markups in industries 153

3 Supply function equilibria when marginal costs are increasing

We now turn into characterizing the equilibria of the game played among producers. In
this section we consider general cost functions that satisfy the assumptions described
in the previous section. We first focus on simple supply functions that replicate the
cost structure of producers. Restricting the search to this type of functions allows
producers to greatly simplify the problem of finding an optimal supply function since
they have to consider a single degree of freedom, as opposed to potentially searching
in a space of infinite dimensions.2 We prove that an equilibrium exists as long as
there are enough producers in the market and an equilibrium does not exist if there
are too few producers in the market. Next, we justify this choice of supply functions
by proving that the equilibria we find are still at equilibrium when producers can pick
their functions from the set of increasing functions. The main implication of this result
is that these equilibria, supported by simple supply functions, are robust.

3.1 Equilibria with simple supply functions

In this section, we assume that producers restrict their consideration to simple supply
functions of the form Sa(p) = βau−1(p) for a parameter βa � 0 chosen by them.
Notice that these functions charge prices that replicate the cost structure of the industry.
Indeed, the corresponding price function (i.e., the inverse of the supply function) is
pa(xa) = u(xa/βa) so producers select an amplification factor for the demand, and
charge the industry’s cost evaluated at this amplified demand. We characterize best
responses on the space of βa , and establish sufficient conditions for an equilibrium to
exist and for it to not exist.

Under the assumption that all producers bid simple supply functions, let us consider
arbitrary but fixed parameters βi > 0 for producers i �= a. First, we compute the best
response βa of producer a as a function on the values of βi for the other producers
i �= a.

The market-clearing price p satisfies demand, that is
∑

i∈A βi u−1(p) = 1, from
where p = u(1/

∑
i∈A βi ). Replacing this price into the profit function shown in (2.1),

the profit of producer a equals

Pa(βa) := βa∑
i∈A βi

(
u

(
1∑

i∈A βi

)
− cau

(
βa∑
i∈A βi

))
. (3.1)

The next proposition optimizes the profit function over βa , and establishes that
although it is possible that Pa(βa) is not concave, there is a unique solution to the
maximization problem.

Proposition 3.1 There is a unique solution to the problem max{Pa(βa) : βa � 0},
which is achieved where P ′

a vanishes.

2 In fact, Klemperer and Meyer [26] already noted that in the case of deterministic demand an equilibrium
is supported by supply functions that have the right value and slope at the right price.
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Proof Note that Pa is continuous and differentiable, and satisfies that Pa(0) = 0 and
Pa(βa) < 0 for βa → ∞. Therefore, Pa(βa) is maximized in (0,∞) at a point where
the derivative vanishes. To simplify notation, we make B−a := ∑

i �=a βi . Using the
change of variable p := u(1/(βa + B−a)), the producer a can be viewed as choosing
the market-clearing price that corresponds to a value of βa . Rewriting the profit of
producer a as a function of this price p, we get that

Pa(p) := (1 − B−au−1(p))(p − cau(1 − B−au−1(p))) = ωp − cag(ω), (3.2)

where we used g(x) := xu(x) and ω = 1 − B−au−1(p) to simplify notation. The
derivative of the previous expression with respect to p isω+ B−a(u−1)′(p)(cag′(ω)−
p). Using the relation (u−1)′(p) = 1/u′(u−1(p)), a necessary condition for a price p
to be a best response is that

p + u′(u−1(p))(u−1(p)− 1/B−a) = cag′(1 − B−au−1(p)). (3.3)

Notice that the right-hand side is positive and decreasing. We are going to prove that
the left-hand side is increasing whenever it is positive, which will imply the existence
of a unique best response. Indeed, using the monotone change of variable y = u−1(p),
the left-hand side as a function of y is h(y) := u(y)+ u′(y)(y − 1/B−a). Taking the
derivative,

h′(y) = 2u′(y)+ u′′(y)
(

y − 1

B−a

)
>

2u′(y)
u(y)

(
u(y)+ u′(y)

(
y − 1

B−a

))

where the inequality follows from y − 1/B−a � 0 and u(x)u′′(x) < 2(u′(x))2.
In conclusion, h(y) � 0 implies that h′(y) � 0, proving the claim. Transforming
back to the original variables, we have that the best response for producer a equals
βa = 1/u−1(p∗)− B−a . �	

An equilibrium in the space of simple supply functions is a vector (βa)a∈A in
which each producer plays a best response to the others’ actions. Interestingly, we
obtain a natural monotonicity property; namely, more efficient producers profit more
at equilibrium and capture a larger market share. This is summarized in the following
corollary.

Corollary 3.2 If an equilibrium exists and producers i and j are such that ci < c j ,
then βi > β j and xNE

i > xNE
j .

Proof The proof of Proposition 3.1 implies that an equilibrium simultaneously satisfies
(3.3) for all a ∈ A; hence, cag′(1 − B−au−1(p∗)) + u′(u−1(p∗))/B−a is constant
across firms, where p∗ is the market clearing price at equilibrium. Since this expression
is decreasing with respect to B−a, ci < c j implies that B−i < B− j . From here we
conclude that βi > β j and the claim follows because xNE

a = βau−1(p∗). �	
The two following results provide a sufficient and a necessary condition on the

existence of equilibria. We establish that an equilibrium exists when the number of
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producers is larger than the maximum ratio of the marginal production cost to the unit
production cost. Afterwards, we prove that equilibria cannot exist when the number
of producers is smaller than the minimum of that ratio. Although these two conditions
are not complementary, for the case of monomials that we consider in Sect. 4, the
results provide a complete characterization of the existence of equilibria in the space
of simple supply functions.

Theorem 3.3 Assume the number of producers n participating in the market is strictly
larger than ñ := maxx�0(xu′(x) + u(x))/u(x). Then, the producers’ game has an
equilibrium where producers bid in the space of simple supply functions.

Proof Let�(β) = (�1(β−1), . . . , �n(β−n)) be the best response mapping in the space
of simple supply functions, where �a(β−a)maps the supply functions of others to the
best response of producer a. To prove that an equilibrium exists, we show that � maps
a compact set into itself and use Brouwer’s fixed point theorem. In particular, we prove
that best responses are bounded.

Similarly to Proposition 3.1, consider B−a := ∑
i �=a βi , the change of variable

p = u(1/(B−a + βa)), and the profit function Pa(p) = (1 − B−au−1(p))(p −
cau(1 − B−au−1(p))). Using the definition of ñ and doing similar calculations as
before, a critical point p satisfies

p+u′(u−1(p))(u−1(p)− 1/B−a)=cag′(1−B−au−1(p))�cañu(1−B−au−1(p)).

Going back to variableβa , and using that ñ−1 � xu′(x)/u(x) applied to 1/(B−a+βa),
we get that

u(βa/(B−a + βa))

u(1/(B−a + βa))
� B−a − (ñ − 1)βa

B−acañ
.

Furthermore, since the profit is nonnegative at equilibrium, u (1/(B−a + βa)) −
cau (βa/(B−a + βa)) � 0. Putting the two bounds together we conclude that

B−a − (ñ − 1)βa

B−acañ
� u(βa/(B−a + βa))

u(1/(B−a + βa))
� 1

ca
. (3.4)

We use (3.4) to prove that best responses are bounded. Let c̄ = maxi∈A ci and
c = mini∈A ci . Let us consider that for all i �= a the parameter βi is bounded by

0 < ε � βi � M := 1

u−1(cu(1/n))
< ∞ ,

where ε > 0 will be determined later. We have to prove that the best response βa is
bounded by the same constants. Let us first see the upper bound. From the second
inequality in (3.4), the assumption βi � M for all i �= a, and assuming that βa > M ,
we have that

1

c
� 1

ca
� u(βa/(B−a + βa))

u(1/(B−a + βa))
� u(βa/((n − 1)M + βa))

u(1/(B−a + βa))
� u(1/n)

u(1/βa)
.
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This inequality says that βa � 1/u−1(cu(1/n)) = M which is a contradiction. To
prove the lower bound, we first let a be such that βa is the smallest and assume that
βa < ε, then using Ba � (n − 1)ε we can write

1

c̄ñ
− (ñ − 1)βa

(n − 1)εc̄ñ
� u(βa/(B−a + βa))

u(1/(B−a + βa))
� u(ε/(B−a + ε))

u(1/(B−a + ε))
. (3.5)

The remainder of the analysis is divided into two cases: when B−a > (n − 1)
√
ε and

when B−a � (n − 1)
√
ε. In the former case we have

u(ε/(B−a + ε))

u(1/(B−a + ε))
� u(ε/((n − 1)

√
ε + ε))

u(1/((n − 1)M + ε))
� u(

√
ε/(n − 1))

u(1/(nM))
,

while in the latter

u(ε/(B−a + ε))

u(1/(B−a + ε))
� u(1/n)

u(1/(n
√
ε))
.

In both cases, since u(0) = 0 and limx→∞ u(x) = ∞ for ε > 0 small enough we
have that (and this is how ε is defined)

u(ε/(B−a + ε))

u(1/(B−a + ε))
� n − ñ

c̄ñ(n − 1)
.

Putting this inequality back into (3.5) we obtain

1

c̄ñ
− (ñ − 1)βa

(n − 1)εc̄ñ
� n − ñ

c̄ñ(n − 1)
,

which is equivalent to βa � ε, a contradiction.
Thus, we have proved that � is a continuous function that maps a compact set into

itself. Brower’s fixed point theorem implies that it has a fixed point, which is a Nash
equilibrium. �	

The following proposition looks at the opposite case and proves that an equilibrium
does not exists if there are too few producers competing in the market.

Proposition 3.4 If n � minx>0(xu′(x)+u(x))/u(x), then the producers’ game does
not have an equilibrium where producers bid simple supply functions.

Proof Differentiating (3.1), the best response condition P ′
a(βa) = 0 can be written as

(
u
( 1∑

i∈A βi

)
− cau

( βa∑
i∈A βi

))∑

i �=a

βi

= βa∑
i∈A βi

⎛

⎝u′( 1∑
i∈A βi

)
+ cau′( βa∑

i∈A βi

)∑

i �=a

βi

⎞

⎠ . (3.6)
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Using that ca > 0, the previous equation implies that

u

(
1∑

i∈A βi

)∑

i �=a

βi >
βa∑
i∈A βi

u′
(

1∑
i∈A βi

)
,

which added together for all a ∈ A leads to

(n − 1)u

(
1∑

i∈A βi

)∑

a∈A

βa > u′
(

1∑
i∈A βi

)
.

This contradicts the assumption that xu′(x)+ u(x) � nu(x) for x =1/
∑

i∈A βi . �	

3.2 Robustness of equilibria

Having established conditions under which a simple equilibrium exists, we now show
that this equilibrium concept is robust and extends to non-simple supply functions.
The next theorem proves that for the equilibrium characterized in Sect. 3.1, it is in the
best interest of producers to maintain their choices of simple supply functions, even
when they are allowed to bid an arbitrary supply function.

Note that Klemperer and Meyer [26] gave a similar result for the special case of
linear cost functions and two homogeneous producers but in the more general case
of stochastic demand. They proved that among the many equilibria, there exists one
in which producers bid linear supply functions (Actually, when the uncertainty has
infinite support, the linear one is the unique equilibrium). Our result has the same flavor:
it indicates that there is an equilibrium in which both cost and supply functions have
the same shape. While it works in the setting of deterministic demand, it considers
multiple and heterogenous producers with arbitrary cost functions that satisfy the
assumptions of Sect. 2.

Theorem 3.5 Consider an equilibrium in the space of simple supply functions where
each producer i ∈ A bids a simple supply function of the form Si (p) = βi u−1(p) for
a βi > 0 of their choice. For an arbitrary producer a ∈ A, Sa is also a best response
function if producer a chooses supply functions from a strategy space consisting of all
nondecreasing functions.

Proof Let us consider that supply functions are fixed for producers i �= a and focus
on producer a ∈ A. When computing a best response, producer a solves

max
Sa(·)

{
Sa(p)(p − cau(Sa(p))) :

∑

i∈A

Si (p) = 1

}
. (3.7)

Since supply functions of others are fixed, the problem of producer a is equivalent to
choosing the market-clearing price p∗ ∈ [0, p̄−a] at equilibrium, where p̄−a is the
market-clearing price when producer a does not participate, i.e.,

∑
i �=a Si ( p̄−a) = 1.

Indeed, any p in that interval can be achieved, and given the supply functions of the
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other producers, the market share at the market-clearing price chosen by producer a is
determined by Sa(p∗) = 1 − ∑

i �=a Si (p∗). Proceeding as we did in Proposition 3.1,
(3.7) is equivalent to

max
p

{(
1 −

∑

i �=a

Si (p)
)(

p − cau
(
1 −

∑

i �=a

Si (p)
)) : p ∈ [0, p̄−a]

}
. (3.8)

Denoting the objective function by Ha(p), we compute

H ′
a(p)=1+ca

⎛

⎝

⎛

⎝1−
∑

i �=a

Si (p)

⎞

⎠ u′
⎛

⎝1−
∑

i �=a

Si (p)

⎞

⎠ + u

⎛

⎝1−
∑

i �=a

Si (p)

⎞

⎠

⎞

⎠
∑

i �=a

S′
i (p)

−
∑

i �=a

(
Si (p)+ pS′

i (p)
)
. (3.9)

Notice that 0 < p∗ < p̄−a because Ha(0) � 0, Ha( p̄−a) = 0 and H ′
a( p̄−a) < 0.

Hence, the optimality of p∗ implies that H ′
a(p

∗) = 0.
Since we assumed that the others’ supply functions are simple, Ha(p) = Pa(p),

where Pa(p) is defined as in (3.2). In particular, Proposition 3.1 implies that there is
a unique global maximizer p∗. The space of simple supply functions is rich enough
to achieve price p∗ because the only condition needed is that the market share xa at
price p∗ equals 1 − ∑

i �=a Si (p∗). Indeed, the original Sa optimizes βa among all
nonnegative values and hence is a best response to the others’ supply functions, even
when a is allowed to bid an arbitrary nondecreasing and differentiable supply function.

�	
We now extend this argument to any equilibrium and show that the shape of the

supply function outside the market-clearing price is irrelevant. The next result proves
that an equilibrium with arbitrary supply functions, can be restated using simple supply
functions plus an additive constant.

Corollary 3.6 Assume that each producer i ∈ A bids a supply function Si (p) that
is nondecreasing and differentiable. If (Si )i∈A is at equilibrium in the space of all
nondecreasing and differentiable supply functions, then this equilibrium is outcome-
equivalent to another one where supply functions have the form S̃i (p) = γi +βi u−1(p)
for γi and βi chosen by each producer.

Proof The first paragraph of proof of Theorem 3.5 implies that since the price p∗ is
optimal from the perspective of producer a, we must have that H ′

a(p
∗) = 0. Equa-

tion (3.9) hints that a producer just needs to know the values of Si (p∗) and S′
i (p

∗)
for producers i �= a to know that p∗ is the optimal choice of price; the values and
derivatives of supply functions at other prices are irrelevant. Thus, producers need only
two parameters to setup their supply functions and influence the decisions of others.
Indeed, we can construct a new equilibrium based on supply functions of the form
S̃i (p) = γi + βi u−1(p) for all i ∈ A, with values of βi = S′

i (p
∗)u′(u−1(p∗)) and

γi = Si (p∗) − βi u−1(p∗). Notice that the parameters are chosen such that the new
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supply functions and their derivatives are equal to the original ones at p∗. Proceeding
in a similar way to Proposition 3.1, it is easy to observe that once all producers i �= a
are bidding S̃i (p) then, H ′

a(p) = 0 has a unique solution, which has to be p∗. Hence,
p∗ is the unique global maximum in (3.8). In conclusion, the new supply functions
support an equilibrium that is outcome-equivalent to the original one because the
market-clearing price and market shares are the same in both. �	

This type of equilibrium may well arise in practice as it occurs, for instance, in
electricity and in bond markets. There, it is common to observe “hockey-stick” supply
function bids that are flat up to the desired quantity and then sharply grow to infinity
[37]. Since this situation is clearly undesirable, we focus on the case where producers
only consider (or are allowed to bid) simple supply functions.

4 Monomial cost functions

In this section, we concentrate on monomial cost functions of the form u(x) = xq ,
where q > 0 is a fixed real number. Hence, the total cost equals κa(xa) = ca x1+q

a
which is a good first-order approximation to industries with increasing marginal costs.
The simplification of cost functions allows us to further simplify the structure of supply
functions because under monomial cost functions the producers’ decisions can be
viewed as selecting a fixed markup to be applied to the production cost. Furthermore,
we can characterize equilibria in a sharper way, which we use to provide more structure,
to prove the uniqueness of equilibria, to bound the supply functions as a function on the
competitiveness among producers, and to construct an efficient procedure to compute
equilibria in the case of linear cost functions.

First note that if u is a monomial, it satisfies all the assumptions required by the
model in Sect. 2. Applying Theorem 3.5 to monomial cost functions implies that the
simple supply functions introduced in Sect. 3.1 are Sa(p) = βa p1/q . Therefore, the
corresponding price function is

pa(xa) = u(1/βa)

ca
· cau(xa) = αa · ca xq

a ,

where we have separated the factor that encodes the producer’s decision and denoted
it by αa . Notice that this factor αa takes the form of a markup applied to the production
cost that is independent of the production quantity. From now on, we will consider the
markups (αa)a∈A to be the strategic variables, and the vector of markups corresponding
to a supply function equilibrium will be referred to as a markup equilibrium.

Reinterpreting Corollary 3.2 in the setting of markups, we have that, at equilibrium,
the ordering of producers c1 � · · · � cn implies that market shares satisfy xNE

1 �
· · · � xNE

n . Furthermore, one can use (4.4) to prove that α1 � · · · � αn . Intuitively,
since the efficient producers know that consumers are going to buy regardless of price,
they can increase the price to a level similar to the less efficient ones and still capture
a bigger portion of the market.
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4.1 Optimal assignment and best responses

With the structure in place, we can obtain explicit formulas for the optimal assignment
and for the unique assignment corresponding to given markups. Indeed, C(x) is a
convex function and all producers are active under both assignments.

First, we define the competitiveness of an instance as a measure capturing the
variability of the producers’ efficiency, relying on the cost structure of the instance
rather than on the equilibrium itself. As discussed in the introduction this measure has
many natural properties and behaves in a desirable way. When it is close to one, there
is a large gap between the most efficient and most inefficient producers, while when
it is large we face a competitive economic environment.

Definition 2 The competitiveness of an instance is σ := c1(
∑

i∈A(1/ci )
1/q)q � 1,

i.e., the 
1/q -norm of the vector whose components are c1/ci . In this case we say that
the instance is σ -competitive.

With this definition, the first-order optimality conditions of the optimal assignment
problem give that the market shares and cost of such assignment are:

xOPT
a = (1/ca)

1/q
∑

i∈A(1/ci )1/q
=

( c1

caσ

)1/q
, C(xOPT) =

∑

a∈A

xOPT
a cau(xOPT

a ) = c1

σ
.

(4.1)

It also follows immediately that for arbitrary markups α1, . . . , αn , the equilibrium
allocation for the second-stage game3 is

xNE
a = 1/(αaca)

1/q
∑

i∈A 1/(αi ci )1/q
, (4.2)

and under it, the total production cost equals

C(xNE) =
∑

a∈A

xNE
a cau(xNE

a ) =
(

1∑
i∈A 1/(αi ci )1/q

)1+q
(
∑

a∈A

1

(ca)1/q(αa)1+1/q

)
.

Equation (4.2) and the ordering of the market shares xNE
1 � · · · � xNE

n imply that
α1c1 � · · · � αncn .

To obtain an optimal markup αa , a producer needs to balance the tradeoff between
charging high to increase revenue and charging low to increase sales. This is achieved
by anticipating consumers decisions when maximizing their profit. Producer a finds
αa by solving maxαa�1 Pa(αa), where

3 Note that because cost functions are all monomials of the same degree, the vector xNE also represents
the market shares that correspond to the solution that minimize the payments [16]. This solution would
correspond to the case of a single buyer instead of the situation of perfect competition that we consider in
this paper.
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Pa(αa) := (αa − 1) xNE
a cau(xNE

a ) = ca(αa − 1) ·
⎛

⎝1 +
∑

i �=a

(αaca

αi ci

)1/q

⎞

⎠
−(1+q)

,

while others’ markups αi for i �= a are fixed. By Proposition 3.1, the optimal markup
is characterized by the first-order conditions of the optimization problem. Then, the
best response �a(α−a) for producer a ∈ A to a given vector of markups α−a is given
by the unique solution to the equation:

αa = 1 + q + q
αa

(caαa)1/q
∑

i �=a 1/(αi ci )1/q
. (4.3)

The marginal cost for producer a is κ ′
a(xa) = (1 + q)ca xq

a , so (4.3) indicates that the
optimal markup is to charge the marginal cost (the term equal to 1 + q) plus a term
that depends on the competition in the market.

Unfortunately, we do not know how to solve the previous system and therefore we
cannot compute the equilibrium directly. Then, to prove that a markup equilibrium
(α1, . . . , αn) exists for general monomials, we look for a fixed point of the mapping
� : (αa)a∈A → (�a(α−a))a∈A.

4.2 Characterization of equilibria

Specializing the results presented earlier to the case of markups, this section shows
that an equilibrium on markups exists if and only if the number of producers exceeds
1 + q. In addition, we establish the uniqueness of (simple) equilibria in the case of
multiple and heterogenous producers with monomial cost functions of an arbitrary
degree q > 0. Finally, we study some properties of the equilibrium.

We remark that early research on related models already showcased some situa-
tions when supply function equilibrium is unique. The details vary depending on the
specifics of the model. For example, Turnbull [38] proved uniqueness in the space of
linear supply functions in a model with two producers, linear cost functions and uncer-
tain demand. Klemperer and Meyer [26] generalized the previous result by proving
that the linear equilibrium is unique even in the space of general supply functions.

Proposition 4.1 If u(x) = xq for q > 0, then there exists an equilibrium if and only
if n > 1 + q. Furthermore, if the equilibrium exists, it is unique.

Proof When u(x) = xq , we have that (xu′(x) + u(x))/u(x) = 1 + q, making the
conditions of Theorems 3.3 and 3.4 exact opposites. Hence, we have a necessary and
sufficient condition for the existence of an equilibrium. We only need to show that
whenever an equilibrium exist, it is unique.

Let (α1, . . . , αn) be a markup equilibrium. Observe that if we replace all costs by
μca , for a scaling factor μ > 0, (α1, . . . , αn) still solves (4.3) for all a ∈ A. Letting
the factor μ be

(∑
a∈A 1/(αaca)

1/q
)q , we can express (4.3) simply by

αa

(
1 − q

(caμαa)1/q − 1

)
= 1 + q. (4.4)
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Considering the function w(αa) := 1 + qαa/(αa − 1 − q), we can rewrite (4.4) as
w(αa) = (caμαa)

1/q . Hence, the solution αa is achieved at the intersection between
the curves w, which is decreasing on αa , and (caμαa)

1/q , which is increasing on αa .
Thus, a single value of αa satisfies the equation for fixed μ, and because (4.4) holds
for all a ∈ A, a fixed μ generates a unique vector (α1, . . . , αn).

Now, if there were two different equilibria (α1, . . . , αn) and (α′
1, . . . , α

′
n), their

corresponding scaling factors μ and μ′ had to be different. Assume, without
loss of generality, that μ < μ′. Thus, as w is independent of μ, we have that
(caμαa)

1/q < (caμ
′α′

a)
1/q for all a ∈ A. Summing across producers, we get that∑

a∈A 1/(caμαa)
1/q >

∑
a∈A 1/(caμ

′α′
a)

1/q , a contradiction since by the definition
of μ and μ′, both sides should equal one. �	

The proof says that if we could guess the appropriate scaling factor μ for the costs,
we could find the equilibrium using (4.4). Although this equation cannot be solved in
closed form, we will use this idea to construct a procedure to compute the equilibrium
for in the linear case.

Observe that σ > (1 + q)q implies that n > 1 + q, from where σ > (1 + q)q is
a sufficient condition for an equilibrium to exist. On the contrary, if there are 1 + q
producers with equal cost, we have that σ = (1 + q)q and equilibria do not exist.
Since we want to use the competitiveness σ of an instance to provide bounds on the
markups and the inefficiency of the resulting equilibria, we are going to adopt the
previous condition on σ , which is the tightest possible, to guarantee existence.

Proposition 4.2 Assume that q > 0 and σ > (1 + q)q . A markup equilibrium
(α1, . . . , αn) satisfies that 1 + q � αa � (1 + q)(σ 1/q − 1)/(σ 1/q − 1 − q) for
all a ∈ A.

Proof The lower bound is immediate after (4.3). Let us bound the right-hand side of
equation (4.3) for the producer applying the largest markup.

αa �α1 =1+q+ q
α1

(α1c1)1/q
∑

i>1 1/(αi ci )1/q
�1 + q + q

α1

c1/q
1

∑
i∈A 1/c1/q

i − 1
.

The upper bound follows directly by recalling the definition of σ . �	
For example, for linear cost functions, we have that 2 � αa � 2(σ −1)/(σ −2). In

particular, if σ = 4, we know that α is between 2 and 3. This formula can also be used
to find the minimum competitiveness that must be present to guarantee that markups
will not exceed a given number.

4.3 Computation of equilibria with linear cost functions

We now provide a procedure to compute the unique markup equilibrium in the linear
case (i.e., when q = 1). We assume that n � 3 because otherwise we know that
an equilibrium does not exist. As before, we will choose the scaling factor μ that
simplifies calculations. Assume that (α1, . . . , αn) is a markup equilibrium and let
μ := ∑

1/(αaca) > 0. Considering the instance with costs equal toμca and replacing
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αaμca by a variablew in (4.3), we get thatw satisfiesw2 −2(μca +1)w+2μca = 0.
Solving this equation we get that w = 1 + μca + √

1 + (μca)2, or equivalently

αa = 1 + 1/(μca)+
√

1 + 1/(μca)2. (4.5)

Now that we know w, we can rewrite the definition of μ as

∑

a∈A

1/(1 + μca +
√

1 + (μca)2) = 1. (4.6)

We have just shown that the existence of a markup equilibrium implies that it has
to satisfy (4.5), where μ is defined by (4.6). Actually, this characterization can also
be used to prove the existence of an equilibrium because (4.6) has a solution if and
only if n � 3. More importantly, it can be used to provide a procedure to compute the
equilibrium.

Proposition 4.3 An ε-approximate markup equilibrium can be computed after eval-
uating the left-hand side of (4.6) up to log(n/(εmina∈A ca)) iterations.

Proof Let μ be such that (4.6) holds. Clearly, we can find an approximation μ̃ using
binary search on (4.6), and then use it to compute an approximate markup equilibrium
(α̃a)a∈A using (4.5) and its allocation

x̃NE
a := 1

α̃aμ̃ca
= 1

1 + μ̃ca + √
1 + (μ̃ca)2

. (4.7)

If μ̃ approximates (4.6) within an additive ε > 0, then it is easy to see that |μ̃−μ| �
O(1)ε and |x̃NE

a − xNE
a | � O(1)ε. �	

5 Analysis of efficiency for monomial cost functions

In this section, we analyze the efficiency-loss at the markup equilibrium ((αa)a∈A, xNE)

of a game, when compared to the optimal assignment xOPT. In other words, we provide
bounds on the price of anarchy for the game, which quantifies the loss generated by
the lack of coordination in the system [27].

As we will see below, if we do not restrict the instances we consider, the assignment
at equilibrium can be arbitrarily bad compared to the social optimum and the markups
applied to costs can be arbitrarily large. This high inefficiency comes from instances
where producers are extremely different. Suppose there is a very efficient producer
and a very inefficient one. Although in an optimal assignment for the market most
consumers buy from the efficient producer, at equilibrium the efficient producer will
add a large markup to its cost to match the inefficient producer. Hence, as opposed
to the optimal situation, the market shares at equilibrium will be comparable, making
the social cost of an equilibrium much higher than that of an optimal assignment.

For this reason, we will parametrize all the bounds on the efficiency-loss at equi-
librium with respect to the competitiveness of the market, measured by σ . Recall that,
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by Proposition 4.1, σ > (1 + q)q guarantees that an equilibrium exists and is unique,
while an equilibrium may not exist when σ = (1 + q)q . Thus, we concentrate on the
former case.

First, we develop a general upper bound for the case when production costs are
described by monomial functions. For σ → ∞ the upper bound approaches 1, which
proves that an equilibrium is almost optimal in a highly-competitive market. We then
refine the upper bound in the case when unit costs are linear functions on the production
quantity. The latter bound is almost tight, and allows us to show that the price of anarchy
is exactly 3/2 for arbitrary values of σ � 2. Parametrizing it with fixed values of σ ,
it decreases rapidly when σ increases.

5.1 An initial upper bound on the inefficiency

We start by analyzing instances with monomial cost functions of arbitrary degree
q > 0 and provide bounds depending on the competitiveness in the instance σ . We
highlight that our bounds only apply to markup equilibria.

As a warm-up exercise, we provide a simple upper bound on the worst-case
production cost at equilibrium using the fact that markups at equilibrium can-
not be arbitrarily large for large enough σ . Consider a markup equilibrium for a
σ -competitive instance with monomial cost functions of degree q > 0 and σ >

(1 + q)q . Then, an equilibrium xNE exists and for any producer a ∈ A, (4.2) implies
that

∑
i∈A ciαi (xNE

i )1+q = caαa(xNE
a )q . Then, by Proposition 4.2,

(1 + q)C(xNE) �
∑

i∈A

ciαi (x
NE
i )1+q = caαa(x

NE
a )q =

(∑

i∈A

1

(αi ci )1/q

)−q

� (1 + q)(σ 1/q − 1)

σ 1/q − 1 − q
C(xOPT) ,

so that, C(xNE) � (σ 1/q − 1)/(σ 1/q − 1 − q) · C(xOPT). As an example, this bound
evaluates to (σ −1)/(σ −2)when production costs are linear and, in particular, to 3/2
when σ = 4. In words, although there is no coordination and producers and consumers
maximize their individual utilities, the inefficiency generated by competition cannot
be extremely large.

Note that it is possible to find a set of instances for which the price of anarchy tends
to infinity as σ approaches 1. Thus finding an explicit upper bound for the case of
σ < (1 + q)q is of less interest and we do not pursue it in this article.

The following theorem improves the previous bound on the efficiency-loss by work-
ing directly with the market shares xNE at equilibrium. Although we do not know how
to express xNE in closed-form, we prove an upper and a lower bound on it and relax the
equilibrium condition by considering a nonlinear programming problem that captures
the essence of the calculation of the price of anarchy.

Theorem 5.1 Consider a markup equilibrium for a σ -competitive instance with
monomial cost functions of degree q > 0. Assume that 
 and u are two positive
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numbers such that 
(c1/ca)
1/q � xNE

a � u(c1/ca)
1/q . If σ > (1 + q)q , then the price

of anarchy is bounded by

(
σ 1/q)1+q + σ(1 − 
σ 1/q)
u1+q − 
1+q

u − 

.

Proof Since we do not know how to characterize a markup equilibrium exactly, we
will relax the requirement that market shares are at equilibrium and consider an arbi-
trary market share vector that satisfies the box constraints 
(c1/ca)

1/q � xNE
a �

u(c1/ca)
1/q . To find an upper bound on the worst-case inefficiency of an equilibrium

C(xNE)/C(xOPT), we solve the following nonlinear programming problem:

max

{
σ

c1

∑

a∈A

ca x1+q
a , subject to

∑

a∈A

xa =1, 

( c1

ca

)1/q
� xa �u

( c1

ca

)1/q
for a ∈ A

}

Considering slack variables za from the lower bound, any feasible solution can be
written as xa = 
(c1/ca)

1/q + za , and the first constraint is equivalent to
∑

a za =
1 − 
σ 1/q . Since c1 � · · · � cn , an optimal solution satisfies that

za =

⎧
⎪⎨

⎪⎩

0 for 1 � a < k

1 − 
σ 1/q − ∑
i �=a zi for a = k

(u − 
)(c1/ca)
1/q for k < a � n.

Here, k is determined so that xk satisfies the box constraints. Evaluating the optimal
objective value and using Newton’s generalized binomial theorem [18, p. 162], we get
a bound on the price of anarchy. In the following derivation, we also use the upper
bound for za and the expression for their sum.

σ

c1

∑

a∈A

ca x1+q
a = σ

∑

a∈A

∞∑

k=0

(
1 + q

k

)(
c1

ca

)(1−k)/q


1+q−k zk
a

=σ
1+q
∑

a∈A

(
c1

ca

)1/q

+σ
∑

a∈A

za

∞∑

k=1

(
1+q

k

)(
c1

ca

)(1−k)/q


1+q−k zk−1
a

� (
σ 1/q)1+q + σ
∑

a∈A

za

∞∑

k=1

(
1 + q

k

)

1+q−k (u − 
)k−1

= (
σ 1/q)1+q + σ(1 − 
σ 1/q)
u1+q − 
1+q

u − 

.

Since 
 � u and 
σ 1/q � 1, the bound is well defined. �	
Interestingly, the upper bound converges to 1 for σ → ∞, for any fixed value

of q. This says that when competition is high, then equilibria are almost efficient.
Unfortunately, for small σ (i.e., σ ≈ (1 + q)q ) the bound becomes rather loose;
actually, it approaches infinity for σ → (1 + q)q .
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As an example, let us see that the framework put forward by the previous theorem
can be used to provide a meaningful bound on the price of anarchy. Consider the case
of a monomial cost function u(x) = xq for q � 1. To get lower and upper bounds on
xNE

a , we use Proposition 4.2. Applying (4.2) to the denominator of (4.3), we have that

xNE
a = 1

1 + q + q(1+q)
αa−1−q

= 1

1 + q + (1+q)(αaca)1/q

αa

∑
i �=a

1
(ciαi )

1/q

.

Since q � 1, the previous expression is nondecreasing as a function of αi for all
i ∈ A. Thus, using that αa � 1 + q, we can provide the lower bound xNE

a � 1/(q +
(σca/c1)

1/q) � (c1/ca)
1/q /(q + σ 1/q).

For the upper bound, (4.2) together with the bounds for αa imply that

xNE
a �

(
1 + q

σ 1/q − 1 − q

)1/q 1∑
i∈A(ca/ci )1/q

=
(

σ 1/q − 1

σ(σ 1/q − 1 − q)

)1/q (
c1

ca

)1/q

.

Putting it all together, we can set 
 = 1/(q +σ 1/q) and u = ((σ 1/q−1 −1/σ)/(σ 1/q −
1−q))1/q in the previous theorem to get a bound on the price of anarchy. In particular,
when production costs are linear the bound is (σ 2 − σ − 1)/(σ 2 − σ − 2), which
evaluates to 11/10 when σ = 4.

Finally, note that better upper and lower bounds on the market shares at equilibrium
could be given if one iterates the best responses further. Instead of continuing in that
direction, we shall focus on linear cost functions, and use the characterization of
equilibria proposed previously to provide an almost tight bound. As a benchmark to
evaluate the previously-cited value of 11/10, the exact price of anarchy for σ = 4—
which we compute in the next section—is approximately 1.027. Moreover, the price
of anarchy is exactly 3/2 if one considers all instances with σ � 2.

5.2 Tight bounds using a nonlinear programming formulation

We now compute a tight bound on the price of anarchy for linear cost functions. Our
goal is to come up with the worst-case example among instances that areσ -competitive
using mathematical programming. In the context of computing the worst-case inef-
ficiency of equilibria, this approach was pioneered by Johari and Tsitsiklis [23].
More precisely we proceed as follows. We characterize the price of anarchy exactly
for a fixed σ � 2 as a nonconvex nonlinear optimization problem having all ca’s
as decision variables. After transforming this problem slightly, we use its optimality
conditions to cast it as a nonlinear mixed integer programming problem with few deci-
sion variables, an idea that might be useful elsewhere. Then, we relax the integrality
constraints an explicitly solve the remaining problem, which provides an almost tight
bound for the price of anarchy.

Using the characterization of equilibria developed earlier, the following mathe-
matical program finds a worst-case σ -competitive instance, represented as the vector
(c1, . . . , cn), by maximizing the gap between the total production cost at equilibrium
to that of an optimal solution.
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POA(σ ) := sup
n�3

{
max

(
n∑

a=1

1

ca

)(
n∑

a=1

ca

(1 + ca + √
1 + c2

a)
2

)}
(5.1a)

s.t.
n∑

a=1

1

1 + ca + √
1 + c2

a

= 1 (5.1b)

c1

n∑

a=1

1

ca
= σ (5.1c)

0 < c1 � ca ∀ a ∈ {2, . . . , n}. (5.1d)

Here, (5.1b) guarantees that we can use the characterization given previously to com-
pute equilibria, (5.1c) imposes that the instance is σ -competitive, and the objective
function, which equals C(xNE)/C(xOPT), computes the inefficiency of the markup
equilibrium of the instance represented by the feasible solution. Notice that this allows
us to compute the inefficiency of an equilibrium without explicitly computing the equi-
librium. For a fixed n � 3, the maximum in (5.1) is attained, and we will see that it
grows as n goes to infinity.

The previous problem has a nonlinear nonconvex objective function and constraints.
To get around this, note that the constraint c1 > 0 can be relaxed to c1 � 0, because
c1 = 0 implies C(xOPT) = C(xNE) = 0. Then, we can consider variables 0 � ya � 1,
for all a ∈ A, defined by

ya := 1 − 2

1 + ca + √
1 + c2

a

. (5.2)

The inverse transformation is ca = 2ya/(1 − y2
a ), so problem (5.1), is reformulated

as

POA(σ ) = sup
n�3

max
σ

4

( 1

y1
− y1

)(
n + 2 − 2

n∑

a=1

1

1 + ya

)

s.t.
n∑

a=1

ya = n − 2

n∑

a=1

( 1

ya
− ya

)
= σ

( 1

y1
− y1

)

0 � y1 � ya � 1 ∀ a ∈ {2, . . . , n}.

(5.3)

Lemma 5.2 The maximum in the subproblem of (5.3) is increasing with n.

Proof Increasing n to n′ > n increases the objective. Indeed, given a solution with n
components, setting the new n′ − n variables to 1 achieves the same objective value
since all constraints are satisfied and the objective value does not change. �	

The argument in the proof also implies that variables ya taking a value of 1 are
not useful. To see this, notice that if for a given value of n, it is optimal to set some
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variables to 1, we can remove those producers without affecting the feasibility of the
solution, nor its objective value.

Let us consider the following problem in which we take n � 3 and 0 < y1 < 1 fixed,
and optimize over y2, . . . , yn . We characterize the structure of the optimal solution to
this problem and optimize over n and y1 afterwards to get the solution to (5.3).

min
n∑

a=2

1

1 + ya

s.t.
n∑

a=2

ya = n − 2 − y1

n∑

a=2

1

ya
= σ

(
1

y1
− y1

)
+ n − 2 − 1

y1

y1 � ya � 1 ∀ a = 2, . . . , n.

(5.4)

We denote the dual variables of this subproblem by λ,μ, 
a and ua , in the order in
which they appear in the formulation above. We use the standard KKT conditions to
characterize the optimal solution to this problem (see, e.g., [32, p. 321]). Indeed, if a
vector y = (y2, . . . , yn) is optimal, then when the gradients of the active constraints
at y are linearly independent, y verifies the KKT conditions

−1

(1 + ya)2
+ λ− μ

y2
a

+ ua − 
a = 0 ∀ a = 2, . . . , n. (5.5)

With the previous conditions we conclude that an optimal solution has a well-defined
structure.

Lemma 5.3 An optimal solution (y2, . . . , yn) to (5.4) satisfies that there are two
numbers ȳ and ¯̄y in the open interval (y1, 1) such that ya ∈ {y1, ȳ, ¯̄y} for all a ∈ A.

Proof Assume vector y = (y2, . . . , yn) ∈ [y1, 1)n−1 is an optimal solution to (5.4).
We can assume that there are at least three different values larger than y1 because oth-
erwise the claim holds. We refer to three of those values with yi , y j and yk , ordered
from low to high. The KKT conditions hold for y because the gradients of the active
constraints at y are linearly independent. Indeed, the gradients of the two equality con-
straints are (1, . . . , 1) and (−1/y2

2 , . . . ,−1/y2
n ), and those of the variables with values

equal to y1 are (0, . . . , 0,−1, 0, . . . , 0) with the −1 in the position corresponding to
the variable. The constraints of variables with value different from y1 are not active
so they are not considered. Considering the variables yi and y j only, the restricted
gradients are (1, 1), (−1/y2

i ,−1/y2
j ), and (0, 0). Because the first two are linearly

independent, all the vectors are linearly independent and, thus, yi , y j and yk satisfy
(5.5). Using the complementary slackness property for these variables and solving for
λ, we have that

λ = 1

(1 + yi )2
+ μ

y2
i

= 1

(1 + y j )2
+ μ

y2
j

= 1

(1 + yk)2
+ μ

y2
k

.
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We focus first on yi and yk . Solving for μ and plugging the result back in, we get that

λ =
1

(1+yi )
2 − 1

(1+yk )
2

1 − ( yk
yi

)2 + 1

(1 + yk)2
= 1

y2
i − y2

k

[(
yi

1 + yi

)2

−
(

yk

1 + yk

)2
]
.

Taking the derivative with respect to yk , we see that the right-hand side of the previous
equation is increasing on yk . After some algebra, the derivative is positive if and only
if

(
yk

1 + yk

)2

−
(

yi

1 + yi

)2

>
y2

k − y2
i

(1 + yk)3
,

which holds because yi < yk . Now, doing the same calculation with yi and y j pro-
vides us with another λ. But that cannot happen because y j and yk satisfy the KKT
conditions. �	

The previous result implies that an optimal solution to (5.4) has the structure
(y1, . . . , y1, yi , . . . , yi , y j , . . . , y j ), where y1 is repeated k1 times and yi is repeated
ki times and y j is repeated k j = n−1−k1−ki times. Hence, (5.4) can be reformulated
as:

min
k1

1 + y1
+ ki

1 + yi
+ k j

1 + y j

s.t. k1 y1 + ki yi + k j y j = n − 2 − y1

k1

y1
+ ki

yi
+ k j

y j
= σ

(
1

y1
− y1

)
+ n − 2 − 1

y1

k1 + ki + k j = n − 1

y1 � yi � y j � 1, k1, ki , k j ∈ N,

(5.6)

where yi , y j , k1, ki , and k j are the variables, and y1 and n are fixed. We conclude the
following.

Lemma 5.4 The price of anarchy for a given value of σ > 1 is given by:

POA(σ ) = sup
σ

4

(
1 − y2

1

y1

)(
n + 2 − 2(k1 + 1)

1 + y1
− 2ki

1 + yi
− 2k j

1 + y j

)

s.t. (yi , y j , k1, ki , k j ) solves problem (5.6) for y1 and n. (5.7)

0 � y1 � 1, n � 3, n ∈ N

Observe that although the previous problem only has seven variables, it is a noncon-
vex integer programming problem. Nevertheless, we can compute almost tight lower
and upper bounds to this problem, which we express in closed-form as a function of
σ � 2. The lower bound comes from feasible solutions and the upper bound follows
from a relaxation of (5.6).
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Note that relaxing the integrality constraints on k1, ki and k j in problem (5.6)
leads to an optimal solution in which yi = y j . Indeed, consider the relaxation of a
subproblem of (5.6) in which k1 is fixed, ki and k j are variables, and the three are
nonnegative reals, and assume that an optimal solution satisfies that y1 < yi < y j with
ki and k j strictly positive. The gradients of the constraints at the solution are linearly
independent so we can use the KKT conditions. We denote the dual variables of the
equality constraints in (5.6) with λ,μ and η, respectively. The KKT conditions for ki

and k j imply that f (y) := 1/(1+ y)+λy +μ/y +η = 0 when we evaluate in y = yi

and in y = y j , and thus there is a point yi < γ < y j where the derivative f ′(γ )
vanishes. In addition, the KKT conditions for yi and y j say that f ′(yi ) = f ′(y j ) = 0.
This is a contradiction since − f ′(y) = 1/(1 + y)2 + μ/y2 − λ is unimodal in (0,1)
so it can vanish at most twice.

The observation in the previous paragraph implies that the following reformulation
of (5.7) with values of y equal to y1 or yi provides a closed-form upper bound on the
price of anarchy.

sup
σ

4

1 − y2
1

y1

(
2 − 2(k1 + 1)(yi − y1)

(1 + y1)(1 + yi )
− n

1 − yi

1 + yi

)

s.t. (k1 + 1)(yi − y1)+ n(1 − yi ) = 2

(k1 + 1)(yi − y1)
1 + y1 yi

y1 yi
+ n(1 − yi )

1 + yi

yi
= σ

(
1

y1
− y1

)

0 � y1 � yi � 1, k1 � 0, n � 3.

(5.8)

To solve this problem, we first solve the linear system for k1 and n given by the equality
constraints. Then we plug the result back into the objective function, allowing us to
rewrite (5.8) as:

max
0�y1�yi �1

σ

4

1 − y1

y1

(
2y1 + yi (2 + 4y1 − σ(1 − y2

1 ))

1 + yi

)
.

Observe that the objective is a rational function of yi , and a simple calculation shows
that it is increasing if and only if y1 � 1−2/σ . If the rational function were decreasing
in an optimal solution, that would imply that yi = y1, which would evaluate to 1
in the maximum above. Since that cannot be the case, the rational function has to
be increasing. Therefore, yi = 1 in an optimal solution, thus making the previous
maximum equal to

max
1−2/σ�y1�1

σ

4

1 − y1

y1

(
1 + 3y1 − σ(1 − y2

1 )

2

)
,

which is strictly greater than 1. To maximize the previous expression, we set its deriv-
ative to zero, and find the roots of −2σ y3

1 + (σ − 6)y2
1 + (σ − 2). For σ � 2, the

largest real root y(σ ) is in the interval [1 − 2/σ, 1] (actually, there is only one root
when 2 � σ � 2.33462 . . .). Solving the cubic equation in closed form, we conclude
that the optimal solution for y1 is
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y(σ ) := (v +
√
v2 − r6)1/3 + (v −

√
v2 − r6)1/3 + r , (5.9)

where v = 55/216 − 7/(12σ)+ 1/(2σ 2)− 1/(σ 3) and r = (σ − 6)/(6σ). Plugging
the value back into the objective, we get the following theorem.

Theorem 5.5 If σ � 2, then

POA(σ ) � σ

4

(
1 − y(σ )

y(σ )

)(
1 + 3y(σ )− σ(1 − y(σ )2)

2

)
,

where y(σ ) is given by (5.9). This bound is tight infinitely often for σ → ∞. In
particular, the value is exactly 3/2 when σ = 2.

Proof We have already proved the upper bound, we still need to show that the bound
is tight for infinitely many values of σ . We specifically show that the bound is tight
whenever

k1(σ ) = σ
1 + y(σ )

1 − y(σ )
−

(
1 + y(σ )

1 − y(σ )

)2

(5.10)

is integral. Indeed, in this case we can evaluate (5.8) with k1 = k1(σ ), y1 = y(σ ), a
large enough n, and the appropriate value of yi (which will be close to 1). It is not
hard to see that the objective value approaches that in the claim of this theorem when
n → ∞. Since in this situation k1 and n are integral, we can construct a sequence of
instances whose inefficiency asymptotically equal our bound. Observe that because
y(σ ) = 1−2/σ+o(1/σ), k1(σ ) increases to infinity, so that it is integral for infinitely
many values of σ . In particular for σ = 2, y(σ ) = 0 and then k1(σ ) = 1. �	

An almost matching lower bound for other values of σ (different from those leading
to an integer k1(σ )) is obtained by restricting solutions to have only two values. For
fixed σ , and fixed integers n and k1, we can find the best possible solution to (5.7) for
which yi = y j . This is done by solving (5.10) with those parameters fixed, which is
easy since the constraints amount to explicitly evaluate y1 and yi (and y1 turns out to
be the solution of a cubic equation similar to (5.9)). In the limit when n → ∞ we
obtain the following result.

Theorem 5.6 If σ > 2, then

POA(σ ) � σ
2(1 − y2

1 )− (k1 + 1)(1 − y1)
3

8y1
,

where k1 is a nonnegative integer and y1 = (k1 − 1 + √
σ 2 − 4k1)/(σ + k1 + 1).

The two natural candidates for k1 in Theorem 5.6 are the integers closest to k1(σ )

given by (5.10). More precisely we evaluate the lower bound for k1(σ )� and �k1(σ )�,
and take the maximum of the two values. For the special case of σ = 2, this bound
is not well defined because y1 = 0. Nevertheless, the worst case instance is easy to
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Fig. 1 Lower bound and upper bounds for the inefficiency of Nash equilibria. The vertical axis on the right
displays the relative distance between the two bounds

construct in this case by taking n = 3 and three different values of y. A calculation
shows that, in the limit, this worst-case instance has a price of anarchy of 3/2, matching
the upper bound of Theorem 5.5.

Notice that the analysis proposed in this section provided us with significantly
improved bounds compared to those in the previous section (which were arbitrarily
loose for σ → 2). Our new bound is tight in that case, and also when σ → ∞, it fails
to be tight in general because of the integrality gap arising in Lemma 5.4. Moreover,
we have established that the bound is tight whenever the resulting k1 is integral, which
happens for infinite values of σ . Figure 1 depicts both bounds as a function of σ .
The figure also includes the relative gap (ub(σ ) − lb(σ ))/ub(σ ) between the two
bounds on the secondary vertical axis. As an example, the upper bound evaluates to
approximately 1.02717 when σ = 4 while the lower bound evaluates to 1.02642.
The worst relative gap between the lower and upper bounds is 0.316 % for a value of
σ ≈ 3.65.

6 General market structures

In this section, we characterize markup equilibria for markets that contain some com-
plementary goods. We model unit demand for a “bundle”, which may in fact be pur-
chased from a number of separate producers, each selling some particular component.
For linear cost functions (i.e. u(x) = x), and markets taking a Series-Parallel (SP)
network structure, we extend the existence result of Proposition 4.1. In Sect. 6.4, we
show that the result may no longer hold for more general market structures.

Supply function equilibrium is a natural modeling choice in the bundled setting,
as scheduled quantity-dependent price adjustments remove the ambiguity around
revenue-splitting that would result in a Cournot-type model of complementary produc-
ers. Supply function models yield a structure where bundle-level purchase quantities
(i.e., path flows) uniquely determine both the producer-level purchase quantities (link
flows) and the market price of each producer’s output. In contrast, a pure quantity-
commitment model lacks a mechanism for setting individual prices.
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Practically, bundling is an important consideration in many industries. In freight
shipping, for example, point to point routes often involve multiple carriers, each servic-
ing a distinct geography and/or mode of transport. The model also applies to decentral-
ized assembly supply chains, where a manufacturer contracts separately to purchase
components from any number of suppliers. Such outsourcing typically requires a
modular product structure that is amenable to series-parallel representation. Taking
the assembler as a monopsonistic buyer, one could employ our model to study compe-
tition among individual component suppliers (e.g. producers of processors, hard disks,
displays, etc. in a computer system supply chain).

Let B := {B1 . . . Bm} represent a set of bundles, all equivalent in the eyes of
costumers, that may each be used to satisfy the demand. We propose a network model
to represent potential mappings of producers to bundles. That is, we model the set
of available purchase combinations as paths from the source s to the sink t of a
directed network, G, comprising a set of n links AG . Each link a ∈ AG represents a
producer, and each path through G a bundle in B. As before, customers choose the
lowest-priced complete bundle, with a set of path flows fi denoting the proportion of
customers choosing bundle Bi . We say that a ∈ Bi if link a appears in bundle Bi ,
and set xa = ∑

Bi �a fi . Thus, the vector f ∈ R
m describes consumption decisions,

while taking x ∈ R
n to describe production quantities, and the full set of possible

production-consumption pairs is given by

F :=
{
(x, f ) ∈ R

(n+m)
+ :

m∑

i=1

fi = 1, xa =
∑

Bi �a

fi ∀ a ∈ AG

}
.

For a given set of markups α, the second-stage production quantities are given by an
assignment (x(α), f (α)) ∈ F satisfying

∑

a∈Bi

αacau(xa(α)) �
∑

b∈B j

αbcbu(xb(α)) (6.1)

for all Bi , B j ∈ B such that fi (α) > 0. The assignment x(α) is unique for any α
because the function u(·) is strictly increasing [10]. There may, however, be multiple
consumption allocations that give rise to x .

6.1 Series-parallel networks

The SP restriction that we employ is suited for markets with both complements and sub-
stitutes. The class of SP networks are exactly those that can be constructed recursively
through series and parallel compositions. To formalize, we define the composition
operations S(·) and P(·), each of which takes as input a set G of SP networks, and
returns a single SP network. In the case of S(G), the input networks are composed in
series with the sink of one network doubling as the source node of the next. In the
case of P(G), the input networks are composed in parallel so that all share a common
source and sink. Given this recursive construction, we use the notation g ⊆ G to
refer to those submarkets that have been nested within G. Note that the allocation of
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customers to paths in a submarket g satisfies a condition equivalent to (6.1), but g
serves only a portion of the total demand for G. A submarket g can be characterized
as either a series submarket, indicating that g = S(G) for some set G of submarkets,
or a parallel submarket, composed as g = P(G).

We introduce notation to describe the structure of nesting within G. Let ψ(g) be
the set of component markets comprising g. To avoid ambiguity, we require when g
is a series submarket that all elements of ψ(g) be parallel submarkets, and vice versa,
so that ψ(g) represents the largest (by cardinality) set of submarkets from which g
can be formed in a single composition. Now, for submarkets g′, g with Ag′ ⊆ Ag ,
let ψg′(g) return only the component market of g that contains g′, instead of the full

set of components. We let νg := (G, ψg(G), ψ2
g (G), . . . , ψ

hg
g (G) = g) denote the

unique sequence of submarkets starting with G within which g is nested, where hg

is the depth at which g is nested. Finally, let νg,P = (g1, g2 . . . gd) (alternatively,
νg,S) be the subsequence of odd or even elements of νg restricted to only parallel
(series) submarkets. The sequence νg,P provides the increasingly specific decisions
that a customer must make before purchasing from g.

Recall from Sect. 3 that the market-clearing price for a market g of parallel links and
unit demand solves

∑
i∈Ag

βi u−1(p∗
g) = 1. Replacing the right-hand side with an arbi-

trary demand dg , and writing it in terms of markups gives p∗
g = dg(

∑
i∈Ag

1/(αi ci ))
−1.

This expression decomposes into p∗
g = dg Rg(α), where we denote the response of

the network by a single network price multiplier Rg(α). As Rg(α) does not depend
on dg , the multiplier defines a linear price function for the market g as a whole. Fur-
thermore, beginning with Ra(α) = αaca for an individual producer a, all submarket
price multipliers can be constructed recursively according to:4

RS(G)(α) =
∑

g∈G
Rg(α), and RP(G)(α) =

⎛

⎝
∑

g∈G
1/Rg(α)

⎞

⎠
−1

. (6.2)

Lastly, for notation, given g, g′ with Ag ⊆ Ag′ , we use g′\g to denote the market in
g′ with producers from g removed, and α−g to denote markups of producers in G\g.

6.2 Second stage analysis

In this section we present a precise functional form of the second-stage assignment
x(α), where α is an arbitrarily fixed vector of markups. As α is fixed, we will suppress
dependence of assignments and price multipliers on α where possible to simplify
notation. The assignment in (4.2) holds within each parallel submarket, and accounting
for nested component choices yields xa = ∏

g∈νa,P
Rg/Rψa(g), However, this formula

4 Equation (6.2) matches that used for electrical circuits to compute the equivalent resistance when placing
resistors in series and parallel. Ohm’s law, Voltage = Current ·Resistance, is analogous to the price function
pa = xa Ra . Although the equations describing both systems are identical, the difference is that we impose
a nonnegativity restriction on flows, whereas in electricity networks this is not needed. It is precisely those
restrictions that complicate the analysis of a general network as we will discuss in Sect. 6.4.
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is hard to manipulate directly and provides little insight into how producers will set their
markups. We thus provide an alternative formula that is more amenable to analysis.
In particular, we now express xa in terms of aggregate measures of competitiveness
for a’s substitute and complementary producers, respectively.

Its own markup aside, each firm’s production increases with the markups of sub-
stitute products, while abating in response to those of complementary competitors. If
producer a spans the market, that is its link a connects s and t directly, all other bundles
are substitutes for a, and xa is increasing in the multipliers of all competitors. If, on
the other hand, producer a requires a complement, the residual demand for product a
is shifted downwards as the markups on complementary items increase. Both effects
can occur simultaneously for a competitor b �= a, and so the impact of αb on xa is not
clear a priori.

Our approach is to redefine the market by pivoting G so that the nodes incident to a
become the source and sink. In this reformulation, a spans the pivoted market and all
competition with a is transformed to a substitute. To interpret, the market spanned by a
is one in which all customers come to market in possession of a bundle that is perfectly
complementary to a. In the course of pivoting G, any complementary links to a; i.e.,
those on a path from s to a or a to t , are reversed in direction to reflect that these products
can be sold back to producers at the prevailing market price. Any combination of
sales/purchases that forms a path through the pivoted network will leave the customer
with a complete bundle, and is in effect a perfect substitute to a. Accordingly, we call
the network created by removing a from the pivoted network, the substitute network
for producer a and denote it by G � a. Figure 2 demonstrates the construction of the
substitute network. Note that the example in (c) contains complements and so requires
pivoting.

The uniqueness of the niche that producer a fills will determine the multitude of
paths in G � a, and plays a key role in determining market power. A measure of
this market power can be encoded by R�a as a function of the prevailing markups of
others α−a , where from now on for brevity we omit G from G � a in subindices. In

(a)

(b)

(c)

Fig. 2 The producer’s substitute network G � a
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general, R�a measures the substitutability of producer a in equilibrium, with a higher
multiplier indicating a relative absence of attractive alternatives to a. As shown in
Fig. 2, G � a is empty in the extreme case of a monopolist, so R�a = ∞.

We show that the effect of a producer’s markup on its own profit is captured suc-
cinctly through the ratio of Ra to R�a . To isolate this effect, we express demand as
the product of two factors. One factor depends entirely on this ratio, and the other is a
scaling factor, also independent of αa , that measures the demand for producer a when
αa = 0. Indeed, factor μa , which depends only on α−a , captures the competitiveness
of complementary, rather than substitute, producers for a. In doing so, it accounts for
the position of a in the market, prior to pivoting. Both the multiplier R�g and scaling
factor μg are defined analogously for any submarket g ⊆ G.

The scaling factor μa is expressed:

μa =
∏

g∈νa,S

R�g

R�g + Rg\ψa(g)
. (6.3)

To illustrate, in Fig. 2c, νa,S contains a single element, S(g1, P(a, b)), and μa =
Rg2/(Rg2 + Rg1). Note that when a competes with substitute producers only, μa = 1
for any value of α. In the case with complements, the factor is strictly less than one,
and decreasing in the markups demanded for complements of a. In general, the factor
μa may be increasing, decreasing, or unaffected by Rb, depending on whether b is
largely a substitute or a complement of a.

To summarize, for a fixed vector α−a , the parametersμa and R�a measure, respec-
tively, the complementary and substitute competition facing producer a. In Proposition
6.1, we express xa in terms of these two quantities and producer a’s own multiplier.
In this formulation, μa determines the intercept of producer a’s residual demand, and
R�a determines the slope with respect to αa .

Proposition 6.1 For a market G with price functions fixed according to α, and for
any producer a, the equilibrium assignment x(α) takes the form

xa = μa

[
R�a

R�a + Ra

]
= μa

[
R�a

R�a + αaca

]
. (6.4)

Proof We will extend this property inductively to all submarkets, including individual
producers, beginning with the full market G. We have that xG =μG R�G/(R�G + RG)

because demand xG is inelastic and equal to 1, the factor μG = 1, RG is finite, and
R�G = ∞. Now we assume that (6.4) holds for a submarket g and prove it for an
arbitrary component g′ ∈ ψ(g). If g is composed in series, then g = S(g′, g′′) where
g′′ = g\g′. Then Rg = Rg′ + Rg′′ and R�g′ = Rg′′ + R�g . Because g is series, we
adjust the scaling factor so that μg′ = μg R�g/(R�g + Rg′′). Then,

xg′ = xg = μg
[
1 + Rg/R�g

]−1 = μg
[
1 + Rg′/R�g + Rg′′/R�g

]−1

= μg′
[
1 + Rg′/R�g′

]−1
.
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If g is composed in parallel, then g = P(g′, g′′) where g′′ = g\ g′. Then Rg =
[1/Rg′ + 1/Rg′′ ]−1 and R�g′ = [1/R�g + 1/Rg′′ ]−1. Since g is parallel, μg′ is
exactly μg and xg′ = xg Rg/Rg′ . So:

xg′ = (Rg/Rg′)μg[1 + Rg/R�g]−1 = (Rg/Rg′)μg′ [1 + (R−1
�g′ − R−1

g′′ )Rg]−1

= μg′ [1 + Rg′/R�g′ ]−1.

�	
Setting the derivative of the profit function with respect to αa to zero, we can

characterize the best response of any producer. The size of producer a’s markup in the
first stage will depend on its market power; i.e. the substitutability metric R�a .

Proposition 6.2 The best-response markup of any producer a to its competitors’
markups is

�a(α−a) = 2 + R�a(α−a)/ca . (6.5)

Proof Having shown that the solution to the second-stage game is xa(α) =
μa

[
R�a/(R�a + αaca)

]
, in the first stage, producer a chooses αa � 1 that maxi-

mizes Pa(αa) = (αa − 1)ca(xa(αa, α−a))
2. Evidently, the profit-maximizing markup

is interior in (1,∞) because Pa(αa) → 0 as αa → 1 and Pa(αa) = O
(
α−1

a

) → 0 as
αa → ∞. From the first-order optimality conditions,

αa = 1 − [xa(α)] [∂xa(α)/∂αa]−1 /(2ca).

Since R�a and μa do not depend on αa , it is straightforward to differentiate xa(α),
getting ∂xa(α)/∂αa = −xa(α)/(R�a + αaca). Note that this term is nonzero for any
finite α. Substituting into the above gives: αa = 1 + 1

2 (R�a/ca + αa). �	
In terms of R�a , the per-unit price that producer a will charge in equilibrium is

pa(xa) = Ra xa = 2ca xa + R�a xa . Producer a’s costs are given by κ(xa) = ca x2
a ,

yielding a marginal cost of ∂κ(xa)/∂xa = 2ca xa . Thus, equilibrium prices can be
interpreted intuitively to consist of marginal costs of production, plus a markup of
R�a xa that depends on the substitutability of a. Note for a market without complements
that R�a = (

∑
i �=a 1/(αi ci ))

−1, and (6.5) generalizes from (4.3).

6.3 Graph connectivity and existence of equilibria

We now explore the existence of markup equilibria, which requires we establish some
upper bound on the markups α. We will see that the critical property in establish-
ing a bound is the degree of connectivity of the network structure. A set of links
whose removal disconnects the graph is a cut, and a graph is k-edge-connected if
there are no cuts containing less than k links [4]. The connectivity between two
nodes is the maximum number of disjoint paths connecting them, and the connec-
tivity of a network is the minimum over an arbitrary pair of nodes. In the above, a
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producer’s demand elasticity is shown to depend directly on the number (and ulti-
mately, price) of alternative paths available for joining the nodes that the producer
connects in G. As such, a high degree of connectivity should translate to some
bound on the markups of any individual producer. In this section we formalize this
idea.

For a submarket g, the connectivity Q(g) is the largest k for which g is k-edge-
connected. The orientation of the graph does not factor into Q(g). In contrast, an
internal cut is one that does not separate the source from the sink, so that producers in
the cut belong to some common bundle. Redefining connectivity in terms of internal
cuts alone gives the internal connectivity I(g). Composing g with additional producers
in parallel may increase Q(g). The internal connectivity I(g) provides an upper bound
on the connectivity of any market within which g is nested.

Looking at (6.5), it is clear with only two producers that the combined sensitivity
of the responses leads to an infinitely increasing sequence of markups. This applies
as well to any network with Q(G) < 3. Essentially, stability requires that the sub-
stitute network for any producer is 2-edge-connected. When G � a is not 2-edge-
connected, it is producer a and the producer that disconnects G � a that combine to
drive instability. The key to establishing existence in G is that producers are arranged
into submarkets in such a way that their sensitivity, in the aggregate, to competitors’
markups diminishes with the size of those markups. We now show that when the
graph is 3-edge-connected, there is enough competition to ensure that markups are
bounded.

Theorem 6.3 A markup equilibrium exists in G if and only if the network is 3-edge-
connected. When it exists, this equilibrium is unique.

Proof For a submarket g and fixed price multiplier R�g , a partial markup equilibrium
on g results if all producers in g choose markups optimally, keeping those in G � g
fixed. The mapping φg′|g(R�g), denoted simply as φg(·) when g′ = g, returns the
multiplier Rg′|g that results on g′ from this partial markup equilibrium. A vector α
is a markup equilibrium on G if and only if Ra(α) is a fixed point of the function
ha : ha(Ra) → φa(φ�a(Ra)) for all a ∈ AG . We prove that ha(Ra) has a unique
fixed point if and only if Q(G � a) � 2. The forward direction follows because when
Q(G � a) = 1, (6.5) ensures unbounded markups, preventing the existence of an
equilibrium. For the reverse direction, we show inductively that the following holds
for each subnetwork g ⊆ G:

(i) If R�g < ∞, g admits a unique partial markup equilibrium.
(ii) 0 < φ′

g(R�g) < φg(R�g)/R�g .
(iii) If Q(g) � 2 then limR�g→∞ φg(R�g)/R�g = 0. Otherwise, limR�g→∞ φg

(R�g)/R�g = 1.

Note that (i) makes φg well-defined, and since the response function in (6.5) is
C1, we invoke the Implicit Function Theorem to show φ′

g is well-defined. The basic
case of the induction consists on producers. For them, the three properties follow from
writing (6.5) as Ra = 2ca + R�a . For the induction, see that each subnetwork g is
built up from producers through the S(·) and P(·) operations. As Q(G) � 3, we have
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I (g) � 3 for all g ⊆ G. We thus address only those operations preserving I (g) � 3
(when I (g′) and I (g′′) � 3):

Case 1: g = P{g’, g”}: Observe that I (g) � 3 and Q(g) � 2. We address the
partial equilibrium on g with R�g fixed to r . Here, we establish a fixed point Rg′|g of
hg′|g : R → φg′([1/φg′′([1/R + 1/r ]−1)+ 1/r ]−1), whose form is derived from the
relation R�g′ = [1/Rg′′ +1/R�g]−1. See that the argument of φg′(·) in this expression
is bounded above by r . We can thus restrict Rg′|g to fall within [0, φg′(r)]. A fixed
point must then exist, by Brouwer’s fixed point theorem. Furthermore, see that

∂hg′|g(R)
∂R

= φ′
g′
([ 1

φg′′([ 1
R + 1

r ]−1)
+ 1

r

]−1)[ 1/φg′′([ 1
R + 1

r ]−1)

1/φg′′([ 1
R + 1

r ]−1)+ 1
r

]2
φ′

g′′

([
1
R + 1

r

]−1)[ 1
R

1
R + 1

r

]2
.

From the inductive assumption of (ii), this can be strictly upper bounded by

1

R
φg′

([ 1

φg′′([ 1
R + 1

r ]−1)
+ 1

r

]−1)( 1/φg′′([ 1
R + 1

r ]−1)

1/φg′′([ 1
R + 1

r ]−1)+ 1
r

)( 1
R

1
R + 1

r

)
.

The last expression is at most 1 at a fixed point, and is decreasing in R because
of (ii). For these reasons, there exists exactly one fixed point. We compute φ′

g′|g(r)
and φ′

g′′|g(r) using the implicit functions arising from the fixed point equations that
characterize Rg′ and Rg′′ for each r . Applying the lower and upper bounds from
(ii) gives 0 < φ′

g′|g(r) < φg′|g(r)/r and 0 < φ′
g′′|g(r) < φg′′|g(r)/r . Claim (ii)

now follows as φ′
g(r) = φg(r)2[φ′

g′|g(r)/φ
2
g′′|g(r) + φ′

g′′|g(r)/φ
2
g′|g(r)] < φg(r)/r .

For claim (iii), it is sufficient that both L1 := limr→∞ φg′|g(r)/r = 0 and
L2 := limr→∞ φg′′|g(r)/r = 0. Note that limr→∞ φg′|g(r) is bounded if and only if
limr→∞ φg′′|g(r) is bounded. If both are bounded, then L1 and L2 are 0 as required.
Otherwise, limR�g′→∞ φg′(R�g′)/R�g′ = limr→∞ φg′|g(r)(1/r + 1/φg′′|g(r)) =
L1 + L1/L2, which is less than or equal to 1 by inductive assumption (iii). Similarly,
limR�g′′→∞ φg′′(R�g′′)/R�g′′ = L2 +L2/L1 � 1. The only possibility to satisfy both
inequalities simultaneously is for L1 and L2 to be zero (with the limits converging at
the same rate).

Case 2: g = S {g’, g” }, max{Q(g′), Q(g′′)} � 2 : Observe that I (g) � 3 and Q(g) =
min{Q(g′), Q(g′′)}. Without loss of generality, assume Q(g′′) � 2, As before, we
address the partial equilibrium on g with R�g fixed to r , and establish a fixed point
Rg′|g of hg′|g : R → φg′(φg′′(R + r)+ r). See that ∂hg′|g(R)/∂R = φ′

g′(r +φg′′(r +
R))φ′

g′′(r + R) � [φg′(r + φg′′(r + R))/(r + φg′′(r + R))][φg′′(r + R)/(r + R)].
Both terms in the upper bound are decreasing in R by (ii), and the second tends to zero
when R → ∞ by (iii). Hence, at some finite R̂, h′

g′|g(R) < 1 ∀R > R̂, guaranteeing
a fixed point. Uniqueness follows as ∂hg′(R)/∂R and its upper bound cannot be
larger than 1 at and to the right of any fixed point. As in the parallel case, we obtain
0 < φ′

g′|g(r) < φg′|g(r)/r and 0 < φ′
g′′|g(r) < φg′′|g(r)/r , which provides φ′

g(r) =
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φ′
g′|�g(r)+φ′

g′′|�g(r) < φg(r)/r . To prove (iii), we define L1 := limr→∞ φg′|g(r)/r
and L2 := limr→∞ φg′′|g(r)/r . If Q(g) = 1, we must show L1 + L2 = 1. From
inductive assumption of (iii), limR�g′→∞ φg′(R�g′)/R�g′ = limr→∞ φg′|g(r)/(r +
φg′′|g(r)) = [L2/L1 + 1/L1]−1 = 1 and, similarly, limR�g′′→∞ φg′′(R�g′′)/R�g′′ =
[L1/L2 + 1/L2]−1 = 0. Starting with the latter, we must have that either L2 = 0
or L1 = ∞. If L2 = 0, the former implies that L1 = 1, proving that the sum is 1
as needed. Otherwise, L1 = ∞, which is a contradiction because L2 would also be
unbounded and 0 �= 1−1. In the remaining case, we must show L1 + L2 = 0 when
Q(g) � 2. Indeed, when [L2/L1 + 1/L1]−1 = [L1/L2 + 1/L2]−1 = 0, both limits
must be zero, as required.

Finally, note that the inductive hypothesis applies to G itself. Furthermore, for
any producer a, h′

a(Ra) = φ′
a(φ�a(Ra))φ

′�a(Ra) < [φa(φ�a(Ra))/φ�a(Ra)][φ�a

(Ra)/Ra]. Both fractions in the upper bound are decreasing in Ra , and their product
is equal to 1 at a fixed point of ha(·). Thus, h′

a(Ra) < 1 at, and to the right of, any
fixed point. Therefore, ha(Ra) = Ra can be satisfied by at most one point. �	

Define �̃(α) : R
n → R

n such that �̃a(α) = �a(α−a). By bounding α, we restrict
the image of �̃(α) to a compact set, assuring the existence of a markup equilibrium.
We observe further that �a(α−a) is increasing in αb for all b �= a. As a result, any
sequence {α τ } with α τ = �̃(α τ−1) will be increasing element-wise. Starting at
α0

a = 2 for all a ∈ AG , we generate a sequence of markups that must converge to
a markup equilibrium. Applying iterated best responses, we are able to compute a
markup equilibrium in this way for any game that satisfies the 3-edge-connectivity
condition.

6.4 General networks

As the following example demonstrates, Theorem 6.3 does not immediately generalize
to networks that are not series-parallel. We present a very simple network structure that
is 3-edge-connected but not Series-Parallel for which no markup equilibrium exists.

Critically, when the network is not SP, we cannot guarantee that all producers are
active in equilibrium. In the network depicted to the left of Fig. 3, producer 3 is offering
a contribution to the bundle that is evidently being offered by producers 1 and 4 as
well. Here producer 1 is offering the equivalent of products 2 and 3 in combination.
Similarly, producer 4 is offering the equivalent of products 3 and 5 in combination.
If the markups and demand allocation are such that the prices for products 1 and 4
are less than the prices of products 2 and 5, respectively, then producer 3 is in effect
excluded from the market. There is no markup that producer 3 can choose for which
customers will purchase product 3.

Fig. 3 Left a 3-edge-connected
network that is not
series-parallel. Right substitute
network for producer 1
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When this is the case, the price function for product 3 does not influence the sec-
ond stage results, and as such does not factor into the profits of other producers.
Consequently, when producer 3 is not active, we can eliminate it from the analysis
entirely, with no affect on the equilibrium. The remaining producers then constitute a
series-parallel network that is not 3-edge-connected. There is no equilibrium in such
a network, so producer 3 must be active in any equilibrium.

For producer 3 to be active, the price of the bundle B4 = {2, 3, 5}, must be equal
to that of B1 = {1, 5}, B2 = {2, 4}, and B3 = {6}. For a given set of markups α, the
consumption assignment f satisfies:

⎧
⎪⎨

⎪⎩

f1 R1 + ( f1 + f4)R5 = ( f2 + f4)R2 + f2 R4 = f3 R6

= ( f2 + f4)R2 + f4 R3 + ( f1 + f4)R5,

f1 + f2 + f3 + f4 = 1.

(6.6)

Solving this system for f yields the consumption and production assignments for a
second-stage equilibrium. After constructing the profit functions for each producer, we
find that each producer’s optimal markup is again of the form,�a(α−a) = 2+ R�a/ca ,
where R�a is the price of an equilibrium assignment in a substitute network.

Structurally, the network to the left of Fig. 3 is entirely symmetric, in the sense that
G � a has the same structure for any choice of a. The graph of G � 1 is shown to the
right of the figure, and the logic to follow will apply symmetrically to each producer’s
markup. For a given set of markups α−1, we have that

R�1 =
{

f̂1 R2 + f̂1 R3 = f̂2 R5 + f̂2 R6 if f̂3 = 0

( f̂1 + f̂3)R2 + f̂3 R4 + ( f̂2 + f̂3)R5 if f̂3 > 0,

where f̂ is a consumption assignment satisfying f̂1 + f̂2 + f̂3 = 1. If f̂3 = 0,
then R�1 = ((R2 + R3) f̂1 + (R5 + R6) f̂2)/2 � min{R2, R3, R5, R6}. If f̂3 > 0,
then R�1 � R2 f̂1 + R4 f̂3 + R5 f̂2 � min{R2, R4, R5}. Employing the symmetric
arguments, Ra = �a(α−a)ca > minb∈AG {Rb} for all a ∈ AG , which is a contradiction.
It follows that there are no markup equilibria for which producer 3 is active, and
consequently, no markup equilibria in the market represented by the 3-edge-connected
network, G.

7 Conclusion

There are several possible extensions that would be interesting to explore. These
include more general costs structures, other forms of supply functions, more general
demand structures, and further analysis of the networked case. In what follows we
describe some of these pointing out specific problems of interest.

One direction is to allow for fixed costs and other types of cost functions, especially
those usually found in electricity markets and other relevant applications. This seems
particularly challenging when producers are asymmetric, for instance, when they have
different fixed costs.
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Although in this paper we have assumed inelastic demand, some of our results
extend to the case of elastic demand. In particular, for series-parallel networks and
linear per-unit cost functions, Lederman [29] studies necessary and sufficient condi-
tions for the existence of equilibria. In particular he shows that that an equilibrium
exists if and only if adding two parallel links between the source node and the sink
node results in a 3-edge-connected network. Unfortunately for nonlinear costs we do
not know conditions for existence of equilibria in series-parallel networks, because
solving the second stage game in closed form is challenging.

In light of Corollary 3.6, it would be very interesting to bound the price of anar-
chy when producers are allowed to bid supply functions with a fixed constant term.
Although we expect that in general this would lead to larger inefficiencies, it would
apply to arbitrary supply function equilibria. On the other hand, we do not know the
extent of the inefficiency of equilibria in the case of elastic demands with general
cost functions—studied by Chau and Sim [13] for the second stage game. Another
interesting avenue is to bound the price of anarchy in series-parallel networks. It is
easy to extend our initial bound in Sect. 5 to the network case, for linear per-unit cost
functions, however the tighter bounds do not seem to readily apply.

More general demand structures such as oligopsonies to model different consumers’
market power, is another line of research that may prove fruitful. If we follow the analy-
sis of Sect. 5 for the second-stage game, after the supply functions are fixed, both an
equilibrium and a centralized assignment minimizing the total price paid coincide. This
happens because the negative externalities are proportional to the marginal costs [16].
At this point it is natural to consider other market structures leading to potentially sub-
optimal assignments. This more general version of our model will have to consider two
sources of inefficiency: the chosen supply functions that may distort costs; and the con-
sumers that may be assigned suboptimally. In follow-up work, Kuleshov and Wilfong
[28] study a SFE mechanism for an oligopoly where players simultaneously optimize
the demand as well as the bundles they choose. Considering series-parallel markets
and linear per-unit supply functions, they establish that the inefficiency induced by
such mechanism is not too large.
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